
An Improved Image Segmentation Algorithm
Based on GPU Parallel Computing

Haiyang Li
 College of Mathematics & Computer Science, Mianyang Normal University, Sichuan Province, P.R.China

Email: lhy1301@126.com

Zhaofeng Yang and Hongzhou He
School of Software Engineering, Pingdingshan University, Henan Province, P.R.China

College of Mathematics & Computer Science, Mianyang Normal University, Sichuan Province, P.R.China
Email: pdsncyiyang@163.com, zmoonmoonlhm@aliyun.com

Abstract—In the process of image segmentation, the classic
Fuzzy C-Means (FCM) algorithm is time-consuming and
depends heavily on initialization center. Based on Graphic
Processing Unit (GPU), this paper proposes a novel FCM
algorithm by improving the computational formulas of
membership degree and the update criterion of cluster
centers. Our algorithm can initialize cluster centers
purposefully and further optimize them according to the
analysis on the thread model of the graphic hardware. The
compared experimental results with the classic FCM
algorithm show that our algorithm has obvious superiority
in improving image segmentation quality and efficiency.

Index Terms—Image Segmentation, Graphic Processing
Unit, parallel computing, Fuzzy C-Means

I. INTRODUCTION

Image segmentation is to distinguish the different
regions of special significance in the image. Usually,
these regions are mutually disjoint and their
characteristics, such as grain, texture, color etc are very
similar. There are various image segmentation algorithms
in the literature. They belong to different categories.
Cheriet [1] presented a general recursive approach for
image segmentation by extending Otsu's method, which
succeeded in the scope of document images. Lalonde [2]
presented a template matching approach for image
segmentation used in low-resolution color medical
images. Seunghwan [3] presented a region growing
algorithm for image segmentation used in image
restoration. Yang [4] proposed a fine edge-preserving de-
interlacing algorithm used in image scanning. LI [6]
proposed novel PCNN (Pulse Coupled Neural Network)
parameters automatic decision algorithm.

The clustering is a frequently-used digital image
segmentation technique and the FCM algorithm is one of
the most widely used methods among others. Dunn [7]

advocated FCM algorithm for the first time in 1973.
Bezdek [8] spread it to the cluster analysis in 1981. The
basic idea of FCM is to obtain the maximum value by
iteratively optimizing objective function, and thus
resulting in optimal clustering result [9]. However, FCM
algorithm is sensitive to initialization center and very
time-consuming in processing high-dimension data [10].
In order to overcome the first drawback, SUN [11] used
genetic evolution method and Zhang [12] improved the
objective function. LI [13] proposed a fast FCM by
improving its membership function. Chen [14] proposed
an efficient FCM based on the quad-tree. Yang [15]
proposed an adaptive FCM clustering algorithm, which
can solve the problem of local optimum. Liu [16]
proposed a Gaussian kernel-based fuzzy c-means
algorithm with spatial information, which has the better
performance.

These algorithms can successfully improve the
efficiency of FCM algorithm segmentation. However,
FCM algorithm is still difficult to meet the needs of many
applications, especially in real-time computationally
intensive image segmentation if they run serially on CPU.

GPU is a parallel vector processor. It shows excellent
performance in operating parallel data. The optimization
of image segmentation algorithm On GPU is becoming a
research interest in recent years. Based on GPU, Reza [17]
and Zechner [18] have a great success in enhancing the
segmentation speed of K-means algorithm. However,
there is little research on enhancing the segmentation
speed of FCM algorithm by GPU parallel computing.

Based on NVIDIA Compute Unified Device
Architecture (CUDA), we propose an improved FCM
clustering algorithm. Inspired by the ideas in [12] and
[13], we improve the calculation formulas of membership
degree and the update criterion of cluster centers. We
choose the GPU as computing units to design and realize
our algorithm. The comparing results with the classic
FCM clustering algorithm indicate that our algorithm has
better visual effect and segmentation efficiency.

