
 
 

Test Case Prioritization in a Specification-based 
Testing Environment 

 

Gary Yu-Hsin Chen 
Department of Industrial & Systems Engineering, Chung Yuan Christian University, Chung Li, Taiwan 

Email: yuhsin@cycu.edu.tw 
 

Pei-Qi Wang 
Department of Industrial & Systems Engineering, Chung Yuan Christian University, Chung Li, Taiwan 

Email: ty880721@yahoo.com.tw 
 
 

Abstract—The topic of test case prioritization has been 
researched extensively in the past decade. However, current 
researches carried out on test case prioritization are mainly 
concerned with independent test cases in a structural testing 
environment. In a specification-based testing environment, 
however, some test cases are inter-case dependent and must 
follow certain sequences of execution. The objective of this 
research is to propose "prioritizing factors" that better 
reflect the real-world scenario for test case prioritization in 
the specification-based environment: (1) requirement 
severity score and (2) inter-case dependency, and to 
optimize the test case arrangement through the application 
of meta-heuristics. The inter-case dependency can be 
formulated as a sequential ordering problem (SOP), a NP-
complete problem for which the precedence relationship 
exists. Two meta-heuristics, the Genetic Algorithm and Ant 
Colony Optimization, are used to prioritize the test cases. 
 
Index Terms—Specification-based testing, test case 
prioritization, inter-case dependency, Maximum Partial 
Ordering/Arbitrary Insertion, Ant Colony Optimization, 
Genetic Algorithm 
 

I.  INTRODUCTION 

Test cases hold an important role to determine the 
success of a software application. Based on a study by the 
National Institute of Standards and Technology (NIST) in 
2002 [1] , it is found that software defects cost the U.S. 
economy $59.5 Billion annually. Software testing is one 
of the major activities performed in the software 
development life cycle to avoid such scenarios from 
happening. Although software is playing an increasingly 
important role in today’s systems, large or small [2], the 
software quality assurance is still more of an art than a 
science [3]. Essentially, the software testing is the "gate 
keeping" stage necessary to ensure that the quality of 
software has met customers' expectations. 

The landscape of software testing has expanded since 
the Myer’s trailblazing work dated back in 1979, The Art 
of Software Testing [4]. The software testing has evolved 
into several categories based on their unique 
characteristics and usage such as the structural (white-box) 
and specification-based (black-box) testing. Structural 
testing approach let the developers to have access to the 

software source code or work on the software directly. 
On the other hand, the specification-based approach treats 
the software under test (SUT) as a “black box”.  Black 
box software testing is a method where software testers 
responsible for testing the software do not have the 
knowledge of the software’s internal structure. The idea 
is to let the software testers independently test the 
software as if they themselves are the users, and verify 
whether the software output matches their expectation. 

Organization with a group of dedicated testing staff 
typically creates test cases for specification-based testing. 
This method allows software testers to start testing 
immediately with a relatively short ramp-up time. 
Furthermore, they would also view the software under 
test more objectively by avoiding the emotion attachment 
to the “labor of love”—or recently known as the “IKEA” 
effect [5, 6]. 

To test the software functionalities, regardless of 
structural or specification-based testing, the software 
testers typically would design and execute a list of test 
cases. A test case is a detailed step-by-step procedure 
which examines some aspects of the software, including 
inputs and outputs, the expected results and other relevant 
elements [7]. A good test case must be able to yield some 
information about the software under test [8]. 

The Institute of Electrical and Electronics Engineers 
(IEEE) provides the guidelines for designing test cases in 
the standard IEEE 829-2008 where the following sections 
should be included: test case specification identifier, test 
items, input specifications, output specifications, 
environmental needs, special procedural requirements, 
and inter-case dependencies [9]. A group of test cases is 
collectively referred to as a test suite, which examines all 
aspects (behaviors and operations) of a particular 
software program. Formally, the test suite and its test 
cases are defined in a document called the software test 
plan (STP). 

Test cases, which examine software based on a set of 
customer’s requirements, are generated from software 
deliverables at the requirement analysis stage. Software 
deliverables specifically consist of statement of work 
(SOW), consortia specifications, and software 
requirement specification (SRS). By definition, “a 
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software deliverable is a project result that is delivered to 
the customers at the end of some major phase such as 
specification or design” [10]. 

In Figure 1, the precedence relationships of various 
deliverables are depicted. At the beginning of the project, 
the requirements must be identified and specified. There 
are several ways this can be done—through the SOW 
provided by customers or consortia specifications, among 
others. It really depends on whether the customer is 
known or the general public. A SOW is an official 
document from customers that states what are to be 
implemented for a software project—acting as a 
document for software vendor’s bidding and outlining the 
general software functionalities. Another source of 
requirements also can be acquired at the external 
specification from consortia such as World Wide Web 
Consortium (W3C) or The 3rd Generation Partnership 
Project (3GPP) for wireless technologies. General 
requirements from those documents are in turn translated 
into a set of system requirements.  

