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Abstract—In the process of image segmentation, the classic 
Fuzzy C-Means (FCM) algorithm is time-consuming and 
depends heavily on initialization center. Based on Graphic 
Processing Unit (GPU), this paper proposes a novel FCM 
algorithm by improving the computational formulas of 
membership degree and the update criterion of cluster 
centers. Our algorithm can initialize cluster centers 
purposefully and further optimize them according to the 
analysis on the thread model of the graphic hardware. The 
compared experimental results with the classic FCM 
algorithm show that our algorithm has obvious superiority 
in improving image segmentation quality and efficiency.  
 
Index Terms—Image Segmentation, Graphic Processing 
Unit, parallel computing, Fuzzy C-Means 
 

I.  INTRODUCTION 

Image segmentation is to distinguish the different 
regions of special significance in the image. Usually, 
these regions are mutually disjoint and their 
characteristics, such as grain, texture, color etc are very 
similar. There are various image segmentation algorithms 
in the literature. They belong to different categories. 
Cheriet [1] presented a general recursive approach for 
image segmentation by extending Otsu's method, which 
succeeded in the scope of document images. Lalonde [2] 
presented a template matching approach for image 
segmentation used in low-resolution color medical 
images. Seunghwan [3] presented a region growing 
algorithm for image segmentation used in image 
restoration. Yang [4] proposed a fine edge-preserving de-
interlacing algorithm used in image scanning. LI [6] 
proposed novel PCNN (Pulse Coupled Neural Network) 
parameters automatic decision algorithm. 

The clustering is a frequently-used digital image 
segmentation technique and the FCM algorithm is one of 
the most widely used methods among others. Dunn [7] 

advocated FCM algorithm for the first time in 1973. 
Bezdek [8] spread it to the cluster analysis in 1981. The 
basic idea of FCM is to obtain the maximum value by 
iteratively optimizing objective function, and thus 
resulting in optimal clustering result [9]. However, FCM 
algorithm is sensitive to initialization center and very 
time-consuming in processing high-dimension data [10]. 
In order to overcome the first drawback, SUN [11] used 
genetic evolution method and Zhang [12] improved the 
objective function. LI [13] proposed a fast FCM by 
improving its membership function. Chen [14] proposed 
an efficient FCM based on the quad-tree. Yang [15] 
proposed an adaptive FCM clustering algorithm, which 
can solve the problem of local optimum. Liu [16] 
proposed a Gaussian kernel-based fuzzy c-means 
algorithm with spatial information, which has the better 
performance. 

These algorithms can successfully improve the 
efficiency of FCM algorithm segmentation. However, 
FCM algorithm is still difficult to meet the needs of many 
applications, especially in real-time computationally 
intensive image segmentation if they run serially on CPU.  

GPU is a parallel vector processor. It shows excellent 
performance in operating parallel data. The optimization 
of image segmentation algorithm On GPU is becoming a 
research interest in recent years. Based on GPU, Reza [17] 
and Zechner [18] have a great success in enhancing the 
segmentation speed of K-means algorithm. However, 
there is little research on enhancing the segmentation 
speed of FCM algorithm by GPU parallel computing. 

Based on NVIDIA Compute Unified Device 
Architecture (CUDA), we propose an improved FCM 
clustering algorithm. Inspired by the ideas in [12] and 
[13], we improve the calculation formulas of membership 
degree and the update criterion of cluster centers. We 
choose the GPU as computing units to design and realize 
our algorithm. The comparing results with the classic 
FCM clustering algorithm indicate that our algorithm has 
better visual effect and segmentation efficiency. 

II. FCM ALGORITHM AND ITS IMPROVEMENT 
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A. FCM Algorithm 
In the FCM algorithm, each sample can belong 

simultaneously to more than one class because of 
different degree of membership. Each class is a fuzzy 
subset of the sample set. The classification matrix 
corresponding to some classification result is called fuzzy 
classification matrix.  

