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Figure 2.  Real-time design model 

Timing verification activities, at the design level, aim 
to verify whether the different tasks complete their 
executions within the time limit specified by the real-time 
application i.e. the deadline. This verification requires an 
abstraction of the underlying platform. To this end, at the 
design level, execution nodes and communication media 
are supposed to be known. In this paper, we consider only 
single-processor systems. In addition, software 
assumptions related to the target RTOS such as 
scheduling policy, priority order, etc. are implicitly 
considered in order to keep RTOS-independence at this 
level. There is indeed a wide variety of RTOSs [4]; some 
are compliant to a specific standard (e.g. POSIX [5], 
OSEK [6]), some are commercial or free. These RTOSs 
share common concepts but with specific features. From 
these considerations, the different software assumptions 
considered at the design level for the timing verification 
may be not supported by the target RTOS. In that case, 
the design model is said to be not “implementable” on 
that RTOS, and a new “implementable” RTOS-specific 
design model shall be found by the designer. This time 
consuming approach has several drawbacks among which 
we can mention the portability of the new design model. 

To tackle this issue, we focus in this paper on an 
automatic refactoring of the design model when a 
deployment problem appears. This refactoring is based on 
a set of software patterns. Each pattern defines a way to 
change the original design model with the aim to solve 
the deployment problem. The resulting model after 
applying a pattern must guarantee two points: (1) 
portability i.e. still independent from the target RTOS, (2) 
the respect of timing properties. In the present paper, we 
deal with two examples of patterns; Equal Priority Merge 
Pattern (EPMP) and Distinct Priority Merge Pattern 
(DPMP). For each pattern, we explain the corresponding 
deployment problem and we describe the proposed 
solution. 

The remainder of this paper is organized as follows. 
Section 2 presents some related works. In section 3, we 
introduce the timing verification at the design level and 
we give an overview of a model-driven approach for 
design refinement (toward implementation); we focus 
especially on the refactoring phase. Sections 4 and 5 
detail respectively Equal Priority merge Pattern (EPMP) 
and Distinct Priority Merge Pattern (DPMP). In section 6, 
we show the application of the refactoring phase and the 
described patterns on a robotic case study. Finally, 
section 7 concludes the paper and gives some future 
perspectives. 

II.  RELATED WORK 

In the context of the software development of real-time 
embedded systems, several works have been proposed 
with the aim to ensure the respect of timing properties. In 
[7], the author extends the RT-UML profile to support the 
creation and validation of OSEK-compliant models .In 
[8], the authors use OSEK-compliant abstract platforms 
called SmartOSEK [9] and define a set of transformation 
rules to create OSEK-compliant models from UML 
models. In addition, this approach enables the simulation 
of the resulting OSEK-compliant models and provides the 
designer with the results to optimize this model at design 
level. In [10], the authors use RT-UML to annotate UML 
models describing real-time applications with timing 
properties. Then they identify the mapping rules between 
the resulting model and RT-Java as a target platform. The 
objective of this work is to properly propagate the real-
time constraints into the RT-java [11] specific model in 
order to validate them. These approaches focus especially 
on real-time aspects without addressing the portability 
issue which is less convenient when several RTOS are 
targeted. 

To address portability requirement, some exiting 
approaches follow the lines of the MDA approach [2] by 
performing timing verification at the design level. Indeed, 
these approaches aim at verifying a real-time application 
before its deployment on the RTOS i.e. timing 
verification of RTOS-independent models. In order to 
enable such verification, these approaches consider in 
general some software assumptions related to the 
underlying RTOS. Indeed, in [12], the authors provide an 
approach to automatically generate the architectural 
model from the functional blocks. The focus of this work 
is to automate this generation and ensure optimized 
architectural models in terms of timing properties while 
assuming Earliest Deadline First (EDF) scheduling 
strategy [13]. In [14] authors propose a MARTE-based 
[15] methodology by introducing analysis from the 
functional level to guide the generation of a valid design 
model in terms of timing requirements. For this 
achievement, this work assumes that the underlying 
RTOS provides a fixed-priority scheduling policy [16]. 
The main objective of these approaches is to produce a 
description of a real-time application which guarantee the 
respect of its timing properties and still independent from 
a particular RTOS. However, for that purpose, they 
consider in general an ideal RTOS without any attention 
to the deployment problems which may occur due to the 
implementation constraints and consequently may affect 
the timing properties already verified at the design level. 
Hence, our approach aims at extending the methodology 
presented in [14] by focusing on the refinement toward 
implementation of the resulting design model. This work 
is a step toward providing portability and separation of 
concerns from one side and early verification of timing 
properties from the other side during the deployment 
process of a real-time application on a several RTOSs. 

III. REAL-TIME DESIGN MODEL REFINEMENT TOWARD 
IMPLEMENTATION  
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In this section, we firstly give some real-time concepts 
related to timing verification at the design level. Then, we 
introduce the pattern-based refactoring phase by giving 
an overview of the model-based approach proposed to 
guide the refinement of the real-time design model to a 
RTOS-specific implementation model.  