Since a system is complex, the system is typically 
broken into smaller components; each component has its 
own requirement specification called “Software 
Requirement Specification” or SRS. Based on the SRS, 
developers then can develop designs and generate the 
document, software design document (SDD), while 
software testers create STP before executing test cases. 
All those deliverables are linked through the requirement 
traceability: the detailed requirements from the SRS can 
be traced back to the SOW, while designs (SDD) and 
testing (STP) must refer to detailed requirements in the 
SRS. The relationship of requirements is specified in a 
document called the traceability matrix. 

 

 
Fig. 1. Software Deliverables 

 
Because the software systems have been becoming 

large and complex in today's environment, numerous test 
cases are created to cover those functionalities. How to 
prioritize those test cases in order to meet the deadline 
requirements becomes a difficult yet essential task. 
Traditionally, the planning for the execution of software 
test suite is performed manually between the software test 
engineers and project managers. Considerations for 
arranging the test cases include the test case prioritization 
and dependencies among test cases. The manual approach 
works sufficiently for a small test suite but not for a 
sophisticated software system that calls for hundreds of 

test cases and more. Thus, test case prioritization 
techniques for automating the process have been 
researched, aiming at prioritizing test cases according to 
some criteria. 

The concept of Test case prioritization has been 
proposed for the past ten years; however, researches into 
this field mainly concentrate on the structural testing. On 
the other hand, test case prioritization on the 
specification-based testing has received a little or no 
attention although most testers conduct the specification 
based testing in the software industry [11]. Furthermore, 
current researches on test case prioritization have 
assumed the test cases to be completely independent from 
each other. In reality, many test cases are dependent on 
other test cases and thus inter-case dependencies should 
be explored [12]. 

In this paper, the research considers the test case 
prioritization from the perspective of specification-based 
testing. Several considerations are covered: the 
relationship between requirements and test case 
prioritization, the metrics for measuring the efficiency of 
the test case prioritization, and inter-case dependency. By 
incorporating those factors, we believe it better reflects 
the true world scenario.  

The rest of the paper is organized as follows. 
Background information on test case prioritization is 
discussed in section 2. Section 3 presents the prioritizing 
factors that impact the test case prioritization. The 
methodology is outlined in Section 4. In section 5 the 
experimental setup is discussed. In section 6 we present 
the results and discuss the findings. Finally, the 
conclusion and some future work directions are 
mentioned in section 7. 

II.  BACKGROUND: TEST CASE PRIORITIZATION 

Arranging test cases based on certain criteria have 
been discussed in the literature. Rothermel [13] have 
coined the word “test case prioritization problem” or 
TCP and given it the formal definition: 

 
Given: T, a test suite, PT, the set of permutations of T, 

and f, a function from PT to the real numbers. 
Problem: Find T PT′∈ such that 

( )( )( )[ ( ) ( )]T T PT T T f T T′′ ′′ ′′ ′ ′ ′′∀ ∈ ≠ ≥  
 
In the definition, PT represents the set of all possible 

prioritizations (orderings) of T, and f is a function that, 
applied to any such ordering, yields an award value for 
that ordering. 

Several techniques have been developed by Rothermel 
et. al [13] to prioritize the execution of existing test cases 
by exposing faults early in the regression testing process. 
They have also developed a weighted average of the 
percentage of faults detected, or APFD, which 
corresponds to the function f in the definition above. 
Because APFD is developed with the number of faults 
known in advance, it may not be practical for the black 
box testing environment [14]. Instead, another metric 
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based on the run time execution and test history is 
proposed. 

Li et al.[15] study five search algorithms for regression 
test case prioritization, which include a Greedy 
Algorithm, an Additional Greedy Algorithm, a 2-Optimal 
Algorithm, a Hill Climbing, and a Genetic Algorithm 
(GAs). The research concludes that the Greedy Algorithm 
performs worse than the other algorithms, and meta-
heuristic algorithms like GAs generate quite encouraging 
results. Additionally, they also propose three new metrics 
for the test case prioritization: average percentage block 
coverage (APBC), average percentage decision coverage 
(APDC), and average percentage statement coverage 
(APSC). 