Consider an image which constitutes a dataset X 
( { }nXXX ,,21, …=Χ ) that has to be clustered into c 
centers. Let iku  be the thi −  degree of membership of the 

thk −  pixel. Classification results can be expressed by a 
fuzzy membership matrix like )( ikuU = .Let ( )VUJ m ,  be 
the objective function of membership matrix U and 
cluster center matrix V ( { }cVVVV ,,, 21 "= ). Minimizing 
the value of function ( )VUJ m ,  can achieve the FCM 
clustering. The minimization process is calculated as 
follow: 

( ) ( ) ( )2

1 1
, ,

n c
m

m ik ik k i
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Where nc ≤≤2  and [ )∞+∈ ,1m . The m is the fuzzy 
weighted index. It controls the data clustering process 
degree of fuzzy. If m=1, fuzzy clustering degenerate into 
hard C-means clustering. Recommended value of m in 
[19] is [ ]5.2,5.1∈m . Usually, m = 2. 

The expression ( )ikik vxd ,2  is the distance of the thk −  
pixel to the i th−  class center. It is calculated as follow: 
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Here A is a positive definite matrix. When A is a unit 

matrix (A=I), the distance is Euclidean distance. FCM 
algorithm could be realized finally by iterating and 
optimizing the objective function repeatedly. Its perform 
steps are shown as follows: 

Step1 Initialize the cluster center 
{ }nVVVV ,,21, "=  

Step2 Calculate the membership matrix 
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Step3 Update cluster centers 
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Step4 Repeat steps 2 and 3 until the formula (4) 
converge.  

B. Improved FCM Algorithm 
In the FCM algorithm, the adjacent two iterations can 

get two cluster centers. If the distance between these two 
cluster centers is less than some threshold, we can 
determine that the FCM algorithm has converged. The 
number of the objective function can be reduced by each 
iterative operation of the algorithm. However, objective 

function ( )VUJ m ,  may have multiple extreme points. If 
the initial cluster centers are selected in the vicinity of a 
local minimum, it may cause the algorithm to converge to 
a local minimum. It means that the algorithm is sensitive 
to initial value and its classification accuracy rate is 
decreased.  

To solve these problems, we propose an improved 
FCM algorithm. Let { }nXXX ,,21, …=Χ  be a set of 
classified samples. Minimum distance threshold between 
classes is R. Cluster center initialization steps are shown 
as follows: 

Step1 Calculate the distance between any two samples 
to generate the distance matrix D. Put the nearest two 
samples into a category and let the midpoint of the two 
samples as the cluster center of the first class. 

Step2 Using the distance matrix D, find all samples 
which distance to the first cluster center greater than R. In 
these samples, classify the nearest two samples into a 
category and let the midpoint of the two samples as 
second category cluster center. 

Step3 Similarly, like step1 and step2, find two nearest 
samples in remain samples. Classify the two samples into 
a category and let the midpoint of the two samples as new 
category cluster center. 

Step4 Repeat step 3 until the category c is found. 

 
Figure 1.  Initialization of cluster centers 

In accordance with the requirements of steps 1 and 2, 
the samples should be divided into two categories. The 
selection process of initial cluster center is shown as Fig. 
1. As can be seen from Fig.1, initialization of cluster 
centers is executed in multiple areas. This method can 
make the clustering process avoid local convergence; 
thereby reduce the dependence of FCM algorithm on 
initialize cluster centers. 

As Fig.1 shown, when the cluster center of C1 is 
selected, we use the method of searching distance matrix 
D to determine whether the distance of other samples to 
the first cluster center is greater than a threshold value R. 
It need not calculate the distance of cluster center to the 
other sample points, thus avoiding a lot of Euclidean 
distance calculation and simplifying the process of cluster 
centers initialization. However, this process will result in 
some deviation, i.e. there are some samples not in any 
class. For example, the triangle samples shown in Fig.1 
are neither in C1, nor in C2. To reduce this deviation, we 
have to reduce the threshold value of R and modify the 
objective function. 

The FCM clustering process finds the optimal 
classification based on the objective function. As 
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previously mentioned, the objective function is the 
weighted square distance of all points to the 
corresponding cluster centers. It does not consider the 
mutual influence between cluster centers. This paper 
presents an objective function. It considers not only  the 
distance of data points to the cluster centers, but also the 
distance between the cluster centers, which ensure the 
tightness of data points in the same class and the 
separation of the data points in different classes, 
consequently avoiding the local optimal of the clustering 
result. The new objective function is: 
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The improvement of objective function is embodied in 

the expression
( ) ( ) ( )2
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seen as a punitive function. Equal (5) describes the 
mutual influence between the clustering centers in the 
clustering process. If 0ijη = , equal (5) will degenerate to 
equal (1). The punitive function minimizes the weighted 
square distance of each data point to the cluster center 
and maximizes the weighted square distance between the 
cluster centers simultaneously, consequently alleviating 
significantly the deviation mentioned above. 

