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Abstract—Normal communication of deaf peoplein ordinary
life still remainsan unrealized task, despite thefact that Sign
Language Recognition (SLR) made a big improvement in
recent years. We want here to address this problem
proposing a portable and low cost system, which
demonstrated to be effective for trandating gestures into
written or spoken sentences. This system relies on a
home-made sensory glove, used to measur ethe hand gestures,
and on Wavelet Analysis (WA) and a Support Vector
Machine (SVM) to classify the hand’s movements. In
particular we devoted our efforts to translating the Italian
Sign Language (LIS, Linguaggio Italiano dei Segni),
applying WA for feature extractions and SVM for the
classification of one hundred different dynamic gestures. The
proposed system is light, not intrusive or obtrusive, to be
easily utilized by deaf people in everyday life, and it has
demonstrated valid results in terms of signswords
conversion.

Index Terms—Machine intelligence, Pattern analysis,
Human Computer Interaction, Support Vector Machines,
Data glove, Sign Language Recognition, Italian Sign
Language, LIS

1. INTRODUCTION

S imilarly to spoken languages, Sign Languages (SLs)
are complete and powerful forms of communication,

and are adopted by millions of people, who suffer from
deafness, all over the world. SLs are different among
different regions and states: American Sign Language
(ASL), Japanese Sign Language (JSL), German Sign
Language (GSL), Lingua Italiana dei Segni (LIS, the
Italian Sign Language), etc. However, each single SL
relies commonly on gesture and posture mimic
interpretation, which plays a fundamental role in
non-verbal communication too. SL comprehension is
generally limited only to a restricted part of population,
thus deaf people remain restrained apart from social

interactions ~ with  hearing  persons, and the
body-language/non-verbal communication is mainly
limited to “feelings” rather than consciousness
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understanding. These are the main reasons why a system
for “Automatic” Sign Language Recognition (A-SLR) is
welcome and a greater human effort is being devoted to
realize it [1]. A-SLR could allow deaf people to
communicate without limitations, could assign suitable
interpretations to non-verbal communication without
ambiguities, and could be the basis of a new form of
human-computer interaction, since the most natural way
of human-computer interaction would be through speech
and gestures, rather than the current adopted interfaces like
keyboard and mouse. Particularly, the integration of
A-SLR with automatic text writing or speech synthesis
modules can furnish a “speaking aid” to deaf people.

Our purpose is to realize a system capable to measure
human static and dynamic postures, classify them as
“words” organized into “sentences”, in order to “translate”
SLs into written or spoken languages. To this aim, a great
challenge comes from the measure of human postures with
acquisition devices that are both comfortable and easy to
use. In particular, we have to focus our attention on hand
postures and movements since the SL is mostly, even if
not exclusively, based on them. In fact SL is made of hand
gestures, body and facial expressions, but the latter is not
strictly “fundamental”.

Currently, hand movements are commonly measured by
motion tracking techniques based on digital cameras.
These systems offer interesting results in terms of
accuracy, but suffer from a small active range and
disadvantages related to portability. In order to overcome
these problems, new measuring systems have been
developed, in particular the ones based on sensory gloves
(i.e. gloves equipped with sensors capable to convert hand
movements into electrical signals).

The first sensory gloves on the market [2-3] were
obtrusive for movements, uncomfortable and capable to
measure only a very low number of Degrees Of Freedom
(DOF) of the human hand. Nowadays, commercial
sensory gloves are quite light, comfortable and capable to
measure up to 22 DOFs [4], covering flex-extension and
abdu-adduction movements of the fingers and spatial
arrangement of the wrist. However, the cost remains
generally too high (tens of thousands of dollars) to be
widely applied in everyday scenarios. Thus, new sensory
gloves have been created by research groups all over the
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world [5], proposing different raw fabric materials
(stretchable, washable, light, comfortable to don),
different kind of sensors to convert postures into electrical
signals (based on optics, magnetic fields, inertia principles,
etc.), different front-end electronic solutions, and so on.

Here, we designed and realized a sensory glove based
on both bend and inertial sensors sewn onto a Lycra
support. The overall system is explained in details in
section IV.A.