Other than those search algorithms mentioned above, 
more recent meta-heuristics such as Particle Swarm 
Optimization (PSO) has been proposed to prioritize the 
test cases. Hla et. al apply the PSO to “prioritize the test 
cases to the new best positions based on modified 
software units to spend as little resource on retesting as 
possible.” [16] 

In addition to the algorithmic approaches, model-based 
techniques for TCP are on the rise based on a current 
study [17]. Zhou, Okamura and Dohi [18] have applied 
Markov chain Monte Carlo random testing to create the 
sequence of test cases due to its effectiveness in the 
framework of random testing. Rajarathinam and 
Natarajan [19] prioritize test cases by using the trace 
event techniques. Furthermore, latest TCP discoveries for 
handling multiple versions of software are addressed in  
[20], while a latest TCP investigation for GUI 
applications is conducted by  Sun, et al. [21]. 

Among the papers discussed above, most of them 
measure the success based on APFD or code/statement 
coverage in the structural testing environment. The 
researchers of this study propose to prioritize the test 
cases based on the inter-case dependency and test case 
severity in the specification-based testing environment. 

III.  PRIORITIZING FACTORS 

The research is conducted under the specification-
based testing environment. We generate use cases and 
later a software requirement specification through 
analyzing the interactions between users and software 
applications. Based on the software requirement 
specification we create test cases without understanding 
the internal structure of software applications. Two 
factors of test cases are considered:  (1) requirement 
severity score and (2) inter-case dependency for each test 
case. The description of each factor is described in the 
following sections. 

A.  Test Case Requirement Severity Score 
Many researches base test case severity on fault 

severities or number of faults. However, fault severities 
or number of faults can only be obtained in the white-box 
testing environment. Average percentage of fault 
detection (APFD) suffers from the circularity issue, “if all 
the faults are presumed in a software application, why 
those test cases are still needed?” [22]  Instead, we 

measure the test case severities based on the impacts of 
customer’s requirements in the specification-based 
environment since each test case must be mapped to 
requirements. Therefore, the impacts of requirements are 
closely related to the test cases―  a highly important 
requirement may have much higher chance of 
jeopardizing the software application compared to a less 
important requirement. 

Combining several studies on requirements and 
defects reporting [23, 24], we categorize requirements 
into four priority levels to be applied to functional as well 
as non-functional requirements. For each priority level, a 
number is assigned ranging from 1 to 4, with category 1 
being core requirements and category 4 being optional 
requirements. Please see Table 1 for detailed information. 
Additionally, each requirement is assigned a severity 
score; a test case may have several requirements 
associated with it. A test case may have a combined 
requirement severity score. We may assume that test case 
and requirements can be in either one-to-many (1-to-N) 
or many-to-one relationship (N-to-1). 

TABLE 1. 
DESCRIPTION OF REQUIREMENT PRIORITY LEVELS 

 
We evaluate the importance of each test case based on 

its requirement severity score. For example, a test case A 
may cover three requirements with the severity levels of 2 
each; the other test case B may cover only two 
requirements with the severity levels of 1 and 4. In order 
to compare the relative importance of each test case, the 
researchers calculate the test case’s overall requirement 
severity score through the “maximum element method” 
[25]: 

im
m

i
jij KtnS −

=

+= ∑ )1*)((
1

  (j =1,2,…n)  (1) 

    s.t. K = Max(k1,k2,…,kn)    (2) 

 ∑
=

≤
m

i
ji Ktn

1
*)( (j =1,2,…n) (3) 

where Sj represents the requirement severity score, n 
the number of test cases, m the severity levels; tj* the 
requirement severity level(s) for the test case j; ni(tj*) the 

Level Description Priority Level 

Showstopper: The system must provide this 
feature to be functional. 

1 

Critical: The system may function but would 
cause severe inconveniences and challenges 
unacceptable to users  

2 

Medium: The feature may improve the usage of 
system and give users more incentives to use 
the system. 

3 

Low: A cosmetic feature usually related to 
customers’ preferences and usability. 

4 
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different requirement severities for test case j; K the 
maximum number of requirements covered by a single 
test case in the test suite. To illustrate the application of 
the aforementioned method, suppose there are only two 
test cases, A and B, in a test suite. Test case A contains 
three requirements with the same requirement severity 
level of 2; test case B covers two requirements with 
different requirement severity levels of 1 and 4. K equals 
to 3 because the test case with the most requirements is 
test case A—with three requirements. The severity score 
of each test case is calculated as follows: 

 
A = S1= (0)(3+1)4-1 + (3)(3+1)4-2 + (0)(3+1)4-3 + 

(0)(3+1)4-4=48 

B = S2= (1)(3+1)4-1 + (0)(3+1)4-2 + (0)(3+1)4-3 + 

(1)(3+1)4-4=65 

 
Throughout the calculations, test case B appears to be 

more urgent in terms of its severity score. In reality, it 
does make sense to execute the test case with the 
showstopper requirements as soon as possible even if 
other requirements in the same test case are less 
important. 