Based on Lagrange multipliers, let   
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membership can be deduced as follows: 
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By above improvement, FCM algorithm can 
purposefully initialize cluster centers and overcome its 
side effect. Thus, FCM algorithm can be less or no longer 
sensitive to the initialization centers. However, the FCM 
is an iterative algorithm. It must calculate iku and iv  
repeatedly until converge. In the image segmentation， 
the data amount of image sample is very large. For 
example, segmenting an image of 655356 (256 * 256) 
pixel points will take a large amount of time in 
performing the FCM algorithm. 

III. FCM ALGORITHM BASED ON GPU 

A. CUDA Computing Model 
CUDA consists of two parts. One is hardware drivers 

and the other is software at different levels. It provides a 
set of interface for GPU programming. The software 
structure of CUDA is shown in Fig.2. 

 
Figure 2.  CUDA software structure 

In CUDA, GPU can be seen as a computing unit 
running many threads parallel. If the same function deals 
repeatedly with different data, it can be called by many 
different GPU threads. The compiler translates this 
function into set of instruction executed on GPU. This set 
of instruction is called objective code or Kernel. Kernel is 
executed in the form of grid and different grid executes 
different kernel. Each grid is composed of several thread 
blocks and each thread block is composed of up to 512 
threads. When the programs are initializing, the main 
program allocates the number of threads and thread 
blocks, then each thread could locate and execute data by 
its ID. 

B. Parallel Design 
FCM clustering algorithm can be divided into three 

main stages: 
 Initialize the cluster center-- select seed. 
 Calculate the membership matrix--mark data 

point. 
 Update cluster centers. 

The membership degree of pixel is obtained by the 
distance between the pixel and the clustering center. The 
processed data are different and independent each other, 
which can take advantage of the GPU parallel processing. 
Calculating new cluster center is also suitable for parallel 
processing on the GPU. 

Based on the above analysis, the task division of CPU 
and GPU is shown in Fig.3. 

 
Figure 3. Task division of CPU and GPU 

As shown in Fig.3, CUDA realization is divided into 
two parts. One is to initialize the cluster center and the 
other is to calculate the membership matrix and update 
cluster centers. Initializing clustering center is arranged to 
CPU side due to its small amount of computation. 
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Calculating the membership matrix and updating cluster 
centers are arranged to GPU side due to their large 
amount of computation. A module corresponds to a 
Kernel. This design can take full advantage of the CUDA 
platform's characteristics to deal with intensive data and 
reduce the running time of the application program, 
consequently improve program performance. 

C. Parallel Implementation 
According to the parallel design, the perform steps of 

our algorithm are shown as follows: 
Step1 Initialize the cluster centers on CPU. Then, load 

the data to GPU. 
Step2 Set the number of thread blocks using the width 

of the image matrix. 
Step3 Set the thread numbers for each thread block. 

Usually, the thread number within a block is 64. 
Step4 Run the Kernel and calculate pixel membership. 
Step5 Set a thread block, its thread number is the 

number of clusters. 
Step6 Run the Kernel and parallel compute the new 

cluster centers. 
Step7 Compare the difference of membership matrix to 

determine whether it is less than a specified 
value. If the difference of matrix is greater than 
or equal to the specified value, turn to step2, or 
else perform the next step. 

Step8 Set the number of thread blocks using the width 
of the image matrix. 

Step9 Set the thread numbers for ach thread block. 
Step10 Run the Kernel; classify the pixels to the 

corresponding category and display. 
The steps above are shown as Fig.4. 

 
Figure 4. Flowcharts of Our algorithm 

D. Problem 
Typically, the adjacent pixels of the image are 

associated. This is the basis of image segmentation. 
However, it will cause great conflicts. As shown in Fig.5, 
we update the cluster centers using CUDA atomic 
operations. We can deal with an image including M * N 
pixels using N threads. Each thread can deal M pixels. It 
need determine the attributive cluster center of a pixel. 
However, when multiple pixels are correlated, the 
adjacent thread will update the same center. This will 
cause access conflict to the cluster center. The more the 
number of the cluster center is, the more frequently the 
conflict is. 