II. FCM ALGORITHM AND ITS IMPROVEMENT

This work was supported by Science & Technology Department of
Sichuan Province and Mianyang Normal University, China under Grant
No. 2012JYZ013 and No. 2013A12.

Corresponding author: Zhaofeng Yang

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 1985

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.1985-1990

A. FCM Algorithm
In the FCM algorithm, each sample can belong

simultaneously to more than one class because of
different degree of membership. Each class is a fuzzy
subset of the sample set. The classification matrix
corresponding to some classification result is called fuzzy
classification matrix.

Consider an image which constitutes a dataset X
({ }nXXX ,,21, …=Χ) that has to be clustered into c
centers. Let iku be the thi − degree of membership of the

thk − pixel. Classification results can be expressed by a
fuzzy membership matrix like)(ikuU = .Let ()VUJ m , be
the objective function of membership matrix U and
cluster center matrix V ({ }cVVVV ,,, 21 "=). Minimizing
the value of function ()VUJ m , can achieve the FCM
clustering. The minimization process is calculated as
follow:

() () ()2

1 1
, ,

n c
m

m ik ik k i
k i

J U V u d x v
= =

= ∑∑ (1)

Where nc ≤≤2 and [)∞+∈ ,1m . The m is the fuzzy
weighted index. It controls the data clustering process
degree of fuzzy. If m=1, fuzzy clustering degenerate into
hard C-means clustering. Recommended value of m in
[19] is []5.2,5.1∈m . Usually, m = 2.

The expression ()ikik vxd ,2 is the distance of the thk −
pixel to the i th− class center. It is calculated as follow:

() () ()ik
T

ikAikikik vxAvxvxvxd −−== 22 ,, (2)
Here A is a positive definite matrix. When A is a unit

matrix (A=I), the distance is Euclidean distance. FCM
algorithm could be realized finally by iterating and
optimizing the objective function repeatedly. Its perform
steps are shown as follows:

Step1 Initialize the cluster center
{ }nVVVV ,,21, "=

Step2 Calculate the membership matrix

() ()
() nk

vxd
vxd

ik
c

j

m

jkjk
ikik

u ,,2,1,

,
,

1

1

12 "=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∑
=

− (3)

Step3 Update cluster centers

()

()
ci

u

xu

v
c

k

m
ik

c

k
k

m
ik

i ,,2,1,

1

1 "==

∑

∑

=

= (4)

Step4 Repeat steps 2 and 3 until the formula (4)
converge.

B. Improved FCM Algorithm
In the FCM algorithm, the adjacent two iterations can

get two cluster centers. If the distance between these two
cluster centers is less than some threshold, we can
determine that the FCM algorithm has converged. The
number of the objective function can be reduced by each
iterative operation of the algorithm. However, objective

function ()VUJ m , may have multiple extreme points. If
the initial cluster centers are selected in the vicinity of a
local minimum, it may cause the algorithm to converge to
a local minimum. It means that the algorithm is sensitive
to initial value and its classification accuracy rate is
decreased.

To solve these problems, we propose an improved
FCM algorithm. Let { }nXXX ,,21, …=Χ be a set of
classified samples. Minimum distance threshold between
classes is R. Cluster center initialization steps are shown
as follows:

Step1 Calculate the distance between any two samples
to generate the distance matrix D. Put the nearest two
samples into a category and let the midpoint of the two
samples as the cluster center of the first class.

Step2 Using the distance matrix D, find all samples
which distance to the first cluster center greater than R. In
these samples, classify the nearest two samples into a
category and let the midpoint of the two samples as
second category cluster center.

Step3 Similarly, like step1 and step2, find two nearest
samples in remain samples. Classify the two samples into
a category and let the midpoint of the two samples as new
category cluster center.

Step4 Repeat step 3 until the category c is found.