B. Inter-case Dependencies 
For this prioritizing factor the following questions may 

be encountered, “What tests have to be executed before 
this one, why, and what if the program fails them?” [26, 
27] Inter-case dependency is an integral part of the test 
specification that the Institute of Electrical and 
Electronics Engineers (IEEE) lists in the IEEE Standard 
829-2008 [9]. For more supporting evidence, Onoma et 
al.[28] states that dependencies among the test cases 
require them to be execute in a specific sequence. For 
example, to test the robustness of software, the so-called 
stress or disaster recovery testing must be performed. 
Usually this type of testing is not performed until other 
test cases have been executed. In another scenario, if a 
start-up test case that involves the software installation 
and the system power up fails, the sequential test cases in 
the test suite cannot be executed. That is, if the system 
cannot successfully execute the core functionalities, the 
execution of entire test suite is suspended. For example, 
the execution of some test cases depends on the output 
from the test cases executed before them. Table 2 
provides the description of different dependency levels 
among test cases. 

 
 
 
 
 
 
 
 
 
 

TABLE 2.  
DESCRIPTION OF DEPENDENCY LEVELS 
Dependency Level Description Levels

Extreme Dependency: The test case pair is extremely 
related and one must be executed right after another. 

4 

High Dependency: The test case pair is closely 
dependent. 

3 

Medium Dependency: The test case is relatively close. 2 

Low Dependency: The test case is not particularly 
related. 

1 

No Dependency: The test cases are independent from 
each other. 

0 

Precedence Constraint Dependency: The precedence 
constraint exists between two test cases – test case a 
must be executed ahead of test case b. 

-1 

C. Normalization of Test case Severity and Inter-case 
Dependency Scores 

The formula of ranging scaling for normalizing the 
scores of test case severity and inter-case dependency is 
shown as follows: 

⎟
⎠
⎞

⎜
⎝
⎛

−
−+⎟

⎠
⎞

⎜
⎝
⎛

−
−−=

AB
AxD

AB
AxCxf 1)(   (4) 

where [A,B] is the range to be linearly transformed to 
[C,D]. In this research we intend to use the scale with the 
range of [0,100] for both scores. For example, the score 
of inter-case dependency, 16, is transformed to the value 
of 50. 

D. Mathematical Formulation of Prioritization Factors 

The mathematical formulation for prioritizing factors, 
inter-case dependency and test case severity, is based on 
the sequential ordering problem (SOP) [29]. SOP is a NP-
complete problem, whose objective is to find the 
minimum cost on a Hamiltonian path subject to the 
precedence constraints among the nodes. SOP has many 
practical applications ranging from freight transportation 
[30]  and crane scheduling in port terminals [31] to 
helicopter scheduling [32] and automotive paint shops 
[33].  

As far as the authors are aware of, this may be the first 
application of SOP on the test case prioritization. Similar 
to the SOP, the precedence constraints in this problem are 
imposed for the inter-case dependency for the test case 
prioritization, and the objective is to find the minimized 
cost from a group of viable solutions. Furthermore, we 
also consider the test case severity, which does not have 
its counterpart in the SOP.  

 
minimize

)1(

1

1
)1()( ),( +

−

=
+∑ += kC

n

k
kktotalScore TSCCdTCP ππ π  (5) 

 subject to  if d(Ci, Cj) = -1     (6) 
  for i = T(k), j = T(l)  
  then l < k 
 where  
  n : number of test cases 
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   π : test case sequence in the test suite 
  k : a particular test case in the test suite   
  d : inter-case dependency  
  TS: test case severity 
  Ci : test cases ( i = 1, 2, …, n) 
  Cj : test cases ( j = 1, 2, …, n) 
  π (k) : the kth position in the test case 
               sequence 
  π (l) : the lth position in the test case 
               sequence 
  Cπ(k) : the test case at the kth position of 
             the test case sequence π 
  w1: weight assigned to test case severity 

  w2: weight assigned to inter-case  
                              dependency 
 

If the precedence constraint exists between test cases— 
for example, test case i cannot be executed ahead of test 
case j— then the dependency is -1 between test case i and 
j. If the test case i is at the kth position of the sequence 
and test case j is at the lth position of the sequence, the 
test case i cannot be executed before the test case j, then 
the lth position of test case j must be in front of test case i 
(at kth position) or l < k. 

IV.  METHODOLOGY 

Two approaches are taken to solve the test case 
prioritization in the specification-based environment: (1) 
ant colony optimization (ACO) and (2) genetic algorithm 
(GA). The ant colony optimization is based on the 
foraging behaviors of ants while the genetic algorithm is 
inspired by the natural chromosomal crossover and 
genetic mutation. The ant colony optimization is based on 
the constructive ACO algorithm [34] while the GA is 
based on the [29].  Both meta-heuristics are incorporated 
with the Maximum Partial Order (MPO) and Arbitrary 
Insertion (AI) mechanism[29] for finding the minimized 
test case prioritization based on the test case severity and 
inter-case dependency. Henceforth, those meta-heuristics 
are referred to as ACO MPO/AI and GA MPO/AI. The 
maximum partial order/arbitrary insertion are described 
in greater details and a small example is given in the 
following sub-sections. 

