
Algebraic Analysis of Object-Based Key
Assignment Schemes

Khair Eddin Sabri
Computer Science Department

King Abdulla II School for Information Technology
The University of Jordan, Amman, Jordan

Email: k.sabri@ju.edu.jo

Abstract— The confidentiality of information is an important
aspect of security. One way to achieve the confidentiality
is through restricting access to information to the autho-
rized users only. Access control can be enforced by using
encryption. In this case, all the information is encrypted and
keys are assigned to users such that each key reveals the
authorized part of the information. Key assignment can be
classified as key-based or object-based schemes based on the
focus of the scheme.

Sabri and Khedri [1] present algebraic structures to spec-
ify algebraically cryptosystems by capturing the common
properties of ciphers, secrets and keys. Also, these structures
are used for the analysis of security properties in object-
based key assignment schemes. However, these structures are
abstract, and no linkage has been proposed to the existing
cryptosystems. In this paper, we extend their work by giving
concrete models for their algebraic structures. We give
concrete models to Vigenère, transposition ciphers, DES
and RSA cryptosystems. Also, we investigate the effects of
extra algebraic properties that some cryptosystems may have
on the security analysis of object-based schemes.

Index Terms— Object-based key assignment schemes, verifi-
cation, cryptography, algebraic structures.

I. INTRODUCTION

Access control is used to provide confidentiality of
information. The typical implementation of access control
is through the use of trusted server that gives authorization
to users based on predefined policies as in [2], [3],
[4]. Another implementation that eliminates the use of
a trusted server is through the use of cryptography such
that the information is public but encrypted. Therefore,
keys are assigned to users such that each key is used to
decrypt the authorized part of the information.

Key assignment schemes can be classified into key-
based schemes and object-based schemes [1]. Key-based
schemes focus on keys and the relationship between
them. It is usually used when we have hierarchy in the
security labels assigned to users. For example, the relation
u1 > u2 indicates that the user u1 has more authority
than the user u2. In this case, the key k1 assigned to
user u1 should be able to reveal more information than the
key k2 assigned to user u2. We write k1 > k2 when any
information that can be revealed using the key k2 can also

Manuscript received ???; revised ???; accepted ???. c⃝

be revealed using the key k1. One way to implement this
relation is through deriving the key k2 from the key k1.
Several techniques are proposed in the literature to derive
a key from another one as in [5], [6]. In [7], we introduce
an algebraic model that links several techniques together
to specify and analyse key-based schemes.

Object-based schemes focus on objects and the required
condition to reveal the information from each object. This
scheme is used when several users should cooperate to
reveal an information. For example, conditions can be
stated as the use of the keys k1 and k2 together to reveal
a piece of information, while any one of the key k1 or k3
should be used to reveal another piece of information.

Sabri and Khedri [1] introduce algebraic structures to
specify cryptosystems by specifying the common prop-
erties of secrets, ciphers, and keys. Also, they introduce
an algebraic structure to specify the interaction between
keys and ciphers and another algebraic structure to spec-
ify the process of encryption and decryption. They use
their algebraic structures to verify, at an abstract level,
security properties in systems that employed object-based
schemes. Their analysis is based on the common algebraic
properties of secrets, keys, and ciphers. However, the use
of a specific cryptosystem may affect the satisfaction of
security properties due to the fact that some cryptosystems
have additional algebraic properties. For example, the
composition of encryption of Vigenère is commutative
Ek1(Ek2(M)) = Ek2(Ek1(M)) i.e., the order of multiple
encrypting does not matter. Others such as RSA has
the homomorphic property E(M1).E(M2) = E(M1.M2)
i.e., concatenating two encrypted messages is the same
as encrypting after concatenating the two messages. The
effects of the algebraic properties of cryptosystems are
taken into consideration mainly in the verification of
cryptographic protocols properties [8], [9], [10], where
several flows are detected by involving the algebraic prop-
erties in the analysis other than the cancelling property
E′

k(Ek(m)) = m i.e., the decryption cancels the effect
of encryption.

In this paper, we extend the work of Sabri and
Khedri [1] by providing concrete algebraic models of
cryptosystems to their abstract structures. These cryp-
tosystems are Vigenère, transposition cipher, DES and
RSA [11]. We choose these cryptosystems because of

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2033

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2033-2042

their popularity and their algebraic properties that are
useful to illustrate our idea. We are aware that Vigenère
and transposition cryptosystems are not used in practice.
However, we are presenting them in this paper because
they are simple and easy to understand. Therefore, they
are suitable to illustrate the algebraic structures presented
in [1].

The presented concrete algebraic models act as an
intermediate model between the abstract level of an alge-
braic structure and its implementation. Providing concrete
models to abstract algebraic structures is not new. For
example, Khedri [12] introduce a concrete model repre-
sented as relation algebra to an abstract algebraic model
called feature algebra.

We also analyse the effect of the additional algebraic
properties of the specified cryptosystems on the security
properties of object-based key assignment schemes. To the
best of our knowledge, security analysis of object-based
schemes based on the algebraic properties of cryptosys-
tems does not exist in the literature. It is worth mention-
ing that this paper does not investigate the security of
cryptosystems themselves, but it analyse the effect of the
algebraic properties of cryptosystems on the verification
of object-based schemes.

This paper is organized as follows: Section II sum-
marizes related work. Section III gives the necessary
mathematical background and present the algebraic struc-
tures of [1]. Section IV analyses security properties in
object-based schemes. Section V represents algebraically
Vigenère, transposition cipher, DES and RSA cryp-
tosystems. Finally, we conclude in Section VI and point
to future works.

II. LITERATURE REVIEW

The algebraic properties of cryptosystems is used in
many security applications. In this section, we present
some of them. Even our algebraic model can be used in
all these applications, the focus of this paper is on the
analysis of key assignment schemes.

Key Assignment Schemes: Several techniques exist
in the literature to provide confidentiality of informa-
tion through the use of cryptography. Many of these
techniques are key-based schemes [5], [13], [6], [14],
[15]. These techniques provide a way to implement the
relation k1 > k2 through key derivation i.e., deriving
the key k2 from the key k1. Other researchers focus on
analysing these techniques and comparing them [16], [7].
Others use key derivation to provide confidentiality in data
outsourcing [17], [18].

A technique that follows the object-based scheme is
the work of Miklau and Suciu [19], where the authors
develop a language for specifying access control policies
on XML. They represent policies as a tree where its
nodes represent objects. Each object is associated with a
condition that represents the required keys to reveal that
object i.e., the use of the keys k1 and k2 together or the
use of one of the keys k1 or k3. This tree is implemented
by using the xor operator for secret sharing and AES

cryptosystem for encryption. Miklau and Suciu scheme
is analysed by Abadi and Warinschi [20]. In our paper,
we specify object-based scheme similar to [19]. However,
in this paper, we propose several implementations for
object-based schemes and analyse the effect of each
implementation on the security of schemes based on its
algebraic properties.