Figure 1. Initialization of cluster centers

In accordance with the requirements of steps 1 and 2,
the samples should be divided into two categories. The
selection process of initial cluster center is shown as Fig.
1. As can be seen from Fig.1, initialization of cluster
centers is executed in multiple areas. This method can
make the clustering process avoid local convergence;
thereby reduce the dependence of FCM algorithm on
initialize cluster centers.

As Fig.1 shown, when the cluster center of C1 is
selected, we use the method of searching distance matrix
D to determine whether the distance of other samples to
the first cluster center is greater than a threshold value R.
It need not calculate the distance of cluster center to the
other sample points, thus avoiding a lot of Euclidean
distance calculation and simplifying the process of cluster
centers initialization. However, this process will result in
some deviation, i.e. there are some samples not in any
class. For example, the triangle samples shown in Fig.1
are neither in C1, nor in C2. To reduce this deviation, we
have to reduce the threshold value of R and modify the
objective function.

The FCM clustering process finds the optimal
classification based on the objective function. As

1986 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

previously mentioned, the objective function is the
weighted square distance of all points to the
corresponding cluster centers. It does not consider the
mutual influence between cluster centers. This paper
presents an objective function. It considers not only the
distance of data points to the cluster centers, but also the
distance between the cluster centers, which ensure the
tightness of data points in the same class and the
separation of the data points in different classes,
consequently avoiding the local optimal of the clustering
result. The new objective function is:

() () ()

() () ()

2

1 1

2

1

, , ,

1
1

n c
m

m ik ik k i
k i

c c m

ij jk i j
i j

J U V u d x v

d v v
c c

η

η

= =

=

= −

−
−

∑∑

∑∑
 (5)

() (){ }
(){ }

min , ,
, ,

max ,
ik i k jm j m

ij
mn m n

d v v d v v
m n c

d v v
η

−
= ∈ (6)

The improvement of objective function is embodied in

the expression
() () ()2

1

1
1

c c m

ij jk i j
i j

d v v
c c

η
=

−
− ∑∑ . It can be

seen as a punitive function. Equal (5) describes the
mutual influence between the clustering centers in the
clustering process. If 0ijη = , equal (5) will degenerate to
equal (1). The punitive function minimizes the weighted
square distance of each data point to the cluster center
and maximizes the weighted square distance between the
cluster centers simultaneously, consequently alleviating
significantly the deviation mentioned above.

Based on Lagrange multipliers, let

0
),(
),,(
=

∂
∂

VUJ
VUJ

m

m η
, the updating formula of

membership can be deduced as follows:

() ()
() nk

vxd
vxd

ik
c

j

m

jkjk
ikik

u ,,2,1,

,
,

1

1

12 "=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∑
=

− (7)

() () ()

() () ()
ci

cc
u

v
cc

xu

v
n

k

c

k

m
ij

m
ik

c

k
k

m
ij

n

k
k

m
ik

i ,,2,1,

1
1

1
1

1 1

11 "=

−
−

−
−

=

∑ ∑

∑∑

= =

==

η

η

 (8)

By above improvement, FCM algorithm can
purposefully initialize cluster centers and overcome its
side effect. Thus, FCM algorithm can be less or no longer
sensitive to the initialization centers. However, the FCM
is an iterative algorithm. It must calculate iku and iv
repeatedly until converge. In the image segmentation，
the data amount of image sample is very large. For
example, segmenting an image of 655356 (256 * 256)
pixel points will take a large amount of time in
performing the FCM algorithm.

III. FCM ALGORITHM BASED ON GPU

A. CUDA Computing Model
CUDA consists of two parts. One is hardware drivers

and the other is software at different levels. It provides a
set of interface for GPU programming. The software
structure of CUDA is shown in Fig.2.

Figure 2. CUDA software structure

In CUDA, GPU can be seen as a computing unit
running many threads parallel. If the same function deals
repeatedly with different data, it can be called by many
different GPU threads. The compiler translates this
function into set of instruction executed on GPU. This set
of instruction is called objective code or Kernel. Kernel is
executed in the form of grid and different grid executes
different kernel. Each grid is composed of several thread
blocks and each thread block is composed of up to 512
threads. When the programs are initializing, the main
program allocates the number of threads and thread
blocks, then each thread could locate and execute data by
its ID.

B. Parallel Design
FCM clustering algorithm can be divided into three

main stages:
 Initialize the cluster center-- select seed.
 Calculate the membership matrix--mark data

point.
 Update cluster centers.

The membership degree of pixel is obtained by the
distance between the pixel and the clustering center. The
processed data are different and independent each other,
which can take advantage of the GPU parallel processing.
Calculating new cluster center is also suitable for parallel
processing on the GPU.

Based on the above analysis, the task division of CPU
and GPU is shown in Fig.3.

Figure 3. Task division of CPU and GPU

As shown in Fig.3, CUDA realization is divided into
two parts. One is to initialize the cluster center and the
other is to calculate the membership matrix and update
cluster centers. Initializing clustering center is arranged to
CPU side due to its small amount of computation.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 1987

© 2014 ACADEMY PUBLISHER

Calculating the membership matrix and updating cluster
centers are arranged to GPU side due to their large
amount of computation. A module corresponds to a
Kernel. This design can take full advantage of the CUDA
platform's characteristics to deal with intensive data and
reduce the running time of the application program,
consequently improve program performance.

C. Parallel Implementation
According to the parallel design, the perform steps of

our algorithm are shown as follows:
Step1 Initialize the cluster centers on CPU. Then, load

the data to GPU.
Step2 Set the number of thread blocks using the width

of the image matrix.
Step3 Set the thread numbers for each thread block.

Usually, the thread number within a block is 64.
Step4 Run the Kernel and calculate pixel membership.
Step5 Set a thread block, its thread number is the

number of clusters.
Step6 Run the Kernel and parallel compute the new

cluster centers.
Step7 Compare the difference of membership matrix to

determine whether it is less than a specified
value. If the difference of matrix is greater than
or equal to the specified value, turn to step2, or
else perform the next step.

Step8 Set the number of thread blocks using the width
of the image matrix.

Step9 Set the thread numbers for ach thread block.
Step10 Run the Kernel; classify the pixels to the

corresponding category and display.
The steps above are shown as Fig.4.

Figure 4. Flowcharts of Our algorithm

D. Problem
Typically, the adjacent pixels of the image are

associated. This is the basis of image segmentation.
However, it will cause great conflicts. As shown in Fig.5,
we update the cluster centers using CUDA atomic
operations. We can deal with an image including M * N
pixels using N threads. Each thread can deal M pixels. It
need determine the attributive cluster center of a pixel.
However, when multiple pixels are correlated, the
adjacent thread will update the same center. This will
cause access conflict to the cluster center. The more the
number of the cluster center is, the more frequently the
conflict is.

Figure 5. Concurrency conflicts on updating cluster centers

E. Solution
To solve this problem, we allocate an array for each

thread using global memory. Each thread will execute an
operation of partial update cluster center. The numbers of
thread are gradually decreasing in the updating process.
As shown Fig.6, updating process finish when number of
thread is only one. Because different block can not
communicate with each other, it's necessary to reorganize
the data to fewer blocks unless only one block remained.
The advantage of doing so is that the conflicts described
above can be eliminated. Furthermore, it is not necessary
to care about the distribution of data.

Figure 6. Operating of reduce threads on updating cluster centers

The update operation of cluster centers should be done
in the global memory. However, there are hundreds of
clock cycles needed to access global memory. In order to
avoid unsynchronized global memory access, the shared
memory should be used as much as possible. When the
shared memory is not enough, the global memory can be
used. In this case, operation times to shared memory can
be reduced.