A. Maximum Partial Ordering/Arbitrary Insertion 
The maximum partial order aims at finding the longest 

partial order that consists of the commonalities of two 
parents, two solution entities which may be ants in the 
ACO or individuals in the GA. Then through the arbitrary 
insertion the remaining test cases are inserted into the 
partial order graph. The major steps of the maximum 
partial order are displayed in Fig. 2. 

 

 
Fig. 2. Maximum partial order/arbitrary insertion process 

B. Initializing the Test Case Sequence 
The test case sequences are initially randomly 

generated for each “parent”, which refers to the solution 
entities of the meta-heuristics. In the small example, the 
solution entity consists of seven test cases in various 
sequential orders. 

 
Parent 1: T1T2T3T4T5T6T7 
Parent 2: T1T5T6T4T2T3T7 

 

C. Adding to the Intersection Matrix 
The inter-case dependencies among the test cases are 

represented by the n × n matrices. If Ti is followed by Tj, 
the entry in the matrix is incremented by 1 and 0, 
otherwise. Both matrices are added together to form the 
intersection matrix. 

 

 
Fig. 3. Resulting Intersection matrix of two parents 
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D. Making the Predecessor Vector 
Based on the previous intersection matrix, if there is 

an intersection, i.e., 2, in the columns, it is tallied in the 
predecessor vector table. For example, the number of 2’s 
in column T3 is 2, representing two predecessors of T3.  

 
TABLE 3.  

PREDECESSOR VECTOR OF TEST CASES 
 T1 T2 T3 T4 T5 T6 T7

No. of Predecessors 0 1 2 1 1 2 6
 

E. Making Order Graph 
The order graph is generated from the predecessor 

vector table. The order graph contains two columns, 
Immediate Predecessor and Depth. The Immediate 
Predecessor column contains the immediate predecessor 
of Tn while the Depth column contains the order in the 
sequence.  

TABLE 4.  
ORDER GRAPH OF TEST CASES 

 Immediate  
Predecessor 

Depth 

T1 None 1 
T2 T1 2 
T3 T2 3 
T4 T1 2 
T5 T1 2 
T6 T5 3 
T7 T3 4 

 

F. Finding Maximum Partial Order Graph 
Figure 4 depicts the graphical representation of the 

maximum partial order graph. The maximum partial 
order graph is generated by first finding a test case, Tn,  
with the fewest predecessors. Then the Tn is attached to 
the predecessor with the most ordered predecessors. 
When all the test cases have been added, the longest path 
in the graph is the maximum partial order; in this case, 
the longest path is T1-T2-T3-T7. 

 

 
Fig. 4. The maximum partial order graph of test cases 

 

G. Making the Predecessor Vector 
After finding the Maximum Partial Order graph, the 

remaining test cases are arbitrarily inserted in the order 
graph. To insert a test case in the graph, two cases are 
considered: (1) minimization of both test case severity 
and inter-case dependency score, d(Ti, Tj) and (2) if there 

is a tie in terms of the combined score, the precedence is 
decided based on the test case severity.  

 

 
Fig. 5. The arbitrary insertion of test cases 

V.  EXPERIMENT SETUP 

In this research we have considered five data sets with 
various test suite sizes: 18, 71, 101, 255, and 380 test 
cases. The data sets are henceforth referred to as p18, p71, 
p101, p255 and p380. The values for inter-case 
dependencies and test case severities are randomly 
generated; for the larger test suites, p255 and p380, the 
test case severities are evenly distributed among four 
quartiles; that is, 25% of the test suite consist of severities 
in the first quartile (75-100), another 25% in the second 
quartile (50-75), and so on. Each test suite has been 
executed five times for each meta-heuristics. 

Both ACO MPO/AI and GA MPO/AI codes are 
programmed in Visual C++ and executed on a computer 
with CPU Duo P8400 and 2GB memory. 

A. Limitations and Constraints 
The research is conducted for the specification-based 

testing, i.e. black-box testing, only.  The structural or 
white-box testing is not within the scope of this research. 
Additionally, the deadline for the completion of test suite 
is not considered for this research.  