Analysis of Cryptographic Protocols: Cryptographic
protocols are communicated protocols whose messages
are encrypted. They provide security properties such as
confidentiality of information and authentication between
communicated users. Several techniques are presented in
the literature [21], [22], [23] to analyse these protocols
and verify the satisfactory of their security properties. The
analysis is based on abstracting the used cryptosystem in
the analysed protocol by focusing on its algebraic prop-
erties. The main considered property is the cancellation
property which states that decryption cancels the effect of
encryption when appropriate keys are used. Researchers
report that some cryptosystems have additional properties
such as the commutativity and associativity of encryption.
Using a cipher with such properties in some protocols
would make those protocols vulnerable to attacks [10].
Therefore, new researches focus more on the algebraic
properties that cryptosystems may have when analysing
cryptographic protocols [24], [9], [25].

Threshold Cryptosystem: Secret sharing is an ap-
proach used for splitting the secret into shares and dis-
tributing them between n users such that k of them should
combine their shares to construct the secret. One of the
earliest methods is the Shamir method [26] based on
interpolation. This approach requires the exchange of the
shares usually with a trusted party. Another approach
that does not require exchanging the shares but has
the same goal of revealing a secret is called threshold
cryptosystem. In this approach, k users cooperate in the
decryption of a cipher text using their keys to reveal the
secret. One of the earliest research on RSA threshold
is the work of Boyd [27] based on the the algebraic
property Ek1

(Ek2
(s)) = Ek1∗k2

(s). This property states
that encryption/decryption of a secret twice using the keys
k1 and k2 is equivalent to encrypting/decrypting of the
secret using a combined key k1 ∗ k2.

Cryptanalysis: Cryptanalysis is the process of re-
vealing a secret from an encrypted message without
using a key. This field is intensively studied to analyse
the security of cryptosystem. Representing cryptosystems
algebraically presents another view of analysing them.
This representation is used in [28], [29] to algebraically
analyse the security of some cryptosystems such as Ad-
vanced Encryption Standard (AES).

III. MATHEMATICAL BACKGROUND

In this section, we first introduce the required mathe-
matical background [30]. Then, we present the algebraic
structures given by [1] to specify the elements of a cryp-
tosystem and the encryption and decryption of secrets.

2034 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

A. Algebraic Structures
Definition 3.1: A semigroup is an algebraic structure

A =
(
S, ·

)
, where S is a set and · is an associative binary

operator. If the operator · is commutative, we call A a
commutative semigroup. If the operator · is idempotent,
we call A an idempotent commutative semigroup. �

Definition 3.2: A group is an algebraic structure A =(
G, ·, ′, 1

)
, where

(
G, ·

)
is semigroup, 1 is an identity

element of ·, and for every element g in G there is an
inverse element g′ such that g · g′ = 1. �

Definition 3.3: Let S ̸= ∅ be a set and + and · binary
operations on S, named addition and multiplication. Then(
S,+, ·

)
is called a semiring if

(
S,+

)
is a commutative

semigroup,
(
S, ·

)
is a semigroup, and · distributes over +

on both the left and right. �
Definition 3.4: Let

(
S,+, ·

)
be a semiring.

• If the semigroup
(
S, ·

)
has a neutral element 1s , we

call 1s the identity of the semiring
(
S,+, ·

)
.

• If the semigroup
(
S,+

)
has a neutral element 0s , we

call it the zero of the semiring
(
S,+, ·

)
. We call 0s

the multiplicatively absorbing if 0s is absorbing in(
S, ·

)
i.e., ∀(x | x ∈ S : 0s · x = x · 0s = 0s)

• If
(
S,+, ·

)
has an identity 1s , we call a′ the inverse

of a iff a · a′ = a′ · a = 1s .
• If

(
S,+

)
is an idempotent semigroup, we call(

S,+, ·
)

an additively idempotent.
• If

(
S, ·

)
is a commutative semigroup, we call(

S,+, ·
)

a commutative semiring. �
Definition 3.5: Let A =

(
A, ·

)
be commutative semi-

group and S =
(
S,+, ·

)
be a semiring. We call

(
SA, ·

)
a

left-quasi semimodule over S or S-left-quasi-semimodule
if there exists a function S × A −→ A such that for all
r, s ∈ S and a, b ∈ A, we have:

1) r(a · b) = ra · rb
2) r(sa) = (rs)a

An S-left-quasi-semimodule
(
SA, ·

)
is called unital if

S has an identity 1s and ∀(a | a ∈ A : 1sa = a).
Furthermore,

(
SA, ·

)
is called zero-preserving if there are

zeros 0
a

and 0
s

respectively of A and S that satisfy ∀(a |
a ∈ A : 0sa = 0a). �

Definition 3.6: Let
(
SA,+

)
be a quasi-left-

semimodule. We call
(
SA,+

)
a left-semimodule

over S or S-left-semimodule if (r + s)a = ra+ sa. �
For simplicity, we use the term quasi-semimodule to

denote left-quasi-semimodule and the term semimodule
to denote left-semimodule.

Definition 3.7: Let A, B, and C be sets, and P and Q
be relations such that P ⊆ A×B and Q ⊆ B × C.

• P ;Q , {(x, z) | ∃(y | y ∈ B : (x, y) ∈ P ∧
(y, z) ∈ Q)}

• P∪ , {(x, y) | (y, x) ∈ P} �
In Definition 3.7, P ;Q denotes relational composition, and
P∪ denotes the converse of the relation P .

B. Algebraic Structures of Cryptosystems
Sabri and Khedri [1] introduce algebraic structures

to specify the encryption and decryption of messages.

They define three structures to specify secrets, keys, and
ciphers. Also, they define a structure to specify the inter-
action between keys and ciphers, and another structure
to specify the process of encryption and decryption.
The secret structure that captures properties of secrets is
defined in [1] as

Definition 3.8 (Secret Structure [1]): Let S def
=

(S,+s , ∗s , 0s) be an algebraic structure that is an
additively idempotent semiring with a multiplicatively
absorbing zero. We call S a secret structure. �

In the secret structure, S is a set of secrets. The operator
+

s
intuitively represents selecting between secrets while

the operator ∗s represents combining secrets. The 0s
represents a null secret.

Definition 3.9 (Key Structure [1]): Let K def
=

(K,+
k
, ∗

k
, 0

k
) be an algebraic structure that is an

additively idempotent commutative semiring with a
multiplicatively absorbing zero. We call K a key
structure. �

In the key structure, K is a set of keys. The two binary
operators +

k
and ∗

k
are used to specify combining two

keys such that the +
k

operator represents combining keys
in a way that only one key is used to encrypt or decrypt
one unit of a message i.e., the choice of a key, while the
∗
k

operator represents combining keys in a way that both
of them are used simultaneously to encrypt or decrypt one
unit of a message i.e., key sharing. The 0

k
represents a

key that is not suitable for encryption or decryption.
The key structure is a secret structure since a key can

be seen as a secret. However, the combining operator ∗
s

should be commutative to represent sharing a key between
several users, so that the order of combining keys does
not matter.