IV. EXPERIMENTAL RESULTS

1988 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

We test our algorithm on numerous outdoor and indoor
images. Four of them are chosen to visualize the
performance of our algorithm. These images are called
Sweet (the size is 101KB; the dimensions are 680 * 660
pixels), Panda (the size is 60KB; the dimensions are 512
* 420 pixels), Bird (the size is 39KB; the dimensions are
256 * 256 pixels), Tiantan (the size is 53KB; the
dimensions are 555 * 434 pixels), as shown in Fig.7 (a) to
(d) respectively.

(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)
Figure 7. Experimental results of two algorithms

In order to further prove the performance of our
algorithm, the classic FCM algorithm is used as a
comparison. They have the same experimental
environment and parameters. Operating system is
Microsoft Windows 7; Memory capacity is 8GB; CPU is
Intel Core 2 Duo P8600@2.40GHz;GPU is NVIDIA
GTX260 with 192 Stream Processors inside. The fuzzy
weighted index m is set to 2，the convergence precision
is set to 0.00001, the positive definite matrix A=I and the
number of clusters is set to 8. For our algorithm, the
threshold R is set to 20. The experimental results of FCM
algorithm are shown in Fig.7 (e) to (h) respectively. The
experimental results of our algorithm are shown in Fig.7
(i) to (l) respectively. Significant changes on the images
are highlighted with arrows.

The classic FCM failed in maintaining the size and the
shape of the girl’s hair tips and the background leave
while our algorithm succeeded (as shown in Fig.7 (e) and
(i)). At the girl's lips and shoulder, our algorithm has
more detailed segmentation effects than the classic FCM.
For the image Panda, our algorithm has more detailed
segmentation effects than the classic FCM at the head and
cheeks. For the image Bird, our algorithm has more
detailed segmentation effects than the classic FCM at the

chest feathers, although the classic not so obvious. For
the image Tiantan, our algorithm has more detailed
segmentation effects than FCM at the background sky.

The execute time of two algorithms are tabulated in
Table I.

For all four images, it takes much less time to
performing our clustering algorithm than the classic FCM
algorithm. For each image, the processing speed of our
algorithm is at least 10 times faster than the classic FCM
algorithm. We can roughly get similar result when testing
the other images.

V. CONCLUSION

As an intuitive and easily realized clustering algorithm
used in image segmentation, FCM can obtain good
segmentation results. However, FCM algorithm depends
heavily on initialization center. It is also very time-
consuming. These drawbacks limit its application in
many fields. Our study proposes an improved FCM
algorithm based on GPU parallel computing. In our study,
we improve the formulas of classic FCM algorithm by
modifying the calculation formulas of membership
degree and the update criterion of cluster centers. We
further optimize this algorithm based on the parallel
computing model and the parallel analysis of the graphic
hardware. It is experimentally shown that our FCM
algorithm can not only obtain more detailed segmentation
effects, but also decrease a large amount of segmentation
time.

ACKNOWLEDGMENT

This research was sponsored by Science & Technology
Department of Sichuan Province and Mianyang Normal
University, China under Grant No. 2012JYZ013 and No.
2013A12.

REFERENCES

[1] M. Cheriet, J. N. Said, and C. Y. Suen, “A recursive
thresholding technique for image segmentation,” IEEE
Transactions on Image Processing, vol. 7,no. 6, pp. 918-
921, 1998.

[2] M. Lalonde, M. Beaulieu, and L. Gagnon, “Fast and robust
optic disc detection using pyramidal decomposition and
Hausdorff-based template matching,” IEEE Transactions
on Medical Imaging, vol. 21, no. 11, pp.1193-1200, 2001.

[3] Y. Seunghwan, and P. Rae-Hong, “Red-eye detection and
correction using inpainting in digital photographs,” IEEE

TABLE I.
EXECUTE TIME OF TWO ALGORITHMS(IN SECONDS)

Images
Algorithms

FCM algorithm Our algorithm
Sweet (s) 84.99 7.85

Panda (s) 68.94 6.23

Bird (s) 32.67 3.21

Tiantan (s) 38.98 3.76

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 1989

© 2014 ACADEMY PUBLISHER