B. Parameter Settings 
Both Tables 5 and 6 contains the parameter settings 

for ACO MPO/AI and GA MPO/AI, respectively.  ACO 
MPO/AI parameters include M (the number of ants), 
ITERATION (the number of iterations), α (favoring 
pheromone information/exploitation), β (favoring 
unexplored search space), and ρ (the pheromone 
evaporation rate). On the other hand, GA MPO/AI 
include GEN (number of generations), POPSIZE 
(population size), and PARENTS (number of parents). All 
the parameter settings are determined empirically. In the 
future, more systematical approaches can be taken to 
obtain the precise values for parameters. 

 
TABLE 5.  

ACO MPO/AI PARAMETER SETTINGS 
M ITERATION α β ρ
5 100 1 1 0.6 

 
TABLE 6.  

GA MPO/AI PARAMETER SETTINGS 
GEN POPSIZE PARENTS 
100 100 2 
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VI. RESULTS AND DISCUSSIONS 
The results obtained after executing the meta-

heuristics against the test suites are displayed in Table 7. 
The second column, Precedence Constraints, indicates the 
number of precedence constraint relationships that must 
not be violated during the execution. The fifth column, 
Best Found Score, contains the best found scores for the 
combination of inter-case dependency and test case 
severity. Notice that the values are all negative—it is 
related to converting the inter-case dependency and 
severity scores for minimization. The last two columns 
indicate the deviations of ACO and GA from the best 
found scores, respectively. 

As shown in Table 5, the performance of ACO 
MPO/AI and GA MPO/AI are virtually similar in terms 
of the combined inter-case dependency and severity 
scores, with the exception of test suite p255, where the 
ACO MPO/AI performed slightly worse. The results of 
Wilcoxon signed rank test performed on the runs of p255 
for both ACO and GA indicate that ACO and GA are not 
significantly different from each other with the p-value of 
0.042. As far as the execution time is concerned, both 
meta-heuristics complete the execution of test case 
prioritization within one minute with GA MPO/AI taking 
a few seconds less than ACO MPO/AI. 
 

TABLE 7.  
PERFORMANCE OF ACO MPO/AI AND GA MPO/AI ON THE 
COMBINED SEVERITY AND INTER-CASE DEPENDENCY 

SCORES 
 

Test 
Suite  
Name 

Preced. 
Relation. 

ACO 
(sec) 

GA 
(sec) 

Best 
Found  
Score 

ACO 
Score 
Dev. 

GA 
Score 
Dev. 

p18 15 0.03 0.015 -1177 0% 0% 
p71 17 0.24 0.088 -9931 0% 0% 
p101 33 0.487 0.166 -14708 0% 0% 
p255 30181 2.01 0.692 -36870 -0.14% 0% 
p380 63583 5.49 0.926 -56098 0% 0% 

 
Test case severity is also one of the performance 

indicators; hence, we expect test cases with higher 
severities to be executed earlier than those with lower 
severities. Even though we have to take inter-case 
dependency— particular precedence constraints— into 
account, we can still look for the overall trend of the 
severity distribution. The Mann-Kendall trend analysis 
shows all the prioritization of test suites follow the 
downward trend with the p-value of 0.000. Figures 6-10 
show the downward trends and slopes of the test case 
prioritization for each test suite performed by the best 
meta-heuristics between GA and ACO.  

Table 8 shows slopes of test case prioritization of both 
approach, ACO and GA MPO/AI. In addition, by 
comparing the slopes of test case prioritization between 
them no significant differences is found. The Wilcoxon 
signed rank test performed on the largest deviation 
between ACO and GA fails to reject the null hypothesis 
of ACO and GA are not statistically different from each 
other.   
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Fig. 6. Trend analysis of test case severity for 18 test cases 
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Fig. 7. Trend analysis of test case severity for 71 test cases 
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Fig. 8. Trend analysis of test case severity for 101 test cases 
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Fig. 9. Trend analysis of test case severity for 255 test cases 
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Fig. 10 Trend analysis of test case severity for 380 test cases 

 
TABLE 8.  

PERFORMANCE OF ACO MPO/AI AND GA MPO/AI ON THE 
TREND ANALYSIS 

Test Suite 
Name 

Best Found 
Slope 

ACO Slope 
Deviation 

GA Slope 
Deviation 

p18 -1.6419 0% -0.50% 
p71 -0.8165 0% -6.43% 
p101 -0.59482 0% -0.08% 
p255 -0.37099 -0.04% 0% 
p380 -0.24591 0% -0.14% 

VII. CONCLUSION  

In the past decade, the research topic, test case 
prioritization, has been widely discussed and researched. 
By prioritizing the test cases, it may effectively improve 
the requirement coverage and software quality. At current 
time, many researchers focus on the structural testing. 
Even though structural testing has been applied to the 
early test stages of unit and integration testing, the later 
test stages of specification-based testing shall not be 
ignored. If the software is delivered to the customers 
without going through the specification-based testing— 
which may uncover errors not detected in the structural 
testing—defects uncovered by customers may deal a 
severe blow to customer’s confidence with the product 
and the company’s reputation. However, few researches 
are conducted on the topic of specification-based testing. 
Thus, the research considers the severity and inter-case 
dependency for evaluating test case prioritization under 
the specification-based testing environment. Based on the 
research result and discussion, the research fills the void 
of TCP with inter-case dependency under the 
specification-based environment, which has not yet been 
actively researched.  