Ciphers and keys are used together to encrypt and
decrypt a secret. A cipher gives the transformation ap-
proach while the key selects a particular transformation.
Therefore, both of them should be used. The cipher
structure given below deals with both of them as one
block. It describes the transformation without taking into
consideration the used key.

Definition 3.10 (Cipher Structure [1]): Let
C def

= (C, ∗c ,+c , 1c , ′
c

, 0c) be an algebraic structure
that is an additively idempotent semiring with a
multiplicatively absorbing zero, an identity, and a
multiplicative inverse for each element of C. We call C
a cipher structure. �

A cipher is a set of transformation methods. The
operator +

c
represents selecting between two ciphers. The

operator ∗c represents applying one cipher after another.
The operator ′c is used to represent the inverse cipher i.e.,
the decryption of an encrypted message. The 1c is a cipher
that has no effect on messages.

The envelope structure states explicitly the interaction
between a cipher and a key. It involves one operator
between a cipher and a key. This operator can be seen
as an application of a key into a cipher. For example, a
cipher can be seen as a function and a key as a parameter
to that function. The following two structures represent

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2035

© 2014 ACADEMY PUBLISHER

the properties that involve ciphers and keys based on the
operators of the cipher structure.

Definition 3.11 (Multiplicative Envelope [1]): Let
E* def

=
(
KC, ∗c

)
be a quasi-semimodule over a key

structure K def
= (K,+

k
, ∗

k
, 0

k
). Moreover, 1c is the

identity of (C, ∗c), and there exists an inverse for each
element of C (i.e.,

(
C, ∗c , 1c , ′

c)
is a group). We call E* a

multiplicative envelope. �
Definition 3.12 (Additive Envelope [1]): Let 0c ̸∈ C

and C0
def
= C ∪ {0c}. Let E

+ def
=

(
KC0,+c

)
be a

zero-preserving semimodule over a key structure K def
=(

K,+
k
, ∗

k

)
, where +c is idempotent and 0c is its identity.

We call E
+

an additive envelope. �
Definition 3.13 (Envelope [1]): Let E def

= (E
+
, E*) be a

system where ∗c distributes over +c on both the left and
right. We call E an envelope structure. �

Definition 3.14 (Message [1]): Let M =
(
ES,+s

)
be

a unitary zero-preserving semimodule over an envelope
structure E with an associative operator ∗s , an idempotent
operator +s , and where ∗s distributes over +s on both the
left and right. We call M a message structure. �

The message structure represents the encryption and
decryption of secrets. The message structure consists of
a secret and an envelope. The binary operator in the
semimodule represents using an envelope to encrypt or
decrypt a secret. The axioms of the envelope and message
structures are presented in the appendix.

IV. ANALYSIS OF OBJECT-BASED SCHEMES

Object-based schemes define policies that describe a set
of secrets and state the required keys to reveal each one of
them. However, these policies should satisfy a predefined
properties. For example, assume that we have three secrets
s1, s2, and s3. Also, assume that we assign three keys to
the users of the system as follow: the key k1 to Alice, k2
to Bob and k3 to Carol. Assume that we have the policies:

• Carol should be able to get the secret s1. This policy
can be specified as
m1 := (k3 ◦ a) · s1.

• The secret s2 is decrypted twice using first the key of
Bob and then the key of Alice. This policy states an
order of decryption to get the secret. The encrypted
message should be decrypted first by Alice then by
the Bob. Here, Bob can get the secret but after the
approval of Alice. m2 := (k1 ◦ a) · ((k2 ◦ a) · s2)

• The secret s3 can be revealed by using keys of Alice
and Bob together, or by using Carol key.
m3 := (((k1 ∗k k2) +k

k3) ◦ a) · s3
We use our framework with the aid of Prover9 [31] to
prove the following properties:

1) Carol can reveal the secrets s1 and s3 i.e., applying
the key of Carol k3 to the existing messages m1,
m2, and m3 should reveal s1 and s3.
(s1 + s3) ≤s (k3 ◦ a′

c

) · (m1 +s m2 +s m3).
2) The secret s2 can only be revealed by decrypting the

message using the key k1 followed by the key k2 as:
(k2 ◦a′

c

) · ((k1 ◦a′
c

) · ((k1 ◦a) · ((k2 ◦a) · s2))) = s

3) The secret s3 encrypted using Bob key cannot be
produced from the message m3. ¬ ∃(x | x ∈ E :
(k2 ◦ a) · s3 ≤s x ·m3)

Note that the third property can be generalized to any
key and any secret from any message. Such generalization
would increase the complexity of the analysis. However,
our goal in this paper is presenting attacks algebraically
on object-based schemes which can be achieved through
the presented properties.

We can use our framework to verify the satisfaction of
properties. The first property is a correctness property. We
were able to verify this property by assuming that k3 ̸= 0

k

since the 0
k

could not reveal any secret. Also, we were
able to prove the second property by having k1 ̸= 0

k

and k2 ̸= 0
k
. Also, to enforce the order of decryption to

obtain the secret, we should assume that k1 ̸= k2. The
third property states that we cannot obtain s3 encrypted
using k2 from the message m3. However, the message
m3 consists of s3 encrypted using k3 and consists of s3
encrypted using k1 ∗

k
k2. Therefore, to prove the third

property, we should assume that k2 ̸= k3 and combining
the keys k1 and k2 does not produce k2 i.e., k1∗k k2 ̸= k2.

V. ALGEBRAIC MODELS

In this section, we introduce four concrete algebraic
models for the algebraic structures presented in Sec-
tion III-B. These models act as an intermediate level
between the abstract level and the implementation level
as shown in Figure 1 similar to [12]. Also, these models
may include additional algebraic properties that affect
the analysis of object-based schemes. We introduce al-
gebraic models for Vigenère, transposition cipher, DES
and RSA cryptosystems by giving concrete meaning to
secrets, keys, and ciphers. In all these cryptosystems, the
envelope operator is represented as applying a key to
a cipher, while the operator in the message structure is
represented as using an envelope to encrypt or decrypt a
secret.