 
Figure 5.  Concurrency conflicts on updating cluster centers 

E. Solution 
To solve this problem, we allocate an array for each 

thread using global memory. Each thread will execute an 
operation of partial update cluster center. The numbers of 
thread are gradually decreasing in the updating process. 
As shown Fig.6, updating process finish when number of 
thread is only one. Because different block can not 
communicate with each other, it's necessary to reorganize 
the data to fewer blocks unless only one block remained. 
The advantage of doing so is that the conflicts described 
above can be eliminated. Furthermore, it is not necessary 
to care about the distribution of data. 

 
Figure 6.  Operating of reduce threads on updating cluster centers 

The update operation of cluster centers should be done 
in the global memory. However, there are hundreds of 
clock cycles needed to access global memory. In order to 
avoid unsynchronized global memory access, the shared 
memory should be used as much as possible. When the 
shared memory is not enough, the global memory can be 
used. In this case, operation times to shared memory can 
be reduced. 

IV. EXPERIMENTAL RESULTS 
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We test our algorithm on numerous outdoor and indoor 
images. Four of them are chosen to visualize the 
performance of our algorithm. These images are called 
Sweet (the size is 101KB; the dimensions are 680 * 660 
pixels), Panda (the size is 60KB; the dimensions are 512 
* 420 pixels), Bird (the size is 39KB; the dimensions are 
256 * 256 pixels), Tiantan (the size is 53KB; the 
dimensions are 555 * 434 pixels), as shown in Fig.7 (a) to 
(d) respectively.  

 
(a)                          (e)                          (i)  

 
(b)                          (f)                            (j) 

 
(c)                           (g)                           (k) 

 
(d)                           (h)                          (l) 
Figure 7.  Experimental results of two algorithms 

In order to further prove the performance of our 
algorithm, the classic FCM algorithm is used as a 
comparison. They have the same experimental 
environment and parameters. Operating system is 
Microsoft Windows 7; Memory capacity is 8GB; CPU is 
Intel Core 2 Duo P8600@2.40GHz;GPU is NVIDIA 
GTX260 with 192 Stream Processors inside. The fuzzy 
weighted index m is set to 2，the convergence precision 
is set to 0.00001, the positive definite matrix A=I and the 
number of clusters is set to 8. For our algorithm, the 
threshold R is set to 20. The experimental results of FCM 
algorithm are shown in Fig.7 (e) to (h) respectively. The 
experimental results of our algorithm are shown in Fig.7 
(i) to (l) respectively. Significant changes on the images 
are highlighted with arrows. 

The classic FCM failed in maintaining the size and the 
shape of the girl’s hair tips and the background leave 
while our algorithm succeeded (as shown in Fig.7 (e) and 
(i)). At the girl's lips and shoulder, our algorithm has 
more detailed segmentation effects than the classic FCM. 
For the image Panda, our algorithm has more detailed 
segmentation effects than the classic FCM at the head and 
cheeks. For the image Bird, our algorithm has more 
detailed segmentation effects than the classic FCM at the 

chest feathers, although the classic not so obvious. For 
the image Tiantan, our algorithm has more detailed 
segmentation effects than FCM at the background sky.     

The execute time of two algorithms are tabulated in 
Table I. 

For all four images, it takes much less time to 
performing our clustering algorithm than the classic FCM 
algorithm. For each image, the processing speed of our 
algorithm is at least 10 times faster than the classic FCM 
algorithm. We can roughly get similar result when testing 
the other images.  

V. CONCLUSION 

As an intuitive and easily realized clustering algorithm 
used in image segmentation, FCM can obtain good 
segmentation results. However, FCM algorithm depends 
heavily on initialization center. It is also very time-
consuming. These drawbacks limit its application in 
many fields. Our study proposes an improved FCM 
algorithm based on GPU parallel computing. In our study, 
we improve the formulas of classic FCM algorithm by 
modifying the calculation formulas of membership 
degree and the update criterion of cluster centers. We 
further optimize this algorithm based on the parallel 
computing model and the parallel analysis of the graphic 
hardware. It is experimentally shown that our FCM 
algorithm can not only obtain more detailed segmentation 
effects, but also decrease a large amount of segmentation 
time. 
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TABLE I.   
EXECUTE TIME OF TWO ALGORITHMS(IN SECONDS) 

Images 
Algorithms 

FCM algorithm Our algorithm 
Sweet (s) 84.99 7.85 

Panda (s) 68.94 6.23 

Bird (s) 32.67 3.21 

Tiantan (s) 38.98 3.76 
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