In the research, we have considered two meta-
heuristics, ACO and GA incorporated with the MPO/AI 
operator, which have shown to be viable approaches to 
prioritize test cases in the specification-based 
environment.  

Because of the resource and time constraints, we 
recommend the following for future work:  

(1)  Applying the proposed method on more 
sophisticated and complex software 

(2)  The research measures the effectiveness of test 
case prioritization on time. In the future, 
other criteria such as cost may be considered. 

(3)  Other multi-objective methods may be 
considered and incorporated with existing 
methods. 

ACKNOWLEDGMENT 

The authors would like to thank the anonymous 
referees for their times and efforts to improve the quality 
of this paper. This work was supported in part by a grant 
from National Science Council in Taiwan, NSC 100-
2221-E-033-030. 

REFERENCES 

[1] M. Newman. (2002, December 13th). Software Errors 
Cost U.S. Economy $59.5 Billion Annually. Available: 
http://www.abeacha.com/NIST_press_release_bugs_cost.h
tm 

[2] M. Xie, Q. P. Hu, Y. P. Wu, and S. H. Ng, "A study of the 
Modeling and Analysis of Software Fault-detection and 
Fault-correction Processes," Quality and Reliability 
Engineering International, pp. 459-470, 2007. 

[3] S. Wang, Y. Wu, M. Lu, and H. Li, "Discrete 
Nonhomogeneous Poisson Process Software Reliability 
Growth models based on test coverage," Quality and 
Reliability Engineering International, pp. 103-112, 2013. 

[4] G. J. Myers, The art of software testing. New York: Wiley, 
1979. 

[5] M. I. Norton, D. Mochon, and D. Ariely, "The IKEA effect: 
When labor leads to love," Journal of Consumer 
Psychology, vol. 22, pp. 453-460, Jul 2012. 

[6] O. F. Shmueli, Lior; and Pliskin, Nava, "OVER-
REQUIREMENT IN SOFTWARE DEVELOPMENT: AN 
EMPIRICAL INVESTIGATION OF THE 'IKEA' 
EFFECT," in ECIS 2012 Proceedings, 2012, p. Paper 85. 

[7] (n.d., December 21th, 2011). Test Case. Available: 
http://www.businessdictionary.com/definition/test-
case.html 

[8] C. Kaner, "What Is a Good Test Case?," STAR East, p. 16, 
May 2003 2003. 

[9] IEEE, "IEEE Standard for Software Test Documentation," 
ed. New York, NY: The Institute of Electrical and 
Electronics Engineers, 2008. 

[10] I. Sommerville, Software engineering, 7th ed. Boston: 
Pearson/Addison-Wesley, 2004. 

[11] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in 
software testing : a context-driven approach. New York: 
Wiley, 2002. 

[12] G. Y. Chen and J. Rogers, "Arranging software test cases 
through an optimization method," in PICMET '10 - 
Portland International Center for Management of 
Engineering and Technology, Proceedings - Technology 
Management for Global Economic Growth Phuket, 
Thailand, 2010, pp. 1596-1600. 

[13] G. Rothermel, R. Untch, and M. Harrold, "Prioritizing test 
cases for regression testing," IEEE TRANSACTIONS ON 
SOFTWARE ENGINEERING, vol. 27, pp. 929-948, 2001. 

[14] B. Qu, C. H. Nie, B. W. Xu, and X. F. Zhang, "Test case 
prioritization for black box testing," in IEEE 31st Annual 
International Computer Software and Applications 
Conference (COMPSAC 2007), 2007. 

[15] Z. Li, M. Harman, and R. M. Hierons, "Search algorithms 
for regression test case prioritization," IEEE Transactions 
on Software Engineering, vol. 33, pp. 225-237, Apr 2007. 

[16] K. H. Hla, Y. S. Choi, and J. S. Park, "Applying particle 
swarm optimization to prioritizing test cases for embedded 
real time software retesting," in IEEE 8th International 
Conference on Computer and Information Technology 
Workshops, 2008. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2063

© 2014 ACADEMY PUBLISHER



 

[17] C. Catal and D. Mishra, "Test case prioritization: a 
systematic mapping study," Software Quality Journal, vol. 
21, pp. 445-478, Sep 2013. 