Abstract Structures
Concrete Structures

Formal Transformation
and Verification

Vigenere Model Transposition Model RSA Model

Different Cryptosystrems Model for Object-Based Scheme

Figure 1. A diagram that shows the relation between the abstract and
concrete models

2036 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

A. Vigenère

Vigenère is a substitution cipher such that each alpha-
bet in the plain-text is substituted with another alphabet
based on a key. There are two different ways to represent
Vigenère algebraically. One of them as a relation and
the other as a function. Here we show the functional
representation since it is more common. First, we give
an example and then we introduce an algebraic model
for Vigenère. A secret is a string. For example it can be
the word security. The key is also a string e.g., the word
test. Each character is encrypted individually by using the
function ci = f−1(f(si) + f(ki) (mod 26)) where f(n)
gives the numerical value of the character n. For example,
f(a) = 0, f(b) = 1, and so on. Note that the key should
be repeated if it is shorter than the secret. The produced
cipher-text from the given secret and key is “liunkmlr”.
A generalization to this representation can consider each
of a secret and a key as a set of strings.

Proposition 5.1: Let S = (S,+s , ∗s , 0s), where S ,
P(A) is a set of string. The operator P +s Q , P ∪Q is a
set union. The operator P∗sQ , {pq | p ∈ P ∧ q ∈ Q}
is the concatenation of strings, 0s , ∅ is the empty set.
The structure S is a secret structure.

Proof: The union ∪ is commutative, associative, and
idempotent. Its identity element is ∅. String concatenation
is associative. The operator ∗

s
distributes over +

s
because

of the distributivity of ∧ over ∨. Finally, ∅ is an
annihilator for ∗s as x ∈ ∅ ⇔ false and {x | false} = ∅.

Proposition 5.2: Let K = (K,+
k
, ∗

k
, 0

k
), where K ,

P(A) is a set of strings. The operator P +s Q , P ∪Q is
a set union. The operator P ∗

k
Q , {f−1(f(pi) + f(qi)

(mod 26)) | p ∈ P ∧ q ∈ Q} is the addition of two
strings, 0

k
, ∅ is the empty set. The structure K is a key

structure.
Proof: The union ∪ is commutative, associative, and

idempotent. Its identity element is ∅. Number addition is
commutative and associative. The operator ∗s distributes
over +s because of the distributivity of ∧ over ∨. Finally,
∅ is an annihilator for ∗s as x ∈ ∅ ⇔ false and {x |
false} = ∅.

The key is also defined as a set of strings. We define
the +

k
operator as the set union while the operator

∗
k

the addition of the alphabet values. For example
{guke} ∗

k
{njip} = {test} i.e., f(g) = 6, f(n) = 13,

and f−1(19) = t and so on for the other characters.
Proposition 5.3: Let C def

= (C, ∗c ,+c , 1c , ′
c

, 0c), where
C is a set of Vigenère ciphers i.e., c(s) = s + k. Let
c′

c

(s) = s − k, P ∗c Q , {p; q | p ∈ P ∧ q ∈ Q}
where ; is a function composition, the operator +c be set
union, the operator 1c be the identity function, and the
operator 0c be the empty set. The structure C is a cipher
structure.

Proof: The union ∪ is commutative, associative, and
idempotent. Its identity element is ∅. c(c′

c

(s)) = s+ k−
k = s. The composition of functions is associative and its
identity element is the identity function. The operator ∗s
distributes over +s because of the distributivity of ∧

over ∨. Finally, ∅ is an annihilator for ∗s as x ∈ ∅ ⇔ false
and {x | false} = ∅.

A cipher is a function that encrypts or decrypts a unit of
a text. The identity cipher is the identity function c(s) =
s. The +c is the set union, and 0c is the empty set. It
has been proved in the literature that Vigenère has the
following algebraic properties:

1) e1 ∗c e2 = e2 ∗c e1
2) (k1 ◦ c) ∗c (k2 ◦ c) = (k1 ∗k k2) ◦ c.
3) en = 1c
4) 1

k
∗
k
k = k ∗

k
1
k
= k

where e1, e2 are envelopes, k1, k2 are keys, and c is a
cipher. We have:

The first identity states that Vigenère is commutative.
Identity 2 states that double encryption in Vigenère is
equivalent to a single encryption with a combined key.
Identity 3 states that Vigenère is cyclic i.e., encrypting
a message 26 times (the number of alphabets) using the
same keyword produces the same secret. Identity 4 states
the existence of an identity key 1

k
i.e., a string of a’s since

f(a) = 0.
Vigenère satisfies the properties of algebraic structures

presented in Section III-B. However, as shown above,
Vigenère has additional properties. These properties af-
fect the analysis of object-based schemes. When we add
these properties to the analysis of the illustrative example,
we found that the properties 2 and 3 cannot be verified.
Therefore, the scheme contains flaws as shown in the
following scenarios.

Scenario of an Attack: The second property in the
illustrative example states that Alice should decrypt the
message first and then Bob in order to get the secret s2.
Bob can get the secret but it needs the approval of
Alice. By having the commutative property of ciphers,
we cannot state an order on the decryption process.
For example, decrypting using Bob key and then Alice
reveals the secret.

(k1 ◦ a′
c

) · ((k2 ◦ a′
c

) · ((k1 ◦ a) · ((k2 ◦ a) · s2)))
= ⟨ Definition 3.14 ⟩

((k1 ◦ a′
c

) ∗c (k2 ◦ a′
c

) ∗c (k13 ◦ a) ∗c (k2 ◦ a)) · s2
= ⟨ Vigenère is commutative ⟩

((k2 ◦ a′
c

) ∗c (k1 ◦ a′
c

) ∗c (k1 ◦ a) ∗c (k2 ◦ a)) · s2
= ⟨ Definition 3.10 and Definition 3.11 ⟩

((k2 ◦ a′
c

) ∗c (k2 ◦ a)) · s2
= ⟨ Definition 3.10 and Definition 3.11 ⟩

1c · s2
= ⟨ Definition 3.14 ⟩

s2

The above derivation shows that decrypting the mes-
sage m2 with an order other that the specified one in the
second property could reveal the secret s2 which violate
the second property.

Scenario of an Attack: Assume that there is a trusted
system that takes the two keys, combines them and then

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2037

© 2014 ACADEMY PUBLISHER

reveals the secret s3 to each one of them. An intruder
playing the role of Bob can trick Alice by sending the
identity key 1

k
instead of his key. In this case, the trusted

server sends the secret s3, encrypted using the key of
Bob, to Alice and Bob. Therefore, Alice cannot get the
secret as shown in the derivation below.

((k1 ∗k 1
k
) ◦ a′

c

) · (((k1 ∗k k2) +k
k3) ◦ a) · s3)

= ⟨ A property of an identity key ⟩
(k1 ◦ a′

c

) · ((((k1 ∗k k2) +k
k3) ◦ a) · s3)

= ⟨ Definition 3.12 ⟩
(k1 ◦ a′

c

) · (((k1 ∗k k2) ◦ a+c k3 ◦ a) · s3)
= ⟨ Identity of Vigenère ⟩

(k1 ◦ a′
c

) · (((k1 ◦ a ∗c k2 ◦ a) +c k3 ◦ a) · s3)
= ⟨ Definition 3.14 ⟩

(k1 ◦ a′
c

) · ((k1 ◦ a ∗c k2 ◦ a) · s3 +s (k3 ◦ a) · s3)
= ⟨ Definition 3.14 ⟩

(k1 ◦ a′
c

∗c k1 ◦ a ∗c k2 ◦ a) · s3+s

(k1 ◦ a′
c

∗c k3 ◦ a) · s3
= ⟨ Definition 3.11 ⟩

(k1 ◦ (a′
c

∗c a) ∗c k2 ◦ a) · s3+s

(k1 ◦ a′
c

∗c k3 ◦ a) · s3
= ⟨ Definition 3.10 ⟩

(k1 ◦ 1c ∗c k2 ◦ a) · s3 +s (k1 ◦ a′
c

∗c k3 ◦ a) · s3
= ⟨ Definition 3.11 ⟩

(1c ∗c k2 ◦ a) · s3 +s (k1 ◦ a′
c

∗c k3 ◦ a) · s3
= ⟨ Definition 3.10 ⟩

(k2 ◦ a) · s3 +s
(k1 ◦ a′

c

∗
c
k3 ◦ a) · s3

The obtained message when Bob sends 1
k

instead of
his key is (k2◦a)·s3 and (k1◦a′

c

∗ck3◦a)·s3. The message
(k2 ◦a) · s3 indicates that the secret s3 is encrypted using
the key of Bob k2. Therefore, Bob can obtain the secret
but not Alice. Alice cannot obtain the secret from other
message (k1 ◦ a′

c

∗c k3 ◦ a) · s3 since it needs the key
of Carol k3. Therefore, Bob can get the secret but Alice
cannot.

B. Transposition Ciphers

Transposition ciphers change the position of characters
in the plain-text to produce a cipher-text, while the
identity of characters remains the same. We give an
example of a transposition cipher and a mathematical
representation of its three elements: secret, key and cipher.

Assume that the secret to be encrypted is the
word security. We represent this word as the relation
{(s, 1), (e, 2), (c, 3), (u, 4), (r, 5), (i, 6), (t, 7), (y, 8)}.
The key gives the permutation of
the string. A key can be given as
{(1, 3), (2, 5), (3, 2), (4, 6), (5, 1), (6, 8), (7, 4), (8, 7)}
which indicates that the first alphabet of the secret should
be moved into the third position, the second alphabet into

the fifth position and so on. The key should be a bijective
function with a length equal to that of the secret. However,
if the secret is longer, it can be divided into blocks,
but if the key is longer we expand the secret with extra
characters. The cipher can be represented as the relational
composition between the secret and the cipher as s;k =
{(s, 3), (e, 5), (c, 2), (u, 6), (r, 1), (i, 8), (t, 4), (y, 7)}.
Therefore, the produced cipher-text is ”rcsteuyi”. The
decryption function is s;k∪ where k∪ is the converse
of the relation k. Our algebraic structures enable us to
represent a generalisation to the transposition ciphers.
It allows handling a set of secrets and a set of keys as
shown in the following propositions.

Proposition 5.4: Let S , P(A×N), where A is a set
of alphabet and N is the set of natural numbers. Let the
operator P+sQ , P ∪Q be a set union, the operator P ∗s
Q , {pq | p ∈ P ∧ q ∈ Q} be the concatenation
of strings, and 0s , ∅ be the empty set. The structure
S = (S,+s , ∗s , 0s) is a secret structure.

Proof: The proof is similar to the proof of Proposi-
tion 5.1.

In this model, a secret is a set of strings each is
represented as a relation. The operator +s indicates set
union, while the operator ∗s indicates the concatenation
of strings represented as relations.

Proposition 5.5: Let K , P(N ×N) where N is the
set of natural numbers. Let the operator P +s Q , P ∪Q
be a set union, the operator P ∗s Q , {p∩ q | p ∈ P ∧
q ∈ Q} be the intersection of relations, and 0s , ∅ be
the empty set. The structure K = (K,+

k
, ∗

k
, 0

k
) is a key

structure.
Proof: The union ∪ is commutative, associative, and

idempotent. Its identity element is ∅. Set intersection ∩ is
commutative and associative. The operator ∗s distributes
over +s because of the distributivity of ∧ over ∨. Finally,
∅ is an annihilator for ∗s as x ∈ ∅ ⇔ false and {x |
false} = ∅.

Our key model allows representing a set of keys and
handling two operators. The operator +

k
is the set union

and the operator ∗
k

is the set intersection. Note that this
is one representation of keys. There could be other repre-
sentations that satisfy the properties of the key structure.

Proposition 5.6: Let C def
= (C, ∗c ,+c , 1c , ′

c

, 0c), where
C is a set of transposition ciphers i.e., c(s) = s; k. Let
c′

c

(s) = s; k∪, P ∗c Q , {p; q | p ∈ P ∧ q ∈ Q} where
; is a relation composition, the operator +c be set union,
the operator 1c be the identity relation, and the operator
0c be the empty set. The structure C is a cipher structure.

Proof: The union ∪ is commutative, associative, and
idempotent. Its identity element is ∅. c∗

c
c′

c

= s; k; k∪ = s

and c′
c

∗c c = s; k∪; k = s. The composition of relations
is associative and its identity element is the identity
relation. The operator ∗s distributes over +s because of
the distributivity of ∧ over ∨. Finally, ∅ is an annihilator
for ∗s as x ∈ ∅ ⇔ false and {x | false} = ∅.

Transposition ciphers do not have extra algebraic prop-
erties that could affect the security properties of object-
based scheme presented in the example. However, we do

2038 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

not claim in this paper that transposition cipher is secure.
It is known that transposition ciphers is vulnerable to
attacks based on frequency analysis. Our focus of this
paper is analysing the effects of the algebraic properties
of cryptosystems on object-based schemes. We do not
discus the security of cryptosystems themselves.

C. Data Encryption Standard (DES)

DES is a shared key cryptosystem such that the key
used in encryption is the same used in decryption. DES
is a block cipher that takes a block of plain-text as input
and produces a cipher-text of the same length. DES is
based on sixteen rounds. Each round consists of four
stages that perform expansion, key mixing, permutation,
and substitution. In our representation, we denote the
encryption algorithm by c and the decryption algorithm
by c′

c

. We represent secrets and keys as sets of numbers.

Proposition 5.7: Let S , P(N), where N is the set of
natural numbers. Let the operator P+

s
Q , P∪Q be a set

union, the operator P ∗s Q , {pq | p ∈ P ∧ q ∈ Q} be
the concatenation of strings represented as numbers, and
0s , ∅ be the empty set. The structure S = (S,+s , ∗s , 0s)
is a secret structure.

Proof: The proof is similar to the proof of Proposi-
tion 5.1.

Proposition 5.8: Let K , P(N), where N is the set of
natural numbers. Let the operator P+sQ , P∪Q be a set
union, the operator P ∗s Q , {p⊕ q | p ∈ P ∧ q ∈ Q}
be the multiplication of keys, and 0s , ∅ be the empty
set. The structure K = (K,+

k
, ∗

k
, 0

k
) is a key structure.

Proof: The union ∪ is commutative, associative,
and idempotent. Its identity element is ∅. The xor op-
erator ⊕ is commutative and associative. The operator ∗s
distributes over +s because of the distributivity of ∧ over
∨. Finally, ∅ is an annihilator for ∗s as x ∈ ∅ ⇔ false and
{x | false} = ∅.

Proposition 5.9: Let C be a set of DES algorithms, the
operator ∗c represents running algorithms consecutively,
the operator +c be set union, the operator 1c be an
algorithm that has not effect, and the operator 0c be the
empty set.

Proof: Set union ∪ is commutative, associative
and idempotent with an identity 0c . The operator ∗c is
associative with an identity 1c .

Scenario of an Attack: The presented key model has
the following property

k ∗
k
k = 1

k

This property leads to the following derivation.

(((k1 ∗k k1) +k
k3) ◦ a) · s3

= ⟨ A property of the key model ⟩
((1

k
+

k
k3) ◦ a) · s3

= ⟨ Definition 3.12 ⟩
(1

k
◦ a+c k3 ◦ a) · s3

= ⟨ Definition 3.14 ⟩

(1
k
◦ a) · s3 +s (k3 ◦ a) · s3

= ⟨ Definition 3.11 ⟩
1c · s3 +s (k3 ◦ a) · s3

= ⟨ Definition 3.14 ⟩
s3 +s

(k3 ◦ a) · s3

By having the k1 = k2, we can reveal the secret
which violates the secrecy property. Therefore, we should
assume that k1 ̸= k2.

Scenario of an Attack: DES has the following property,
when the keys k1 and k2 are semi-weak keys.

(k1 ◦ a)((k2 ◦ a) · s) = s

This property affects the satisfaction of the second prop-
erty of the illustrative example as shown in the following
derivation

(k3 ◦ a) · ((k2 ◦ a) · s2)
= ⟨ A property of semi-weak keys ⟩

s

Therefore, the secret s2 would be revealed without
decrypting the message using the keys of Alice and Bob.
Therefore, to prove the property, we should make sure
that the used keys are not semi-weak.

D. RSA

RSA is a public key cryptosystem whose key consists
of two parts: a public part (e, n) used for encryption, and a
private part (d, n) used for decryption. The encryption of
a secret s is performed as se mod n while the decryption
of a message m as md mod n.

Proposition 5.10: Let S , P(N), where N is the set
of natural numbers. Let the operator P +s Q , P ∪ Q
be a set union, the operator P ∗s Q , {pq | p ∈ P ∧
q ∈ Q} be the concatenation of strings represented as
numbers, and 0s , ∅ be the empty set. The structure
S = (S,+s , ∗s , 0s) is a secret structure.

Proof: The proof is similar to the proof of Proposi-
tion 5.1.

In this model, a secret is a set of numbers. The operator
+s indicates set union while the operator ∗s indicates the
concatenation of strings.

Proposition 5.11: Let K , P({(a, b,m) | a, b ∈
IN,m ∈ M ∧ 1 < a < ϕ(m) ∧ gcd(a, ϕ(m)) =
1 ∧ a × b ≡ 1 (mod ϕ(m))}) where N is the set
of natural numbers. Let the operator P +s Q , P ∪ Q
be a set union, the operator P ∗s Q , {(e, f,m) |
∃
(
(a, c,m), (b, d,m) | (a, c,m) ∈ P ∧ (b, d,m) ∈

Q : e = a × b (mod ϕ(m)) ∧ f = c × d
(mod ϕ(m))

)
} be the multiplication of keys, and 0s , ∅

be the empty set. The structure K = (K,+
k
, ∗

k
, 0

k
) is a

key structure.
Proof: The union ∪ is commutative, associative, and

idempotent. Its identity element is ∅. Number multipli-
cation is commutative and associative. The operator ∗s

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2039

© 2014 ACADEMY PUBLISHER

distributes over +s because of the distributivity of ∧
over ∨. Finally, ∅ is an annihilator for ∗s as x ∈ ∅ ⇔ false
and {x | false} = ∅.

An RSA key consists of three parts: e, d, n. In our
structure, a key is a set of RSA keys. The operator +

k
is

a set union, while the operator ∗
k

represents combining
keys that have the same value n by multiplying together
the values of d and the values of e.

Proposition 5.12: Let C be a set of RSA ciphers, the
operator ∗c be a function composition, the operator +c be
set union, the operator 1c be the identity function, and the
operator 0c be the empty set.

Proof: The proof uses properties of set and function
theories.

It has been proved in the literature that RSA has the
homomorphism algebraic property

e · s1 ∗s e · s1 = e · (s1 ∗s s2)

By analysing the object-based scheme presented in the
illustrative example, we find that this property does not
affect its security property.

VI. CONCLUSION

In this paper, we extend the work of [1] in analysing
object-based schemes algebraically in two directions.
First, we present concrete algebraic models for Vigenère,
transposition ciphers, DES and RSA cryptosystems.
These models act as an intermediate level between the
abstract level and the implementation. Second, we show
the effects of the additional algebraic properties of those
concrete models on the security properties of object-
based schemes. We find that some algebraic properties
of cryptosystems such as commutativity could affect the
security of object-based schemes based on the scheme and
the security properties.

As a future work, we aim at building a tool that can be
used for automatically verify security policies. The input
to the tool are security properties and an object based
scheme. The security properties can be represented as
logic formulas, while the object based schemes are set
of policies that can be represented as terms of the alge-
braic structures presented in this paper. The tool should
store the algebraic properties of several cryptosystems.
By using prover9, the tool should be able to indicate
automatically which property is satisfied and which one
is not satisfied. Such a tool would enhance the security
of systems implementing access control based on object-
based schemes.

APPENDIX

A. Axioms of the Envelope Structure

1) ∀(a, k, l | a ∈ C, k, l ∈ K : (k+
k
l)a = ka+c la)

2) ∀(a, b, k | a, b ∈ C, k ∈ K : k(a +c b) =
ka+c kb)

3) ∀(a, b, k | a, b ∈ C, k ∈ K : k(a∗c b) = ka∗ckb)
4) ∀(a, k, l | a ∈ C, k, l ∈ K : l(ka) = (l ∗

k
k)a)

5) ∀(a | a ∈ C : 0
k
a = 0c)

6) ∀(k | k ∈ K : k0c = 0c)
7) ∀(k | k ∈ K − {0c} : k1c = 1c)

8) ∀(k, a | k ∈ K, a ∈ A : ka′
c

= (ka)′
c

)
9) ∀(a, k, l | a ∈ C, k, l ∈ K : (k +

k
l)a =

(l +
k
k)a)

10) ∀(a, k, l, h | a ∈ C, k, l, h ∈ K : ((k +
k
l) +

k

h)a = (k +
k
(l +

k
h))a)

11) ∀(a, k | a ∈ C, k ∈ K : (k +
k
k)a = ka)

12) ∀(a, k, l | a ∈ C, k, l ∈ K : (k∗
k
l)a = (l∗

k
k)a)

13) ∀(a, k, l, h | a ∈ C, k, l, h ∈ K : ((k ∗
k
l) ∗

k

h)a = (k ∗
k
(l +

k
h))a)

14) ∀(a, k, l | a ∈ C, k ∈ K : (k ∗
k
0
k
)a = 0

k
a)

15) ∀(a, k, l | a ∈ C, k ∈ K : (k +
k
0
k
)a = ka)

16) ∀(k, l, h, a | k, l, h ∈ K, a ∈ C : (k ∗
k
(l +

k

h))a = ((k ∗
k
l) +

k
(k ∗

k
h))a)

17) ∀(k, l, h, a | k, l, h ∈ K, a ∈ C : ((k +
k
l) ∗

k

h)a = ((k ∗
k
h) +

k
(l ∗

k
h))a)

18) ∀(a, b, k | a, b ∈ C, k ∈ K : k(a +c b) =
k(b+c a))

19) ∀(a, b, k | a, b, c ∈ C, k ∈ K : k((a+c b)+c c) =
k(a+c (b+c c)))

20) ∀(a, b, k | a, b, c ∈ C, k ∈ K : k((a ∗c b) ∗c c) =
k(a ∗c (b ∗c c)))

21) ∀(a, k | a ∈ C, k ∈ K : k(a+c a) = ka)
22) ∀(a, k | a ∈ C, k ∈ K : k(a+c 0c) = ka)
23) ∀(a, k | a ∈ C, k ∈ K : k(a ∗c 0c) = k ∗c 0c)
24) ∀(a, k | a ∈ C, k ∈ K : k(a ∗c a′

c

) = k1c)
25) ∀(a, k | a ∈ C, k ∈ K : k(a ∗c 1c) = ka)
26) ∀(a, k | a ∈ C, k ∈ K : k(1c ∗c a) = ka)
27) ∀(k, a, b, c | k ∈ K, a, b, c ∈ C : k(a ∗

c
(b +

c

c)) = k((a ∗c b) +c (a ∗c c)))
28) ∀(k, a, b, c | k ∈ K, a, b, c ∈ C : k((a +

c
b) ∗

c

c) = k((a ∗c c) +c (b ∗c c)))

B. Axioms of the Message Structure
1) ∀(a, b, s | a, b ∈ C, s ∈ S : (a+c b)s = as+s bs)
2) ∀(a, r, s | a ∈ C, r, s ∈ S : a(r+ss) = ar+sas)
3) ∀(a, b, s | a, b ∈ C, s ∈ S : a(bs) = (a ∗c b)s)
4) ∀(s | s ∈ S : 1cs = s)
5) ∀(s | s ∈ S : 0cs = 0s)
6) ∀(a | a ∈ C : a0s = 0s)
7) ∀(a, b, s | a, b ∈ C, s ∈ S : (a +c b)s =

(b+c a)s)
8) ∀(a, b, c, s | a, b, c ∈ C, s ∈ S : ((a+cb)+cc)s =

(a+c (b+c c))s)
9) ∀(a, s | a ∈ C, s ∈ S : (a+c a)s = as)

10) ∀(a, s | a ∈ C, s ∈ S : (a+c 0c)s = as)
11) ∀(a, b, c, s | a, b, c ∈ C, s ∈ S : ((a∗c b)∗c c)s =

(a ∗c (b ∗c c))s)
12) ∀(a, s | a ∈ C, s ∈ S : (a ∗c 1c)s = as)

13) ∀(a, s | a ∈ C, s ∈ S : (a ∗c a′
c

)s = 1cs)
14) ∀(a, s | a ∈ C, s ∈ S : (a ∗c 0c)s = 0cs)
15) ∀(a, b, c, s | a, b, c ∈ C, s ∈ S : (a∗c (b+c c))s =

((a ∗c b) +c (a ∗c c))s)
16) ∀(a, b, c, s | a, b, c ∈ C, s ∈ S : ((a+c b)∗c c)s =

((a ∗c c) +c (b ∗c c))s)
17) ∀(a, s, r | a ∈ C, s, r ∈ S : a(s +s r) =

a(r +s s))

2040 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

18) ∀(a, s, r, t | a ∈ C, s, r, t ∈ S : a((s+s r)+s t) =
a(s+s (r +s t)))

19) ∀(a, s | a ∈ C, s ∈ S : a(s+s 0s) = as)
20) ∀(a, s | a ∈ C, s ∈ S : a(s+s s) = as)
21) ∀(a, s, r, t | a ∈ C, s, r, t ∈ S : a((s ∗s r) ∗s t) =

a(s ∗s (r ∗s t)))
22) ∀(a, s, r, t | a ∈ C, s, r, t ∈ S : a(s∗s (r+s t)) =

a((s ∗s r) +s (s ∗s t)))
23) ∀(a, s, r, t | a ∈ C, s, r, t ∈ S : a((s+s r)∗s t) =

a((s ∗s t) +s (r ∗s t)))

REFERENCES

[1] K. E. Sabri and R. Khedri, “Algebraic framework for
the specification and analysis of cryptographic-key dis-
tribution,” Fundamenta Informaticae, vol. 112, no. 4, pp.
305–335, 2011.

[2] J. Crampton, “Specifying and enforcing constraints in role-
based access control,” in Proceedings of the eighth ACM
symposium on Access control models and technologies, ser.
SACMAT ’03. New York, NY, USA: ACM, 2003, pp.
43–50.

[3] G. Bruns and M. Huth, “Access-control policies via belnap
logic: Effective and efficient composition and analysis,”
in Proceedings of the 2008 21st IEEE Computer Security
Foundations Symposium. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 163–176.

[4] K. E. Sabri, R. Khedri, and J. Jaskolka, “Verification of
information flow in agent-based systems,” in Proceed-
ings of the 4th MCETECH Conference on e-Technologies,
ser. Lecture Notes in Business Information Processing,
G. Babin, P. Kropf, and M. Weiss, Eds., vol. 26. Springer-
Verlag Berlin Heidelberg, May 2009, pp. 252–266.

[5] S. Akl and P. Taylor, “Cryptographic solution to a problem
of access control in a hierarchy,” ACM Transaction on
Computer Systems, vol. 1, no. 3, pp. 239–248, 1983.

[6] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken,
“Dynamic and efficient key management for access hier-
archies,” ACM Transactions on Information and System
Security, vol. 12, no. 3, pp. 1–43, 2009.

[7] K. E. Sabri and R. Khedri, “A generic algebraic model for
the analysis of cryptographic-key assignment schemes,” in
5th International Symposium on Foundations and Practice
of Security (FPS), ser. Lecture Notes in Computer Science,
vol. 7743. Springer-Verlag, 2013, pp. 62–77.

[8] P. Lafourcade, D. Lugiez, and R. Treinen, “Intruder de-
duction for the equational theory of abelian groups with
distributive encryption,” Information and Computation,
vol. 205, no. 4, pp. 581–623, April 2007.

[9] S. Bursuc and H. Comon-Lundh, “Protocol security and
algebraic properties: Decision results for a bounded num-
ber of sessions,” in Proceedings of the 20th International
Conference on Rewriting Techniques and Applications
(RTA), ser. Lecture Notes in Computer Science, vol. 5595.
Springer-Verlag, 2009, pp. 133–147.

[10] V. Cortier, S. Delaune, and P. Lafourcade, “A survey
of algebraic properties used in cryptographic protocols,”
Journal of Computer Security, vol. 14, no. 1, pp. 1–43,
January 2006.

[11] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot,
Handbook of Applied Cryptography, 1st ed. Boca Raton,
FL, USA: CRC Press, Inc., 1996.

[12] R. Khedri, “Formal model driven approach to deal with
requirements volatility,” McMaster University, Tech. Rep.
CAS-08-03-RK, 2008.

[13] H. T. Liaw, S. J. Wang, and C. L. Lei, “A dynamic
cryptographic key assignment scheme in a tree structure,”
Computers & Mathematics with Applications, vol. 25,
no. 6, pp. 109–114, March 1993.

[14] R. S. Sandhu, “On some cryptographic solutions for access
control in a tree hierarchy,” in ACM ’87: Proceedings of
the 1987 Fall Joint Computer Conference on Exploring
technology: today and tomorrow. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1987, pp. 405–410.

[15] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Ma-
succi, “A note on time-bound hierarchical key assignment
schemes,” Information Processing Letters, vol. 113, no. 5-
6, pp. 151–155, 2013.

[16] J. Crampton, K. Martin, and P. Wild, “On key assignment
for hierarchical access control,” in Proceedings of the 19th
IEEE workshop on Computer Security Foundations (CSFW
’06). Venice, Italy: IEEE Computer Society, 2006, pp.
98–111.

[17] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “A data outsourcing architecture combin-
ing cryptography and access control,” in Proceedings of the
2007 ACM workshop on Computer security architecture,
ser. CSAW ’07. New York, NY, USA: ACM, 2007, pp.
63–69.

[18] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and
efficient access to outsourced data,” in Proceedings of the
2009 ACM workshop on Cloud computing security, ser.
CCSW ’09. New York, NY, USA: ACM, 2009, pp. 55–
66.

[19] G. Miklau and D. Suciu, “Controlling access to published
data using cryptography,” in Proceedings of the 29th
international conference on Very large data bases - Volume
29, ser. VLDB ’03. VLDB Endowment, 2003, pp. 898–
909.

[20] M. Abadi and B. Warinschi, “Security analysis of cryp-
tographically controlled access to xml documents,” in
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, ser.
PODS ’05. New York, NY, USA: ACM, 2005, pp. 108–
117.

[21] M. Baudet, V. Cortier, and S. Delaune, “Yapa: A generic
tool for computing intruder knowledge,” ACM Transac-
tions on Computational Logic, vol. 14, no. 1, pp. 4:1–4:32,
Feb. 2013.

[22] E. M. Clarke, S. Jha, and W. Marrero, “Verifying security
protocols with Brutus,” ACM Transactions on Software
Engineering and Methodology, vol. 9, no. 4, pp. 443–487,
October 2000.

[23] I. Al-Azzoni, D. G. Down, and R. Khedri, “Modeling
and verification of cryptographic protocols using Coloured
Petri Nets and Design/CPN,” Nordic Journal of Comput-
ing, vol. 12, no. 3, pp. 200–228, September 2005.

[24] S. Mödersheim, “Algebraic properties in alice and bob no-
tation,” in Proceedings of the The Forth International Con-
ference on Availability, Reliability and Security (ARES),
ser. IEEE Computer Society, 2009, pp. 433–440.

[25] S. Erbatur, S. Escobar, D. Kapur, Z. Liu, C. Lynch,
C. Meadows, J. Meseguer, P. Narendran, S. Santiago,
and R. Sasse, “Effective symbolic protocol analysis via
equational irreducibility conditions,” in 17th European
Symposium on Research in Computer Security (ESORICS),
ser. Lecture Notes in Computer Science, vol. 7459, 2012,
pp. 73–90.

[26] A. Shamir, “How to share a secret,” Communications of
the ACM, vol. 22, no. 11, pp. 612–613, November 1979.

[27] C. Boyd, “Some applications of multiple key ciphers,” in
Proceedings of Advances in Cryptology-EUROCRYPT’88,
ser. Lecture Notes in Computer Science, vol. 330.
Springer-Verlag New York, Inc., May 1988, pp. 455–467.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2041

© 2014 ACADEMY PUBLISHER

[28] M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon,
“Algebraic side-channel attacks on the aes: Why time also
matters in dpa,” in 11th International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES), ser.
Lecture Notes in Computer Science, vol. 5747. Springer,
2009, pp. 97–111.

[29] N. Courtois, S. O’Neil, and J.-J. Quisquater, “Practical
algebraic attacks on the hitag2 stream cipher,” in 12th In-
ternational Conference on Information Security (ISC), ser.
Lecture Notes in Computer Science, vol. 5735. Springer,
2009, pp. 167–176.

[30] U. Hebisch and H. J. Weinert, Semirings Algebraic Theory
and Applications in Computer Science. World Scientific
Publishing Co. Pte. Ltd., 1993.

[31] W. McCune, “Prover9 and mace4,”
http://www.cs.unm.edu/ mccune/prover9/.

Khair Eddin Sabri has been working as an assistant professor
in the Computer Science Department at the University of Jordan
since 2010. He obtained his B.Sc. degree in Computer Science
from the Applied Science University, Jordan in June 2001.
He also received M.Sc. degree in Computer Science from the
University of Jordan in January 2004 and a Ph.D. degree in Soft-
ware Engineering from McMaster University, Ontario Canada
in June 2010. He is a member of the Formal Requirements and
Information Security Enhancement (FRAISE) Research Group.
His main research interest is the formal verification and analysis
of security properties.

2042 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