The electric values coming from the sensors are
processed by an ad-hoc designed electronic circuitry that
is connected to a personal computer where digital data are
on-line processed to obtain a classification of the
measured gestures.

By means of the glove and the hardware, we measured
the static and dynamic postures of the hands of two
persons who performed the signs belonging to the LIS
(Linguaggio Italiano dei Segni, i.e. the Italian sign
language). Thanks to feature extraction and gesture
classification, we “translated” in real-time a stream of LIS
signs into Italian words and sentences, which can be
converted into speech via commercially available
synthesizer software.

Apart from sign language translation, our data glove
could have a great impact on Human-Computer
Interaction applications, being the user able to translate its
actions and gestures into computer commands.

This is an interesting application, especially with new
devices coming up in the next future (e.g. smart glasses)
which need a natural way of interaction.

It also has great potential for video games and for all
those scenarios where nonverbal communication can
improve the way people interact with machines.

We are strongly convinced that a glove system is much
more user friendly and natural to use, especially when
interfaced to a smartphone via wireless/Bluetooth
connection, while a camera-based system suffers indeed of
a restricted visual field, and it is not portable in everyday
life.

A-SLR can be considered close to speech recognition
algorithms, even though speech recognition only deals
with one signal while A-SLR has to handle multiple
signals, i.e. hand shape, orientation, position and
movement. In addition, the commercial inertial sensors (as
the ones we used for the glove) have in general “noisy”
problems that must be taken into account.

For the “recognition” of the hand’s kinematic, we
adopted wavelet analysis: the dynamic components of the
gestures were described by wavelet coefficients and then
furnished to a Support Vector Machine (SVM) module for
the classification process. Three different chunking
methods were first considered and then implemented in
order to truncate the signs contained in a continuous
sentence.

The remainder of this paper is organized as follows.
Section II reviews the state of the art. In Section III there is
a brief introduction to the Italian Sign Language. In
Section 1V, details of our system are given: the sensory
glove (subsection A); the acquisition data circuitry
(subsection B); proposition of three different chunking
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methods (subsection C); feature extraction and gesture
classification (subsections D and E). In section V the
experimental results are given. The conclusions are drawn
in the last section.

II. RELATED WORKS

The most commonly adopted method to measure human
movements relies on “motion tracking” procedures, which
usually involves optical techniques (e.g. Optotrak Certus
@ www.ndigital.com, OptiTrack @
www.naturalpoint.com/optitrack). E. J. Muybridge was a
pioneer of optical analysis of movements, by investigating
about human and animal movements through photograph
sequences [6]. Even though the method at the beginning
was inevitably inaccurate, nowadays the optical system
has reached complete maturity, but with the drawbacks of
high costs, the need to arrange a scenario with cameras,
and the need for a high computational workload. As time
passed, other methods were invented such as magnetic
based tracking systems (see the 3D Space Fastrak as an
example,  www.polhemus.com),  hybrid  systems
combining inertial sensors with an optical marking system
(MoCap), or mechanical based system consisting of an
exoskeleton made of lightweight aluminum rods that
follow the motion of the user's bones (see the Gypsy 7
Torso Motion Capture System, www.metamotion.com).
Finally, we must mention wearable sensor systems
consisting of sensors located on the human body as the
sensory gloves.

These gloves are quite precise to measure finger joints
angles with a resolution of the order of one degree, but
with the drawback of the imperfect space tracking of the
hand, i.e. the location of the hand in the 3D surroundings.
In previous works [7-10] the most adopted way to carry
out the tracking was to use magnetic field devices such as
the well known Polhemus Fastrak [11]. Even though it
provides accurate information about trajectory and
orientation of the object to be tracked, the cost is fairly
high. In addition, it has a limited action range and it is not
portable at all.

In [12] and [13] space tracking was carried out by using
accelerometers. These kinds of inertial devices require
little energy to work, are comparatively cheap and small
enough to be integrated in a glove. Unfortunately, for the
Fastrak previously discussed, the signals obtained from
the accelerometers are more difficult to process and with
lower spatial resolution.

According to our knowledge, only few works are related
to inertial devices in A-SLR applications; in [12], they are
used to track hand movements to recognize a set of 3
gestures; in [13] the authors carried out the classification
of 17 different trajectories (not related to any sign
languages), using fusion features based on Wavelet
analysis to represent the trajectories. We here extend the
work of [13], using Wavelet coefficients as well to
represent the dynamic components of the gestures, but
analyzing a larger set of 100 gestures belonging to a real
sign language (i.e. LIS), and using an innovative low-cost
acquisition device.

Regarding the classification part, in literature different
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classification techniques have been used to recognize
static or dynamic gestures [14]. The first A-SLR attempts
were focused on static gestures (e.g. finger alphabets), and
the recognition algorithms were not so similar to the ones
used for isolated and/or continuous signs belonging to
dynamic gestures. Since we are going to study the latter
ones we decided to focus on previous related works on
dynamic gesture recognition and to leave out the works on
static gestures.

[7] is one of the first attempts made in A-SLR; it used 5
neural networks to recognize 200 different signs with a
data glove equipped with Fastrak. In [15] the authors
adopted an algorithm based on a feed forward Neural
Network trained with a Backpropagation algorithm. In [16]
a simple recurrent network was used to separate the signs
in a continuous stream and a Hidden Markov Model
(HMM) was trained to classify the gestures. In [8]
temporal clustering and a variant of HMM, known as
transition movement model, were combined together to
classify a large set of Chinese signs, but still using a
Fastrak device to trace the space path.

Very few works are focused on the Italian sign language
(LIS) recognition. In [10] a Self-Organizing Map Neural
Network was adopted and combined with lips movement
recognition via optical techniques to chunk the words in a
continuous stream. On the other hand, in [17] the authors
realized a virtual avatar capable to move according to the
signs of the Italian LIS.

III. ITALIAN SIGN LANGUAGE

Even though it is not legally recognized, LIS is a
complex language taken as a standard way of
communication among the Italian deaf community. As in
the example of figure 1, each sign is identified by four
parameters:

a. The location where the sign is made
b. The ‘configuration’, which is the shape assumed
by the hand while performing the sign
c. The orientation of the hand’s palm
d. The movement of the hand in the space.
For the purpose of this work, we limited our study to a

PARAMETERS
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Fig. 1. Sign Language parameters
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LIS subset of 100 signs taken randomly from the Italian
Sign Language dictionary [18]. The number of signs here
chosen is comparable to the average number found in
literature.

IV. SYSTEM DESCRIPTION

Figure 2 depicts the general diagram of the system
architecture.

. Stream of
Acquisition | —= .
signs
Pre- Smoothed
- — =
Processing signs
R
1
i Chunker —» Truncated
' signs
i
H— __l
Feature Feature
. —_—
Extraction vectors
SVM — Words

Fig. 2. General system architecture

Each block of the diagram, which represents the logical
step of the overall method, has been realized by our
research group named HITEG (Health Involved Technical
Engineering Group).Wearing the data glove, the user is
asked to perform a single gesture or a sequence of
continuous signs. These are measured and signals are sent
to a PC in a digital format. Data are then preprocessed to
remove potential noise by means of a smoothing algorithm.
If a sentence constituted by several gestures is recorded the
Chunker will split it in single signs. We associate to each
gesture a feature vector, which is then passed to the
classifier, which utilizes it for learning or classification
purpose.

A detailed explanation of all the logical steps can be
found in the following paragraphs.

A. The Hiteg Data Glove

In order to measure hand movements we used our
homemade sensory glove, shown in figure 3.

It is made out of a Lycra support and equipped with 15
bend sensors, to measure the movements of each distal
interphalangeal joint, proximal interphalangeal joint and
metacarpophalangeal joint. The resistance value of each
bend sensor varies according to the amount of bending, so
we can measure flexion and extension movements. No
sensors were devoted to abduction and adduction
movements since their influence on the measurement of
the postures is negligible to the aim of our work.
Moreover, to provide information about the space
position of the hand, two inertial measurement units
(IMU) Analog Combo Board Razor from SparkFun,
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equipped with a 3 axis accelerometer and a gyroscope, are
integrated in the glove, one in correspondence of the back
of the hand and the other right below the elbow. The IMU
sensor on the elbow is attached with a removable armband,
and it will soon become wireless in order to make the user
experience more comfortable.

Fig. 3. The HITEG sensory glove

B. Data Acquisition

In figure 4, the hardware needed for data acquisition is
shown. Resistance signals from bend sensors are acquired
at a sampling rate of 720 Hz per sensor, and converted into
voltage units in a 10-bit digital format, by means of a
voltage divider, a microcontroller and an ADC unit, so
resulting 1023 logical levels (0+2'°-1), matching an
interval of 0+4.99V analogical values.

ir Sen sors H Simple connedion
SPI bus
MUX Serial interface
& ZigBee protocol
ADC
@ PC
PIC 18F4550

g ﬁ
ZigBee ZigBee
=

transmitter receiver
Fig. 4. Hardware architecture for data acquisition.

Both IMUs provide three values (in the range of +3g)
associated to the acceleration on the three axis, and three
values for the angular speed (in the range of +300°/sec)
along each axis in the 3D space. Data are acquired with a
PIC 18F4550 microcontroller, digitalized and provided to
a computer via ZigBee protocol. Because of possible noise,
the acquired data are then filtered using a moving average
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smoothing (eq. 1), so that unwanted high frequency
components (e.g. noise spikes) are discarded.

Given a time series {y,}, ma is the moving average of
order k =my; + m, + 1:

ma

ma =2,

0 Ve (1)
where 6; is the weight associated to the i-th observed
value.

C. Chunking

To obtain a correct A-SLR, the recognition of each sign
in a continuous stream (that constitutes a sentence) plays a
fundamental role. The solution is far from trivial, also
because each sign differs in duration form each other and it
is not given to know each “starting point”. This problem is,
in fact, increased by Movement Epenthesis (ME), i.e. the
movement that links two consecutive signs, which is not
easily predictable being different each time.

Three different ways of chunking have been
investigated in this work:

a. Introducing artificial pauses;

b. Detecting static configurations;

c. Training a neural network to recognize
transitions.

The first method is quite trivial. The user is asked to
insert a pause before and after they perform the sign, so the
chunker detects the sign according to the unchanging
measured values.

The second method is somewhat trickier since no
artificial pauses are requested. It relies on the fact that in
LIS the configuration of the hand (see section I1I) remains
static or replays twice or more times the same gesture
during the whole sign. So the new gesture can be identified
according to the static or periodically moving hand
configuration. This is a simple and efficient way to figure
out where to cut the continuous stream of signs, but
problems come up when two consecutive signs with the
same configuration are performed. In that case the user has
to introduce an artificial transition movement (in which
fingers are moved disorderly) to split the signs correctly.

The third technique is similar to the one adopted in [7].
Each transition is manually labeled, marking the
beginning and the end. A Multilayer Perceptron Neural
Network (MLPNN, [7] and [15]) is trained associating the
output of the net to a Gaussian centered in the middle of
the transition. In this way, the network should learn how to
detect a transition, associating an output value in between
0 and 1; outside this range the signal corresponds to a sign
(fig. 5).

This method is the most comfortable and natural for the
user because does not require them to insert unnatural
actions during the “conversation”. But unfortunately, the
accuracy is lower than the other two methods (about 80%
of correct chunking while the former two split correctly
almost the totality of the signs) and the learning phase
requires a lot of time due to the labeling part.
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Fig. 5. Labeled transitions and the corresponding neural network’s
Gaussian output.

The accuracy of the three methods described is reported
in table I. A deeper investigation of chunking methods is
beyond the purpose of this work; the reader is invited to
read papers [8], [9], and [16] for further information.

TABLEI
CHUNKERS ACCURACY
Chunking method Accuracy on 2000 gestures

a. Artificial pauses 98.8%
bl. Static configurations 92.3%
b2. Static configurations o

with artificial transitions 977%
c. Neural Network 86.4%

Accuracy of chunkers (percentage of correctly chunked sings)
evaluated on 200 streams of signs, with an average of 10 signs per stream.
Only method bl and ¢ were tested on the same data set due to the nature
of the methods. Method b was tested with and without introducing
artificial transition movements.

D. Feature Extraction

Being interested in static postures of the hand we need
only to consider one value per each measured joint’s angle
(besides the space path) to represent the configuration of a
sign. Hence, we take into account the median values of the
15 joint angles in order to have enough representative
values.

Data from different subjects are calibrated by recording
a continuous stream of movements (see section V) to
collect the min-max value range of each bend sensor.

The output of the IMUs cannot be directly used as
features since it varies according to the duration of the
gesture, or the sign related part of the output can be shifted
along the time axis.

In order to extract useful features we investigated
Wavelet Transform (WT). WT, in contrast to the classic
Fourier Transform, works on a multi-scale basis,
decomposing a signal into different levels of detail using
fixed blocks called wavelets. The wavelet functions used
to represent a signal are derived by scaling (dilation) and
shifting (translation) a generating function called mother
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wavelet.
Equation (2) defines the Continuous Wavelet
Transform (CWT) of a time signal x(z).
+oo0 1 t-b
Wb =[Tx®zp+(T)d @

In this equation, y is the wawvelet function while a and b
represent the translation and scale coefficients
respectively. The result W(a, b) is the wavelet coefficients
that relate the signal to the wawelet at different scales and
translations [19].

To reduce the computational workload, a discrete
version of the CWT is often used, called Discrete Wavelet
Transform (DWT) [20-22]. The DWT is obtained by
sampling the time-scale plane using digital filters with
different cutoff frequencies at different scales. High-pass
filters will produce detailed information, d[n], while low
pass filters will give coarse approximations, a[n]. The
scale is determined by upsampling and downsampling the
signal before filtering it.

The depth of this decomposition tree depends on the

X[n]

Fig. 6: Wavelet decomposition tree.

length of the signal. The result of the DWT of the time
signal is given by the concatenation of all the coefficients
a[n] and d[n], from the last level of decomposition.

We performed tests with different types of wavelets,

1.5
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Pt)y=¢-1 1/2<t <1,
0 otherwise.

Fig. 7: Daubechies wavelet of order 2.

and discovered that the Daubechies wavelet of order 2 (fig.
7) gave the maximum efficiency for our application. This
is probably due to its smoothing feature that made more
suitable to detect changes of the IMU’s output values.
After sampling the IMU’s signals down to 256 samples,
the detail wavelet coefficients at the first, second, third and
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fourth levels (129 + 66 + 34 + 18 coefficients) and the
approximation wavelet coefficients at the fourth level (18
coefficients) were computed. In order to reduce the
dimensionality of the feature vectors, the following
statistics over the set of the wavelet coefficients were used
to represent each of the six IMU signals, as done in [23]:

(1) Energy of each sub-band.

(2) Maximum coefficient for each sub-band.

(3) Minimum coefficient for each sub-band.

(4) Mean of the coefficients for each sub-band.

(5) Standard deviation of the coefficients for each
sub-band.

From our experiments, these 25 features turned out to be
sufficient to obtain a good representation of the signal
without requiring too much computational power.

Summing everything up, a sign was represented by a
feature vector of 315 components (25 features by 6
components for each of the 2 IMUs plus 15 angle values
for bending sensors).

E. Classification

The automatic classification of a sign was made by a
Support Vector Machine (SVM), in order to find the
hyper-plane that maximizes the separation between
classes [24].

Let us assume we have two linearly separable classes

yke{—1,+1} . Each training example ;kei){N

belongs to a class. A separation hyper-plane between the
classes can be written as:

—T—k
v (W x +b)>0 k=I1,..m (3)
The aim of an SVM is to maximize the minimum
distance between the training examples and the separating
hyper-plane, also called margin of separation. We can
rewrite (3) rescaling the weights w and the bias b as

y(w x +b)21 k=l1,...m  (4)

Therefore, the margin of separation is 1/]] W | and
maximizing it is equivalent to minimize the Euclidean

norm of the weight vector W. The optimum hyper-plane
will be then found in terms of weights and bias (Fig. 8). All

.=k . . .
the points x that satisfy the constraints (4) with the

equality sign are called support vectors.
By means of Lagrange Multipliers we are able to

consider only these vectors to find the optimal Wand b.
We used a Soft Margin SVM that introduces a tolerance to
classification errors. A constant C controls the trade-off
between the maximization of the margin and the
minimization of the error.

As SVM was originally designed for binary
classification, it cannot deal directly with multi-class
classification problems, which is usually solved by
decomposition of the problem into several two-classes
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ones. In this context we utilized a One vs All strategy [25]
where a set of binary classifiers are constructed comparing
each time one class to the rest.

optimal
hyperplane

Fig. 8: Optimal separating hyper-plane corresponding to the SVM
solution. The support vectors lie on the dashed lines in the caption.

We adopted a linear kernel, and we set the C parameter
to a value of 25 through a validation test.

V. EXPERIMENT RESULTS AND DISCUSSION

The experiments were performed with two subjects, the
first expert and the second inexpert of the LIS language.
The adopted experimental procedure can be summarized
as:

e To wear the glove
e To calibrate the system
e Torecord 100 signs 15 times per sign.

A “session” was the fulfillment of all previous steps.
Two sessions for each subject were recorded in two
different days in order to test the adaptability of the system
to glove repositioning.

Since the piezoresistive sensors are subject to a linear
shift of the response function due to temperature change or
different repositioning of the glove, a simple calibration
was performed each time the user started using the
software. The calibration consisted in continuously
recording the gesture of opening and closing the hand for
ten seconds, in order to find the minimum and maximum
values to correctly identify the range of response for each
sensor. To avoid noisy outliers the median of several
maximum and minimum values was considered instead of
one single value.

We trained the SVM with 10 examples of a sign and
tested it with the remaining five. The evaluation of the
performances of the system was referred to as percentage
accuracy according to the following formula:

Correctly classified examples

Accuracy = *100%  (5)

Total examples
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Table II shows the mean percentage accuracy for each
subject, where Subject 1 is the expert LIS user. Tests were
done on a growing-size set of gestures consisting of 30, 50

TABLEII
MEAN PERCENTAGE ACCURACY FOR EACH SUBJECT
Subject Set 30 Set 50 Set 100
I (expert) 96% 95.6% 94.8%
1I (non expert) 97.6% 96.4% 93.2%

SVM mean accuracy obtained on a growing size set of signs.
Accuracy values are expressed in percentage for each subject. Both
training and test set are made from the same session.

and 100 different randomly taken signs, to understand the
accuracy trend according to the growth of the dataset.

An average accuracy of 96.8% is obtained on a reduced
set of 30 gestures while for the complete set (100 gestures)
the accuracy decreases only of 2.8%, obtaining 94%
correctly classified signs.

In this first case, we trained and tested the SVM with
examples recorded in the same session. It means that the
user should train the system every time they wear the
glove. This is obviously not convenient and excessively
time demanding. In Table III, accuracy achieved training
and testing the classifier on different sessions is shown.

TABLE III
MEAN PERCENTAGE ACCURACY ON DIFFERENT SESSIONS
. Session [ Session 11
Subject over Session II over Session [ Average
I (expert) 88.1% 89.4% 88.75%
II (non expert) 81.2% 80.4% 80.8%

Accuracies obtained training the SVM on a session and testing it on
the remaining. Accuracy values are expressed in percentage for each
subject.

This is a more practical way since the training phase is
performed only once at the very first time, so the user does
not have to worry about repositioning the glove.

As we could expect, mean accuracy is lower than the
previous test because repositioning the glove affects the
overall performance: 84.8% of average accuracy is
obtained in this case. However, it has to be noticed that
Subject 2 is not an expert LIS user, hence the tendency to
forget how to perform a gesture in the second session
causes a lower accuracy (80.8%) respect to the expert user
(88.75%), but the accuracy remains acceptable.

So far, the system is “ad-personam”, in the sense that it
has to be trained by the same person who is going to use it.

Table IV reports accuracies when SVM is trained on a

TABLEIV
MEAN PERCENTAGE ACCURACY ON DIFFERENT SUBJECTS
SubJ.ec‘t for Subject for testing Mean accuracy
training
I (expert) II (non expert) 78%
1I (non expert) I (expert) 73.4%

Accuracies obtained training the SVM on a subject and testing it on
the other one. Accuracy values are expressed in percentage.
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subject and then tested on the other one. In this case, the
system could be trained by an expert user and then used by
everyone else, skipping the learning part. Now the system
results “weaker” because the two users did not perform
signs in the same way, especially if we consider that
subject II is a novel LIS user. The average accuracy of
75.7% is reached, meaning that the system is still usable
but with a higher error rate, so that it makes sense to
integrate an automatic correction system [26].

Although it is not possible to make a comparison with
the other A-SLR works reported in literature (because of
different acquisition systems and different set of signs),
the percentages reached in this study are encouraging. In
addition, it has to be considered that our sensory glove is
cheaper than state of the art gloves, being equipped with
IMUs and not magnetic trackers. The graph in figure 9
represents a rough comparison of production costs for six
different types of gesture acquisition systems. As it can be
noticed, our system is rather low cost, comparable only to
low performance optical systems, which we believe not
having the same portability.

Cost (Eur)

[1] Low cost optical systems

9000 (based or webcams)

8000 [2] High cost optical systems

7000 (for gait 2nalysis)

5000 [3] Mechanical systems
[4] Data gloves with

5000
ultrasounds

4000 1
3000
2000 1 I
1000 7 I
1] 2] 13 (4] (51 [6]

Fig. 9: Approximate costs comparison among different gesture
acquisition systems.

[5] Data gloves with magnetic
tracker

[6] Our system

VI. CONCLUSION

A completely portable sensory glove was developed and
used to recognize 100 gestures belonging to Italian Sign
Languag. Based on bend and IMU sensors, the glove is
completely portable, unobtrusive and comfortable to don.
In the future, our system will become wireless, and the
possibility of being interfaced to smartphones will be
provided. In this way, it will be easy to carry in any
situation, giving the user freedom to move and naturally
interact with other people.

An A-SLR system based on wavelet features and SVM
is also proposed. Experiments, performed on the same
subject, demonstrate results with an average accuracy of
94%. This can be considered a very good result, even
though it cannot be directly compared to literature due to
the lack of related works about LIS.

In further studies, new ways of chunking and
classification will be investigated; the overall system will
become wireless and integrated into mobile devices with a
speech synthesizer to realize a new aid for everyday
communication between deaf and hearing people.



JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

REFERENCES

[1] S.C.W. Ong, S. Ranganath, "Automatic sign language
analysis: a survey and the future beyond lexical meaning",
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, pp. 873-891, Jun 2005.

[2] T. G.Zimmerman et al., "A hand gesture interface device",
SIGCHI Bull. 17, 1987.

[3] T. Takahashi, F. Kishino, "Hand gesture coding based on
experiments using a hand gesture interface device", SIGCHI
Bull., 1991.

[4] D.J. Sturman, D. Zeltzer, "A survey of glove-based input",
IEEE Computer Graphics and Applications, vol. 14, pp.
30-39, Jan 1994.

[5] L. Dipietro et al., "A Survey of Glove-Based Systems and
Their Applications", IEEE Transactions on Systems, Man,
and Cybernetics—Part C: Applications and Reviews, vol.
38, pp. 461-482, Jul. 2008.

[6] T. P. Andriacchi, E. J. Alexander, "Studies of human
locomotion: past, present and future", Journal of
Biomechanics, vol. 33, pp. 1217-1224, Mar. 2000.

[7] S.S. Fels, G. E. Hinton, “Glove-Talk: A Neural Network
Interface Between a Data-Glove and a Speech Synthesizer”,
IEEE Transactions on Neural Networks, vol. 3, 1992.

[8] G. Fang et al., "Large-Vocabulary Continuous Sign
Language Recognition Based on Transition-Movement
Models", IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans, vol. 37, pp. 1-9,
Jan. 2007.

[91 M. Maebatake et al., “Sign Language Recognition Based on
Position and Movement Using Multi-Stream HMM?”,
Second  International  Symposium  on  Universal
Communication, ISUC '08, Osaka.

[10] L. Infantino et al., “A System for Sign Language Sentence
Recognition Based on Common Sense Context”, The
International Conference on Computer as a Tool,
EUROCON 2005.

[11] S. McMillan, "Upper Body Tracking Using the Polhemus
Fastrak", Naval Postgraduate School, Monterey, Technical
Report NPSCS-96-002, Jan. 1996.

[12] Ji-Hwan Kim et al., “3-D Hand Motion Tracking and
Gesture Recognition wusing a data glove”, IEEE
International Symposium on Industrial Electronics, 1SIE
2009.

[13] Z. He, “Accelerometer Based Gesture Recognition Using
Fusion Features and SVM”, Journal of software, vol. 6, pp.
1042-1049, Jun. 2011.

[14] S. Mitra, T, Acharya, "Gesture Recognition: A Survey",
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, pp. 311-324, May 2007.

[15] D. Xu, “A neural network approach for hand gesture
recognition in virtual reality driving training system of spg.”,
18" International Conference on Pattern Recognition,
ICPR 2006.

[16] G. Fang, W. Gao, “A SRN/HMM System for
Signer-independent Continuous Sign Language
Recognition”, Fifth IEEE International Conference on
Automatic Face and Gesture Recognition, Washington DC,
USA, 2002.

[17] N. Bertoldi et al., “On the creation and the annotation of a
large-scale Italian-LIS parallel corpus”, Proceedings of the
4th Workshop on the Representation and Processing of Sign
Languages: Corpora and Sign Language Technologies,
International Conference on Language Resources and
Evaluation, 2010.

[18] O. Romeo, "Dizionario dei segni - La lingua dei segni in
1400 immagini", Zanichelli, 1991.

©2014 ACADEMY PUBLISHER

2009

[19] A. Godfrey et al., “A Continuous Wavelet Transform and
Classification Method for Delirium Motoric Subtyping”,
IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 17, no. 3, JUNE 2009.

[20] E. D. Ubeyli, “ECG beats classification using multiclass
support vector machines with error correcting output codes”,
Digital Signal Processing, vol. 17, pp. 675-684, 2007.

[21] S. Soltani, "On the use of the wavelet decomposition for
time series prediction", Neurocomputing, vol. 48, pp.
267-277, 2002.

[22] M. Unser, A. Aldroubi, "A review of wavelets in biomedical
applications", Proc. IEEE 84, vol. 4, pp. 626-638, 1996.

[23] P. S. Addison, "Wavelet transforms and the ECG: a review",
Physiological Measurement, vol. 26, pp. 155-199, Aug.
2005.

[24] Vladimir N. Vapnik, “The Nature of Statistical Learning
Theory”, Springer-Verlag, New York, 1995.

[25] C. W. Hsu, C. J. Lin, “A comparison of Methods for
multiclass Support Vector Machine”, IEEE Transactions on
Neural Networks, vol. 13, 2002.

[26] A. S. Dolgopolov, "Automatic spelling correction",

Cybernetics and systems analysis, vol. 22, pp. 332-339,
May 1986.

Pietro Cavalloreceived the B.S. and M.S.
degrees in Computer Engineering from
University “Tor Vergata”, Rome, Italy in
2008 and 2011, respectively. He
collaborates with HITEG group (Health
Involved Technical Engineering Group,
www.hiteg.uniroma?2.it), of Tor Vergata
University since 2007. In 2010 he has
been an exchange student at University of
Bergen, Norway. His research interests
include Machine Learning, Human Computer Interaction, Brain
Computer Interface, Image Processing and Computer Vision.

Giovanni 'Saggio received the Dr. Eng.
degree in Electronic Engineering from
the University “Tor Vergata”, Rome,
Italy, in 1991, and the Ph.D. degree in
Microelectronic and Telecommunication
Engineering, in 1996, from the same
University. In 1991, he did his thesis in

the Nanoelectronics Research Centre,
\ | Department of Electronics and Electrical
Engineering, University of Glasgow,
Scotland, and in the Cavendish Laboratory, Department of
Physics, University of Cambridge, England. His initial research
activities covered the area of nanodevices, surface acoustic wave
devices, noise in electronic devices. He is currently a Researcher
at the University “Tor Vergata”, Rome, Italy. He teaches courses
about Electronics at the Faculty of Engineering and the Faculty
of Medicine. His current research interests are related to the
fields of biosensors, sensor’s characterization, human kinematics
measurements and brain computer interface. He has published
tens of papers on international journals and two books about
electronics. He is currently: member of Italian Space BioMedical
Society; Principal investigator W.P. DCMC Project (from Space
Italian Agency); Principal investigator of a Project regarding
Acronautics; Promoter and coordinator of the HITEG group
(Health Involved Technical Engineering Group,
www.hiteg.uniroma2.it), University “Tor Vergata”, Rome, Italy.

bl