[18] B. Zhou, H. Okamura, and T. Dohi, "Application of 
Markov Chain Monte Carlo Random Testing to Test Case 
Prioritization in Regression Testing," IEICE Transactions 
on Information and Systems, vol. E95D, pp. 2219-2226, 
Sep 2012. 

[19] K. Rajarathinam and S. Natarajan, "Test suite prioritisation 
using trace events technique," IET Software, vol. 7, pp. 85-
92, Apr 2013. 

[20] C.-T. Lin, C.-D. Chen, C.-S. Tsai, and G. M. Kapfhammer, 
"History-based test case prioritization with software 
version awareness," in 18th International Conference on 
Engineering of Complex Computer Systems, ICECCS 2013, 
July 17, 2013 - July 19, 2013, Singapore, Singapore, 2013, 
pp. 171-172. 

[21] W. Sun, Z. Gao, W. Yang, C. Fang, and Z. Chen, "Multi-
objective test case prioritization for GUI applications," in 
28th Annual ACM Symposium on Applied Computing, SAC 
2013, March 18, 2013 - March 22, 2013, Coimbra, 
Portugal, 2013, pp. 1074-1079. 

[22] M. Last, S. Eyal, and A. Kandel, "Effective black-box 
testing with genetic algorithms," in Hardware and 
Software Verification and Testing. vol. 3875, S. Ur, E. Bin, 
and Y. Wolfsthal, Eds., ed Berlin: Springer-Verlag Berlin, 
2006, pp. 134-148. 

[23] Y.-S. Lee, "An Approach to Generating Test Cases for 
Non-functional Requirements," Master's degree, 
Department of Electrical Engineering, National Chung 
Cheng University, Chia Yi, Taiwan, 2003. 

[24] authors. (2000, 12/7). Bugs and Fixes. Available: 
http://www.sqatester.com/bugsfixes/defectparametrs.htm 

[25] T.-H. Yu, "Test Case Ordering and Selection for Blackbox 
Testing," Master's Thesis, Department of Industrial and 
Systems Engineering, Chung Yuan Christian University, 
Chung Yuan Christian University, 2012. 

[26] IEEE, "IEEE 829-1998 Standard for Software Test 
Documentation," in Test Case Specification, ed. New York: 
IEEE Service Center, 1998. 

[27] C. Kaner, J. L. Falk, and H. Q. Nguyen, Testing computer 
software, 2nd ed. New York: Wiley, 1999. 

[28] A. K. Onoma, W. T. Tsai, M. Poonawala, and H. 
Suganuma, "Regression testing in an industrial 

environment," Communications of the ACM, vol. 41, pp. 
81-86, 1998. 

[29] S. Chen and S. F. Smith, "Commonality and genetic 
algorithms," Carnegie Mellon University, Pittsburgh, PA, 
Technical Report CMU-RI-TR-96-271996. 

[30] L. F. Escudero, M. Guignard, and K. Malik, "A 
Lagrangean relax-and-cut approach for the sequential 
ordering problem with precedence relationships," Annals of 
Operations Research, vol. 50, pp. 1219-237, 1994. 

[31] R. Montemanni, D. H. Smith, A. E. Rizzoli, and L. M. 
Gambardella, "Sequential Ordering Problems for Crane 
Scheduling in Port Terminals," International Journal of 
Simulation and Process Modelling, vol. 5, pp. 348–361, 
2009. 

[32] T. M.T. and P. W.R., "Precedence constrained routing and 
helicopter scheduling: heuristic design," Interfaces, vol. 22, 
pp. 100-111, 1992. 

[33] S. Spieckermann, K. Gutenschwager, and S. Vos, "A 
sequential ordering problem in automotive paint shops," 
International Journal of Production Research, vol. 42, pp. 
1865–1878, 2004. 

[34] A. P. Engelbrecht, Computational intelligence : an 
introduction, 2nd ed. Chichester, England ; Hoboken, NJ: 
John Wiley & Sons, 2007. 

 
 
 
Gary Yu-Hsin Chen received his PhD in Industrial and 
Systems Manufacturing Engineering from the University of 
Texas at Arlington, Arlington, Texas, USA. He had worked as a 
senior software development/test engineer in the 
telecommunications and industrial automation industries in 
USA. He is currently an assistant professor in the Department of 
Industrial and Systems Engineering at Chung Yuan Christian 
University, Taiwan. His research interests are in the fields of 
software testing/quality assurance, meta-heuristics, facility 
layout optimization and telecommunications applications. He is 
a permanent member of Chinese Institute of Industrial 
Engineers. 
 
Pei-Qi Wang is currently working as a software test engineer 
for a multi-national hi-tech company in Taiwan. She received 
her MS degree in Industrial and Systems Engineering from 
Chung Yuan Christian University, Taiwan, in 2011. 

 
 

2064 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER




