

Test Case Prioritization in a Specification-based
Testing Environment

Gary Yu-Hsin Chen
Department of Industrial & Systems Engineering, Chung Yuan Christian University, Chung Li, Taiwan

Email: yuhsin@cycu.edu.tw

Pei-Qi Wang
Department of Industrial & Systems Engineering, Chung Yuan Christian University, Chung Li, Taiwan

Email: ty880721@yahoo.com.tw

Abstract—The topic of test case prioritization has been
researched extensively in the past decade. However, current
researches carried out on test case prioritization are mainly
concerned with independent test cases in a structural testing
environment. In a specification-based testing environment,
however, some test cases are inter-case dependent and must
follow certain sequences of execution. The objective of this
research is to propose "prioritizing factors" that better
reflect the real-world scenario for test case prioritization in
the specification-based environment: (1) requirement
severity score and (2) inter-case dependency, and to
optimize the test case arrangement through the application
of meta-heuristics. The inter-case dependency can be
formulated as a sequential ordering problem (SOP), a NP-
complete problem for which the precedence relationship
exists. Two meta-heuristics, the Genetic Algorithm and Ant
Colony Optimization, are used to prioritize the test cases.

Index Terms—Specification-based testing, test case
prioritization, inter-case dependency, Maximum Partial
Ordering/Arbitrary Insertion, Ant Colony Optimization,
Genetic Algorithm

I. INTRODUCTION

Test cases hold an important role to determine the
success of a software application. Based on a study by the
National Institute of Standards and Technology (NIST) in
2002 [1] , it is found that software defects cost the U.S.
economy $59.5 Billion annually. Software testing is one
of the major activities performed in the software
development life cycle to avoid such scenarios from
happening. Although software is playing an increasingly
important role in today’s systems, large or small [2], the
software quality assurance is still more of an art than a
science [3]. Essentially, the software testing is the "gate
keeping" stage necessary to ensure that the quality of
software has met customers' expectations.

The landscape of software testing has expanded since
the Myer’s trailblazing work dated back in 1979, The Art
of Software Testing [4]. The software testing has evolved
into several categories based on their unique
characteristics and usage such as the structural (white-box)
and specification-based (black-box) testing. Structural
testing approach let the developers to have access to the

software source code or work on the software directly.
On the other hand, the specification-based approach treats
the software under test (SUT) as a “black box”. Black
box software testing is a method where software testers
responsible for testing the software do not have the
knowledge of the software’s internal structure. The idea
is to let the software testers independently test the
software as if they themselves are the users, and verify
whether the software output matches their expectation.

Organization with a group of dedicated testing staff
typically creates test cases for specification-based testing.
This method allows software testers to start testing
immediately with a relatively short ramp-up time.
Furthermore, they would also view the software under
test more objectively by avoiding the emotion attachment
to the “labor of love”—or recently known as the “IKEA”
effect [5, 6].

To test the software functionalities, regardless of
structural or specification-based testing, the software
testers typically would design and execute a list of test
cases. A test case is a detailed step-by-step procedure
which examines some aspects of the software, including
inputs and outputs, the expected results and other relevant
elements [7]. A good test case must be able to yield some
information about the software under test [8].

The Institute of Electrical and Electronics Engineers
(IEEE) provides the guidelines for designing test cases in
the standard IEEE 829-2008 where the following sections
should be included: test case specification identifier, test
items, input specifications, output specifications,
environmental needs, special procedural requirements,
and inter-case dependencies [9]. A group of test cases is
collectively referred to as a test suite, which examines all
aspects (behaviors and operations) of a particular
software program. Formally, the test suite and its test
cases are defined in a document called the software test
plan (STP).

Test cases, which examine software based on a set of
customer’s requirements, are generated from software
deliverables at the requirement analysis stage. Software
deliverables specifically consist of statement of work
(SOW), consortia specifications, and software
requirement specification (SRS). By definition, “a

2056 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2056-2064

software deliverable is a project result that is delivered to
the customers at the end of some major phase such as
specification or design” [10].

In Figure 1, the precedence relationships of various
deliverables are depicted. At the beginning of the project,
the requirements must be identified and specified. There
are several ways this can be done—through the SOW
provided by customers or consortia specifications, among
others. It really depends on whether the customer is
known or the general public. A SOW is an official
document from customers that states what are to be
implemented for a software project—acting as a
document for software vendor’s bidding and outlining the
general software functionalities. Another source of
requirements also can be acquired at the external
specification from consortia such as World Wide Web
Consortium (W3C) or The 3rd Generation Partnership
Project (3GPP) for wireless technologies. General
requirements from those documents are in turn translated
into a set of system requirements.

Since a system is complex, the system is typically
broken into smaller components; each component has its
own requirement specification called “Software
Requirement Specification” or SRS. Based on the SRS,
developers then can develop designs and generate the
document, software design document (SDD), while
software testers create STP before executing test cases.
All those deliverables are linked through the requirement
traceability: the detailed requirements from the SRS can
be traced back to the SOW, while designs (SDD) and
testing (STP) must refer to detailed requirements in the
SRS. The relationship of requirements is specified in a
document called the traceability matrix.

Fig. 1. Software Deliverables

Because the software systems have been becoming

large and complex in today's environment, numerous test
cases are created to cover those functionalities. How to
prioritize those test cases in order to meet the deadline
requirements becomes a difficult yet essential task.
Traditionally, the planning for the execution of software
test suite is performed manually between the software test
engineers and project managers. Considerations for
arranging the test cases include the test case prioritization
and dependencies among test cases. The manual approach
works sufficiently for a small test suite but not for a
sophisticated software system that calls for hundreds of

test cases and more. Thus, test case prioritization
techniques for automating the process have been
researched, aiming at prioritizing test cases according to
some criteria.

The concept of Test case prioritization has been
proposed for the past ten years; however, researches into
this field mainly concentrate on the structural testing. On
the other hand, test case prioritization on the
specification-based testing has received a little or no
attention although most testers conduct the specification
based testing in the software industry [11]. Furthermore,
current researches on test case prioritization have
assumed the test cases to be completely independent from
each other. In reality, many test cases are dependent on
other test cases and thus inter-case dependencies should
be explored [12].

In this paper, the research considers the test case
prioritization from the perspective of specification-based
testing. Several considerations are covered: the
relationship between requirements and test case
prioritization, the metrics for measuring the efficiency of
the test case prioritization, and inter-case dependency. By
incorporating those factors, we believe it better reflects
the true world scenario.

The rest of the paper is organized as follows.
Background information on test case prioritization is
discussed in section 2. Section 3 presents the prioritizing
factors that impact the test case prioritization. The
methodology is outlined in Section 4. In section 5 the
experimental setup is discussed. In section 6 we present
the results and discuss the findings. Finally, the
conclusion and some future work directions are
mentioned in section 7.

II. BACKGROUND: TEST CASE PRIORITIZATION

Arranging test cases based on certain criteria have
been discussed in the literature. Rothermel [13] have
coined the word “test case prioritization problem” or
TCP and given it the formal definition:

Given: T, a test suite, PT, the set of permutations of T,

and f, a function from PT to the real numbers.
Problem: Find T PT′∈ such that

()()()[() ()]T T PT T T f T T′′ ′′ ′′ ′ ′ ′′∀ ∈ ≠ ≥

In the definition, PT represents the set of all possible

prioritizations (orderings) of T, and f is a function that,
applied to any such ordering, yields an award value for
that ordering.

Several techniques have been developed by Rothermel
et. al [13] to prioritize the execution of existing test cases
by exposing faults early in the regression testing process.
They have also developed a weighted average of the
percentage of faults detected, or APFD, which
corresponds to the function f in the definition above.
Because APFD is developed with the number of faults
known in advance, it may not be practical for the black
box testing environment [14]. Instead, another metric

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2057

© 2014 ACADEMY PUBLISHER

based on the run time execution and test history is
proposed.

Li et al.[15] study five search algorithms for regression
test case prioritization, which include a Greedy
Algorithm, an Additional Greedy Algorithm, a 2-Optimal
Algorithm, a Hill Climbing, and a Genetic Algorithm
(GAs). The research concludes that the Greedy Algorithm
performs worse than the other algorithms, and meta-
heuristic algorithms like GAs generate quite encouraging
results. Additionally, they also propose three new metrics
for the test case prioritization: average percentage block
coverage (APBC), average percentage decision coverage
(APDC), and average percentage statement coverage
(APSC).

Other than those search algorithms mentioned above,
more recent meta-heuristics such as Particle Swarm
Optimization (PSO) has been proposed to prioritize the
test cases. Hla et. al apply the PSO to “prioritize the test
cases to the new best positions based on modified
software units to spend as little resource on retesting as
possible.” [16]

In addition to the algorithmic approaches, model-based
techniques for TCP are on the rise based on a current
study [17]. Zhou, Okamura and Dohi [18] have applied
Markov chain Monte Carlo random testing to create the
sequence of test cases due to its effectiveness in the
framework of random testing. Rajarathinam and
Natarajan [19] prioritize test cases by using the trace
event techniques. Furthermore, latest TCP discoveries for
handling multiple versions of software are addressed in
[20], while a latest TCP investigation for GUI
applications is conducted by Sun, et al. [21].

Among the papers discussed above, most of them
measure the success based on APFD or code/statement
coverage in the structural testing environment. The
researchers of this study propose to prioritize the test
cases based on the inter-case dependency and test case
severity in the specification-based testing environment.

III. PRIORITIZING FACTORS

The research is conducted under the specification-
based testing environment. We generate use cases and
later a software requirement specification through
analyzing the interactions between users and software
applications. Based on the software requirement
specification we create test cases without understanding
the internal structure of software applications. Two
factors of test cases are considered: (1) requirement
severity score and (2) inter-case dependency for each test
case. The description of each factor is described in the
following sections.

A. Test Case Requirement Severity Score
Many researches base test case severity on fault

severities or number of faults. However, fault severities
or number of faults can only be obtained in the white-box
testing environment. Average percentage of fault
detection (APFD) suffers from the circularity issue, “if all
the faults are presumed in a software application, why
those test cases are still needed?” [22] Instead, we

measure the test case severities based on the impacts of
customer’s requirements in the specification-based
environment since each test case must be mapped to
requirements. Therefore, the impacts of requirements are
closely related to the test cases― a highly important
requirement may have much higher chance of
jeopardizing the software application compared to a less
important requirement.

Combining several studies on requirements and
defects reporting [23, 24], we categorize requirements
into four priority levels to be applied to functional as well
as non-functional requirements. For each priority level, a
number is assigned ranging from 1 to 4, with category 1
being core requirements and category 4 being optional
requirements. Please see Table 1 for detailed information.
Additionally, each requirement is assigned a severity
score; a test case may have several requirements
associated with it. A test case may have a combined
requirement severity score. We may assume that test case
and requirements can be in either one-to-many (1-to-N)
or many-to-one relationship (N-to-1).

TABLE 1.
DESCRIPTION OF REQUIREMENT PRIORITY LEVELS

We evaluate the importance of each test case based on

its requirement severity score. For example, a test case A
may cover three requirements with the severity levels of 2
each; the other test case B may cover only two
requirements with the severity levels of 1 and 4. In order
to compare the relative importance of each test case, the
researchers calculate the test case’s overall requirement
severity score through the “maximum element method”
[25]:

im
m

i
jij KtnS −

=

+= ∑)1*)((
1

 (j =1,2,…n) (1)

 s.t. K = Max(k1,k2,…,kn) (2)

 ∑
=

≤
m

i
ji Ktn

1
*)((j =1,2,…n) (3)

where Sj represents the requirement severity score, n
the number of test cases, m the severity levels; tj* the
requirement severity level(s) for the test case j; ni(tj*) the

Level Description Priority Level

Showstopper: The system must provide this
feature to be functional.

1

Critical: The system may function but would
cause severe inconveniences and challenges
unacceptable to users

2

Medium: The feature may improve the usage of
system and give users more incentives to use
the system.

3

Low: A cosmetic feature usually related to
customers’ preferences and usability.

4

2058 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

different requirement severities for test case j; K the
maximum number of requirements covered by a single
test case in the test suite. To illustrate the application of
the aforementioned method, suppose there are only two
test cases, A and B, in a test suite. Test case A contains
three requirements with the same requirement severity
level of 2; test case B covers two requirements with
different requirement severity levels of 1 and 4. K equals
to 3 because the test case with the most requirements is
test case A—with three requirements. The severity score
of each test case is calculated as follows:

A = S1= (0)(3+1)4-1 + (3)(3+1)4-2 + (0)(3+1)4-3 +

(0)(3+1)4-4=48

B = S2= (1)(3+1)4-1 + (0)(3+1)4-2 + (0)(3+1)4-3 +

(1)(3+1)4-4=65

Throughout the calculations, test case B appears to be

more urgent in terms of its severity score. In reality, it
does make sense to execute the test case with the
showstopper requirements as soon as possible even if
other requirements in the same test case are less
important.

B. Inter-case Dependencies
For this prioritizing factor the following questions may

be encountered, “What tests have to be executed before
this one, why, and what if the program fails them?” [26,
27] Inter-case dependency is an integral part of the test
specification that the Institute of Electrical and
Electronics Engineers (IEEE) lists in the IEEE Standard
829-2008 [9]. For more supporting evidence, Onoma et
al.[28] states that dependencies among the test cases
require them to be execute in a specific sequence. For
example, to test the robustness of software, the so-called
stress or disaster recovery testing must be performed.
Usually this type of testing is not performed until other
test cases have been executed. In another scenario, if a
start-up test case that involves the software installation
and the system power up fails, the sequential test cases in
the test suite cannot be executed. That is, if the system
cannot successfully execute the core functionalities, the
execution of entire test suite is suspended. For example,
the execution of some test cases depends on the output
from the test cases executed before them. Table 2
provides the description of different dependency levels
among test cases.

TABLE 2.
DESCRIPTION OF DEPENDENCY LEVELS
Dependency Level Description Levels

Extreme Dependency: The test case pair is extremely
related and one must be executed right after another.

4

High Dependency: The test case pair is closely
dependent.

3

Medium Dependency: The test case is relatively close. 2

Low Dependency: The test case is not particularly
related.

1

No Dependency: The test cases are independent from
each other.

0

Precedence Constraint Dependency: The precedence
constraint exists between two test cases – test case a
must be executed ahead of test case b.

-1

C. Normalization of Test case Severity and Inter-case
Dependency Scores

The formula of ranging scaling for normalizing the
scores of test case severity and inter-case dependency is
shown as follows:

⎟
⎠
⎞

⎜
⎝
⎛

−
−+⎟

⎠
⎞

⎜
⎝
⎛

−
−−=

AB
AxD

AB
AxCxf 1)((4)

where [A,B] is the range to be linearly transformed to
[C,D]. In this research we intend to use the scale with the
range of [0,100] for both scores. For example, the score
of inter-case dependency, 16, is transformed to the value
of 50.

D. Mathematical Formulation of Prioritization Factors

The mathematical formulation for prioritizing factors,
inter-case dependency and test case severity, is based on
the sequential ordering problem (SOP) [29]. SOP is a NP-
complete problem, whose objective is to find the
minimum cost on a Hamiltonian path subject to the
precedence constraints among the nodes. SOP has many
practical applications ranging from freight transportation
[30] and crane scheduling in port terminals [31] to
helicopter scheduling [32] and automotive paint shops
[33].

As far as the authors are aware of, this may be the first
application of SOP on the test case prioritization. Similar
to the SOP, the precedence constraints in this problem are
imposed for the inter-case dependency for the test case
prioritization, and the objective is to find the minimized
cost from a group of viable solutions. Furthermore, we
also consider the test case severity, which does not have
its counterpart in the SOP.

minimize

)1(

1

1
)1()(),(+

−

=
+∑ += kC

n

k
kktotalScore TSCCdTCP ππ π (5)

 subject to if d(Ci, Cj) = -1 (6)
 for i = T(k), j = T(l)
 then l < k
 where
 n : number of test cases

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2059

© 2014 ACADEMY PUBLISHER

 π : test case sequence in the test suite
 k : a particular test case in the test suite
 d : inter-case dependency
 TS: test case severity
 Ci : test cases (i = 1, 2, …, n)
 Cj : test cases (j = 1, 2, …, n)
 π (k) : the kth position in the test case
 sequence
 π (l) : the lth position in the test case
 sequence
 Cπ(k) : the test case at the kth position of
 the test case sequence π
 w1: weight assigned to test case severity

 w2: weight assigned to inter-case
 dependency

If the precedence constraint exists between test cases—
for example, test case i cannot be executed ahead of test
case j— then the dependency is -1 between test case i and
j. If the test case i is at the kth position of the sequence
and test case j is at the lth position of the sequence, the
test case i cannot be executed before the test case j, then
the lth position of test case j must be in front of test case i
(at kth position) or l < k.

IV. METHODOLOGY

Two approaches are taken to solve the test case
prioritization in the specification-based environment: (1)
ant colony optimization (ACO) and (2) genetic algorithm
(GA). The ant colony optimization is based on the
foraging behaviors of ants while the genetic algorithm is
inspired by the natural chromosomal crossover and
genetic mutation. The ant colony optimization is based on
the constructive ACO algorithm [34] while the GA is
based on the [29]. Both meta-heuristics are incorporated
with the Maximum Partial Order (MPO) and Arbitrary
Insertion (AI) mechanism[29] for finding the minimized
test case prioritization based on the test case severity and
inter-case dependency. Henceforth, those meta-heuristics
are referred to as ACO MPO/AI and GA MPO/AI. The
maximum partial order/arbitrary insertion are described
in greater details and a small example is given in the
following sub-sections.

A. Maximum Partial Ordering/Arbitrary Insertion
The maximum partial order aims at finding the longest

partial order that consists of the commonalities of two
parents, two solution entities which may be ants in the
ACO or individuals in the GA. Then through the arbitrary
insertion the remaining test cases are inserted into the
partial order graph. The major steps of the maximum
partial order are displayed in Fig. 2.

Fig. 2. Maximum partial order/arbitrary insertion process

B. Initializing the Test Case Sequence
The test case sequences are initially randomly

generated for each “parent”, which refers to the solution
entities of the meta-heuristics. In the small example, the
solution entity consists of seven test cases in various
sequential orders.

Parent 1: T1T2T3T4T5T6T7
Parent 2: T1T5T6T4T2T3T7

C. Adding to the Intersection Matrix
The inter-case dependencies among the test cases are

represented by the n × n matrices. If Ti is followed by Tj,
the entry in the matrix is incremented by 1 and 0,
otherwise. Both matrices are added together to form the
intersection matrix.

Fig. 3. Resulting Intersection matrix of two parents

2060 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

D. Making the Predecessor Vector
Based on the previous intersection matrix, if there is

an intersection, i.e., 2, in the columns, it is tallied in the
predecessor vector table. For example, the number of 2’s
in column T3 is 2, representing two predecessors of T3.

TABLE 3.

PREDECESSOR VECTOR OF TEST CASES
 T1 T2 T3 T4 T5 T6 T7

No. of Predecessors 0 1 2 1 1 2 6

E. Making Order Graph
The order graph is generated from the predecessor

vector table. The order graph contains two columns,
Immediate Predecessor and Depth. The Immediate
Predecessor column contains the immediate predecessor
of Tn while the Depth column contains the order in the
sequence.

TABLE 4.
ORDER GRAPH OF TEST CASES

 Immediate
Predecessor

Depth

T1 None 1
T2 T1 2
T3 T2 3
T4 T1 2
T5 T1 2
T6 T5 3
T7 T3 4

F. Finding Maximum Partial Order Graph
Figure 4 depicts the graphical representation of the

maximum partial order graph. The maximum partial
order graph is generated by first finding a test case, Tn,
with the fewest predecessors. Then the Tn is attached to
the predecessor with the most ordered predecessors.
When all the test cases have been added, the longest path
in the graph is the maximum partial order; in this case,
the longest path is T1-T2-T3-T7.

Fig. 4. The maximum partial order graph of test cases

G. Making the Predecessor Vector
After finding the Maximum Partial Order graph, the

remaining test cases are arbitrarily inserted in the order
graph. To insert a test case in the graph, two cases are
considered: (1) minimization of both test case severity
and inter-case dependency score, d(Ti, Tj) and (2) if there

is a tie in terms of the combined score, the precedence is
decided based on the test case severity.

Fig. 5. The arbitrary insertion of test cases

V. EXPERIMENT SETUP

In this research we have considered five data sets with
various test suite sizes: 18, 71, 101, 255, and 380 test
cases. The data sets are henceforth referred to as p18, p71,
p101, p255 and p380. The values for inter-case
dependencies and test case severities are randomly
generated; for the larger test suites, p255 and p380, the
test case severities are evenly distributed among four
quartiles; that is, 25% of the test suite consist of severities
in the first quartile (75-100), another 25% in the second
quartile (50-75), and so on. Each test suite has been
executed five times for each meta-heuristics.

Both ACO MPO/AI and GA MPO/AI codes are
programmed in Visual C++ and executed on a computer
with CPU Duo P8400 and 2GB memory.

A. Limitations and Constraints
The research is conducted for the specification-based

testing, i.e. black-box testing, only. The structural or
white-box testing is not within the scope of this research.
Additionally, the deadline for the completion of test suite
is not considered for this research.

B. Parameter Settings
Both Tables 5 and 6 contains the parameter settings

for ACO MPO/AI and GA MPO/AI, respectively. ACO
MPO/AI parameters include M (the number of ants),
ITERATION (the number of iterations), α (favoring
pheromone information/exploitation), β (favoring
unexplored search space), and ρ (the pheromone
evaporation rate). On the other hand, GA MPO/AI
include GEN (number of generations), POPSIZE
(population size), and PARENTS (number of parents). All
the parameter settings are determined empirically. In the
future, more systematical approaches can be taken to
obtain the precise values for parameters.

TABLE 5.

ACO MPO/AI PARAMETER SETTINGS
M ITERATION α β ρ
5 100 1 1 0.6

TABLE 6.

GA MPO/AI PARAMETER SETTINGS
GEN POPSIZE PARENTS
100 100 2

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2061

© 2014 ACADEMY PUBLISHER

VI. RESULTS AND DISCUSSIONS
The results obtained after executing the meta-

heuristics against the test suites are displayed in Table 7.
The second column, Precedence Constraints, indicates the
number of precedence constraint relationships that must
not be violated during the execution. The fifth column,
Best Found Score, contains the best found scores for the
combination of inter-case dependency and test case
severity. Notice that the values are all negative—it is
related to converting the inter-case dependency and
severity scores for minimization. The last two columns
indicate the deviations of ACO and GA from the best
found scores, respectively.

As shown in Table 5, the performance of ACO
MPO/AI and GA MPO/AI are virtually similar in terms
of the combined inter-case dependency and severity
scores, with the exception of test suite p255, where the
ACO MPO/AI performed slightly worse. The results of
Wilcoxon signed rank test performed on the runs of p255
for both ACO and GA indicate that ACO and GA are not
significantly different from each other with the p-value of
0.042. As far as the execution time is concerned, both
meta-heuristics complete the execution of test case
prioritization within one minute with GA MPO/AI taking
a few seconds less than ACO MPO/AI.

TABLE 7.
PERFORMANCE OF ACO MPO/AI AND GA MPO/AI ON THE
COMBINED SEVERITY AND INTER-CASE DEPENDENCY

SCORES

Test
Suite
Name

Preced.
Relation.

ACO
(sec)

GA
(sec)

Best
Found
Score

ACO
Score
Dev.

GA
Score
Dev.

p18 15 0.03 0.015 -1177 0% 0%
p71 17 0.24 0.088 -9931 0% 0%
p101 33 0.487 0.166 -14708 0% 0%
p255 30181 2.01 0.692 -36870 -0.14% 0%
p380 63583 5.49 0.926 -56098 0% 0%

Test case severity is also one of the performance

indicators; hence, we expect test cases with higher
severities to be executed earlier than those with lower
severities. Even though we have to take inter-case
dependency— particular precedence constraints— into
account, we can still look for the overall trend of the
severity distribution. The Mann-Kendall trend analysis
shows all the prioritization of test suites follow the
downward trend with the p-value of 0.000. Figures 6-10
show the downward trends and slopes of the test case
prioritization for each test suite performed by the best
meta-heuristics between GA and ACO.

Table 8 shows slopes of test case prioritization of both
approach, ACO and GA MPO/AI. In addition, by
comparing the slopes of test case prioritization between
them no significant differences is found. The Wilcoxon
signed rank test performed on the largest deviation
between ACO and GA fails to reject the null hypothesis
of ACO and GA are not statistically different from each
other.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

test cases

se
v
er

ity

slope = -1.6419ACO

Fig. 6. Trend analysis of test case severity for 18 test cases

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

test cases

se
ve

ri
ty

slope = -0.8165ACO

Fig. 7. Trend analysis of test case severity for 71 test cases

0

20

40

60

80

100

120

1 9 17 25 33 41 49 57 65 73 81 89 97

test cases

se
v
er

it
y

slope = -0.59482ACO

Fig. 8. Trend analysis of test case severity for 101 test cases

0

20

40

60

80

100

120

1 20 39 58 77 96 115 134 153 172 191 210 229 248

test cases

se
v
er

it
y

slope = -0.37099GA

Fig. 9. Trend analysis of test case severity for 255 test cases

2062 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

0

20

40

60

80

100

120

1 29 57 85 113 141 169 197 225 253 281 309 337 365

test cases

se
v

er
ity

slope = -0.24591ACO

Fig. 10 Trend analysis of test case severity for 380 test cases

TABLE 8.

PERFORMANCE OF ACO MPO/AI AND GA MPO/AI ON THE
TREND ANALYSIS

Test Suite
Name

Best Found
Slope

ACO Slope
Deviation

GA Slope
Deviation

p18 -1.6419 0% -0.50%
p71 -0.8165 0% -6.43%
p101 -0.59482 0% -0.08%
p255 -0.37099 -0.04% 0%
p380 -0.24591 0% -0.14%

VII. CONCLUSION

In the past decade, the research topic, test case
prioritization, has been widely discussed and researched.
By prioritizing the test cases, it may effectively improve
the requirement coverage and software quality. At current
time, many researchers focus on the structural testing.
Even though structural testing has been applied to the
early test stages of unit and integration testing, the later
test stages of specification-based testing shall not be
ignored. If the software is delivered to the customers
without going through the specification-based testing—
which may uncover errors not detected in the structural
testing—defects uncovered by customers may deal a
severe blow to customer’s confidence with the product
and the company’s reputation. However, few researches
are conducted on the topic of specification-based testing.
Thus, the research considers the severity and inter-case
dependency for evaluating test case prioritization under
the specification-based testing environment. Based on the
research result and discussion, the research fills the void
of TCP with inter-case dependency under the
specification-based environment, which has not yet been
actively researched.

In the research, we have considered two meta-
heuristics, ACO and GA incorporated with the MPO/AI
operator, which have shown to be viable approaches to
prioritize test cases in the specification-based
environment.

Because of the resource and time constraints, we
recommend the following for future work:

(1) Applying the proposed method on more
sophisticated and complex software

(2) The research measures the effectiveness of test
case prioritization on time. In the future,
other criteria such as cost may be considered.

(3) Other multi-objective methods may be
considered and incorporated with existing
methods.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
referees for their times and efforts to improve the quality
of this paper. This work was supported in part by a grant
from National Science Council in Taiwan, NSC 100-
2221-E-033-030.

REFERENCES

[1] M. Newman. (2002, December 13th). Software Errors
Cost U.S. Economy $59.5 Billion Annually. Available:
http://www.abeacha.com/NIST_press_release_bugs_cost.h
tm

[2] M. Xie, Q. P. Hu, Y. P. Wu, and S. H. Ng, "A study of the
Modeling and Analysis of Software Fault-detection and
Fault-correction Processes," Quality and Reliability
Engineering International, pp. 459-470, 2007.

[3] S. Wang, Y. Wu, M. Lu, and H. Li, "Discrete
Nonhomogeneous Poisson Process Software Reliability
Growth models based on test coverage," Quality and
Reliability Engineering International, pp. 103-112, 2013.

[4] G. J. Myers, The art of software testing. New York: Wiley,
1979.

[5] M. I. Norton, D. Mochon, and D. Ariely, "The IKEA effect:
When labor leads to love," Journal of Consumer
Psychology, vol. 22, pp. 453-460, Jul 2012.

[6] O. F. Shmueli, Lior; and Pliskin, Nava, "OVER-
REQUIREMENT IN SOFTWARE DEVELOPMENT: AN
EMPIRICAL INVESTIGATION OF THE 'IKEA'
EFFECT," in ECIS 2012 Proceedings, 2012, p. Paper 85.

[7] (n.d., December 21th, 2011). Test Case. Available:
http://www.businessdictionary.com/definition/test-
case.html

[8] C. Kaner, "What Is a Good Test Case?," STAR East, p. 16,
May 2003 2003.

[9] IEEE, "IEEE Standard for Software Test Documentation,"
ed. New York, NY: The Institute of Electrical and
Electronics Engineers, 2008.

[10] I. Sommerville, Software engineering, 7th ed. Boston:
Pearson/Addison-Wesley, 2004.

[11] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in
software testing : a context-driven approach. New York:
Wiley, 2002.

[12] G. Y. Chen and J. Rogers, "Arranging software test cases
through an optimization method," in PICMET '10 -
Portland International Center for Management of
Engineering and Technology, Proceedings - Technology
Management for Global Economic Growth Phuket,
Thailand, 2010, pp. 1596-1600.

[13] G. Rothermel, R. Untch, and M. Harrold, "Prioritizing test
cases for regression testing," IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, vol. 27, pp. 929-948, 2001.

[14] B. Qu, C. H. Nie, B. W. Xu, and X. F. Zhang, "Test case
prioritization for black box testing," in IEEE 31st Annual
International Computer Software and Applications
Conference (COMPSAC 2007), 2007.

[15] Z. Li, M. Harman, and R. M. Hierons, "Search algorithms
for regression test case prioritization," IEEE Transactions
on Software Engineering, vol. 33, pp. 225-237, Apr 2007.

[16] K. H. Hla, Y. S. Choi, and J. S. Park, "Applying particle
swarm optimization to prioritizing test cases for embedded
real time software retesting," in IEEE 8th International
Conference on Computer and Information Technology
Workshops, 2008.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2063

© 2014 ACADEMY PUBLISHER

[17] C. Catal and D. Mishra, "Test case prioritization: a
systematic mapping study," Software Quality Journal, vol.
21, pp. 445-478, Sep 2013.

[18] B. Zhou, H. Okamura, and T. Dohi, "Application of
Markov Chain Monte Carlo Random Testing to Test Case
Prioritization in Regression Testing," IEICE Transactions
on Information and Systems, vol. E95D, pp. 2219-2226,
Sep 2012.

[19] K. Rajarathinam and S. Natarajan, "Test suite prioritisation
using trace events technique," IET Software, vol. 7, pp. 85-
92, Apr 2013.

[20] C.-T. Lin, C.-D. Chen, C.-S. Tsai, and G. M. Kapfhammer,
"History-based test case prioritization with software
version awareness," in 18th International Conference on
Engineering of Complex Computer Systems, ICECCS 2013,
July 17, 2013 - July 19, 2013, Singapore, Singapore, 2013,
pp. 171-172.

[21] W. Sun, Z. Gao, W. Yang, C. Fang, and Z. Chen, "Multi-
objective test case prioritization for GUI applications," in
28th Annual ACM Symposium on Applied Computing, SAC
2013, March 18, 2013 - March 22, 2013, Coimbra,
Portugal, 2013, pp. 1074-1079.

[22] M. Last, S. Eyal, and A. Kandel, "Effective black-box
testing with genetic algorithms," in Hardware and
Software Verification and Testing. vol. 3875, S. Ur, E. Bin,
and Y. Wolfsthal, Eds., ed Berlin: Springer-Verlag Berlin,
2006, pp. 134-148.

[23] Y.-S. Lee, "An Approach to Generating Test Cases for
Non-functional Requirements," Master's degree,
Department of Electrical Engineering, National Chung
Cheng University, Chia Yi, Taiwan, 2003.

[24] authors. (2000, 12/7). Bugs and Fixes. Available:
http://www.sqatester.com/bugsfixes/defectparametrs.htm

[25] T.-H. Yu, "Test Case Ordering and Selection for Blackbox
Testing," Master's Thesis, Department of Industrial and
Systems Engineering, Chung Yuan Christian University,
Chung Yuan Christian University, 2012.

[26] IEEE, "IEEE 829-1998 Standard for Software Test
Documentation," in Test Case Specification, ed. New York:
IEEE Service Center, 1998.

[27] C. Kaner, J. L. Falk, and H. Q. Nguyen, Testing computer
software, 2nd ed. New York: Wiley, 1999.

[28] A. K. Onoma, W. T. Tsai, M. Poonawala, and H.
Suganuma, "Regression testing in an industrial

environment," Communications of the ACM, vol. 41, pp.
81-86, 1998.

[29] S. Chen and S. F. Smith, "Commonality and genetic
algorithms," Carnegie Mellon University, Pittsburgh, PA,
Technical Report CMU-RI-TR-96-271996.

[30] L. F. Escudero, M. Guignard, and K. Malik, "A
Lagrangean relax-and-cut approach for the sequential
ordering problem with precedence relationships," Annals of
Operations Research, vol. 50, pp. 1219-237, 1994.

[31] R. Montemanni, D. H. Smith, A. E. Rizzoli, and L. M.
Gambardella, "Sequential Ordering Problems for Crane
Scheduling in Port Terminals," International Journal of
Simulation and Process Modelling, vol. 5, pp. 348–361,
2009.

[32] T. M.T. and P. W.R., "Precedence constrained routing and
helicopter scheduling: heuristic design," Interfaces, vol. 22,
pp. 100-111, 1992.

[33] S. Spieckermann, K. Gutenschwager, and S. Vos, "A
sequential ordering problem in automotive paint shops,"
International Journal of Production Research, vol. 42, pp.
1865–1878, 2004.

[34] A. P. Engelbrecht, Computational intelligence : an
introduction, 2nd ed. Chichester, England ; Hoboken, NJ:
John Wiley & Sons, 2007.

Gary Yu-Hsin Chen received his PhD in Industrial and
Systems Manufacturing Engineering from the University of
Texas at Arlington, Arlington, Texas, USA. He had worked as a
senior software development/test engineer in the
telecommunications and industrial automation industries in
USA. He is currently an assistant professor in the Department of
Industrial and Systems Engineering at Chung Yuan Christian
University, Taiwan. His research interests are in the fields of
software testing/quality assurance, meta-heuristics, facility
layout optimization and telecommunications applications. He is
a permanent member of Chinese Institute of Industrial
Engineers.

Pei-Qi Wang is currently working as a software test engineer
for a multi-national hi-tech company in Taiwan. She received
her MS degree in Industrial and Systems Engineering from
Chung Yuan Christian University, Taiwan, in 2011.

2064 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