A. Timing Verification at the Design Level  
The real-time design model consists of m periodic 

tasks that we denote by Mୟ ൌ ሼTଵ, Tଶ, … , T୫ሽ	running in a 
single-processor system. Each task T୧ is defined by a set 
of parameters deducted from the specification model and 
the architectural choices enabling thus the timing 
verification. Indeed, a task T୧  is characterized by its 
worst-case execution time		c୧, its activation period P୧ and 
its deadline D୧	that represents the time limit in which a 
task must complete its execution.  

The software assumptions considered at the design 
level to enable timing verification strongly depends on 
the type of analysis to perform. In this paper, we are 
interested in the Rate-Monotonic (RM) response time 
analysis [17]. Thus, we assume that a fixed-priority 
strategy is used to schedule the different tasks. 
Consequently, a task T୧  is also characterized by its 
priority 	p୧ . Besides, we suppose that 0 is the lowest 
priority level and that tasks may share the same priority 
level.  

 The architectural model may consist also of a set of 
software resources R ൌ ሼRଵ, Rଶ, … , R୪ሽ that can be shared 
between one or several tasks (e.g. a mutex to access a 
critical section). We denote cୖ౟,୘ౠthe worst-case duration 
for the task T୨  to acquire and release the lock of the 
resource R୧ in case of no contention. Let us remark that cୖ౟,୘ౠ is considered as an input and that	cୖ౟,୘ౠ 	൑ 	 c୨. Due 
to the presence of shared resources, a task is also 
characterized by a blocking time	B୧. The blocking time 
accounts for the time a higher-priority task has to wait, 
before acquiring the lock, since a lower-priority task 
owns this lock. The computation of this term depends on 
the synchronization protocol (e.g. Priority Ceiling 
Protocol PCP [18], Priority Inheritance Protocol (PIP) 
[19]) used to implement the access to the shared resource. 
The choice of which synchronization protocol will be 
used in the design model corresponds to one of the 
software assumptions, at this level, and has a direct 
impact on the timing analysis results. Indeed, if the 
Priority Ceiling protocol (PCP) [18] is used as a 
synchronization protocol to avoid unbounded priority 
inversion and mutual deadlock due to wrong nesting of 
critical sections, the expression just below will be used to 
compute the blocking time :  B୧ ൌ 	max୘ౠ∈	ୌ୔౟,ୖౡ∈ୖ ቄCୖౡ,୘ౠ:	p୨ ൏ p୧	and	π୩ ൒ p୧ቅ    (1)                                             

In this protocol each resource R୧ is assigned a priority 
ceiling		π୧, which is a priority equal to the highest priority 
of any task which may lock the resource.  

 The analysis results correspond to the computation of 
the processor utilization U and the response time Rep୧	of 
the different tasks in the model. The model satisfies its 
timing constraints if and only if U ൑ 1  and 	∀	i	 ∈

ሼ1. . mሽ, Rep୧ 	൑ 	D୧. The expressions used to compute U 
and Rep୧ are given just below, where HP୧ represents the 
set of tasks with priority higher than	T୧ . 
 

                              U ൌ 	∑ ୡ౟୔౟୘౟	∈	୑౗                                 (2)                         

 

               	Rep୧ ൌ 	C୧ ൅ B୧ ൅ ∑ ඃR୧ T୨⁄ ඇ	C୨୨	∈	ୌ୔౟            (3)                        

 
Figure 3 shows an example of execution of two 

periodic tasks ( 	T୧  and 	T୨ ) sharing the resource R 
implemented using the PCP protocol.  

 

 
Figure 3.  Real-Time Concepts 

The priority ceiling of R is equal to the priority of 	T୧  
as it is the highest. Up-raising arrows represent the 
instants of tasks activation, for their part, down-raising 
arrows determine the deadline for each task activation. 
The response time to activation is defined as the time 
between the activation and the completion instants. We 
also show the blocking time B୧	of the task 	T୧  resulting 
from the utilization of R byT୨ . In addition, each task 
implements a set of functions that we denote by f	 ∈F	such	as	card(fሻ ൒ 1 such as F is the set of applicative 
functions defined in the specification model. 

B. Overview of the Proposed Approach  
The purpose of the proposed model-based approach is 

to guide the refinement of the real- time design model to 
a RTOS-specific model.  As depicted on Figure 4, this 
approach is based on the definition of two types of 
platforms; the abstract platform used at the design level 
for the timing validation and the concrete platform which 
corresponds to the RTOS. Each platform is represented 
by its model. The abstract platform model explicitly 
describes the different software assumptions considered 
to enable the timing verification of the real-time design 
model. However, the RTOS model describes the software 
resources provided by the RTOS to enable the execution 
of the real-time application. One objective of this 
approach is the generation of implementation models 
from a RTOS-independent design model satisfying the 
timing requirements of the application. This generation is 
performed when no deployment problems are raised. It 
must also ensures that the resulting model i.e. RTOS-
specific implementation (ܯ௜௠௣௟ሻ  model still meet the 
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Output: 
Verdict 	ܵ ൌ ሼܧ,ܰܲሽ ; E:		Error	, NP: 	No Problem 
Notations: ݊ Number of distinct priority levels used at the design model  ܾܰݏ݈݁ݒ݁ܮ_ݎெು಴ : Number of distinct priority levels authorized 
by the RTOS  
N: the number of distinct priority levels allowed for the 
application  
Begin  
ெೌݏ݈݁ݒ݁ܮ_ݎܾܰ       getNumberPriorityLevel (ܯ௔)  
ெು಴ݏ݈݁ݒ݁ܮ_ݎܾܰ     getNumberPriorityLevel(ܯ௉஼)  
    N =     ܾܰݏ݈݁ݒ݁ܮ_ݎெು಴  
    if ( Ext_degree! = null) Then  
             N= Ext_degree 
        if    ( (ܾܰݏ݈݁ݒ݁ܮ_ݎெೌ   <	ܰ Then 
            S = NP  
         else 
               S = E 
 
      Return S 
End 

This algorithm generates an error when the number of 
distinct priority levels used in the design model Mୟ	 is 
higher than the number allowed for the considered 
application (i.e. n ൒ Nሻ. Indeed, this situation may occur 
in two cases: 

(1) large scale applications i.e. n is too large with 
regard to the number allowed by the RTOS  

(2) extensibility requirement i.e. the designer limits 
the number of distinct priority levels allowed for 
the considered application (Ext_degree in 
algorithm 3) to enable the possibility to integrate 
additional applications (or functions) on the 
same platform. 

The number of distinct priority levels allowed by the 
RTOS (Nbr_Levels୑ౌి in algorithm 3) is described in its 
model. In fact, this number is derived from the maximum 
and the minimum priority levels allowed by the RTOS. 
For instance, in Figure 5, these two parameters are 
represented respectively by maxPriorityLevel and 
minPriorityLevel properties of the class MicroC_Task.  

B.  Solution Description  
Let us consider an original design model Mୟ ൌሼTଵ, Tଶ, … , T୫ሽ  defining m tasks and n distinct priority 

levels (n	 ൑ mሻ. In order to reduce n to be equal to N, this 
pattern merges the tasks having:   

• distinct priority levels  
• harmonic rates (i.e. two tasks 	T୧  and 	T୨	 are 

harmonic if and only if P୨	mod	P୧ ൌ 0	 and P୨ 	൒ 	P୧    in order to preserve the high level 
specification (i.e. functions rates) 

Let us consider also two tasks	T୧, T୨ 		∈ Mୟ , each task 
is defined by a set of parameters; T୧ ൌ (p୧, C୧, P୧, D୧, B୧ሻ 
and T୨ ൌ (p୨, C୨, P୨, D୨, B୨ሻ  such as	p୧ 	് 	p୨ and 

P୨ P୧൘  = q; 

q is an integer. The resulting task from merging these two 
tasks is denoted T′୧ ൌൌ (p′୧, C′୧, P′୧, D′୧, B′୧ሻ  such 
as 	p′୧ ൌ max(p୧, p୨ሻ , C′୧ ൌ 	C୧ ൅ C୨  , P′୧ ൌ P୧ ൌ min 	(P୧	, P୨ሻ , D′୧ ൌ min 	(D୧	, D୨ሻ  and 	B′୧ ൌ

max(B୧, B୨ሻ.  Consequently, the model resulting from this 
merge consists of m-1 tasks and n-1 distinct priority 
levels. Let us note that we can merge more than two tasks 
at once.  

C.  DPMP Formulation  
In previous work [23], we have shown that using a 

heuristic method (i.e. algorithmic description) to describe 
this pattern is not always effective. Indeed, the problem 
of merging tasks with the objective to reduce the number 
of distinct applicative priority levels is a combinatorial 
problem (i.e. many possible solutions may exist for a 
given situation). Consequently, we have proposed to 
formulate this problem using Mixed Integer Linear 
Programming (MILP) [24] techniques in order to find the 
best way (in terms of processor utilization U), if any, to 
merge tasks. 

MILP techniques define an objective function which 
corresponds to a formulation of the considered problem. 
This formulation is interpretable by a solver that seeks to 
find a solution for this problem under a set of defined 
constraints. We give below the objective function and we 
explain the different constraints defining this pattern. 
(i) Objective function  

Expression (4) defines the objective function for our 
problem. We denote by m the number of tasks in the 
initial model.  
	:݁ݖ݅݉݅ݔܽ݉                                      ∑ ௜,௝݁݃ݎ݁ܯ െ ሼଵ..௠ሽ	∈	௜,௝݊݋݅ݐܽݖ݈݅݅ݐܷ 	         (4)   
                                               
Merge is a boolean variable used to mention whether two 
tasks are merged (if Merge୧,୨ is equal to 1, this means that 
the tasks T	୨ is absorbed by the task	T	୧). Consequently, 
this objective function aims at maximizing the number of 
merge while minimizing the processor utilization. 
(ii) Merging situations constraints 

The objective function aims at maximizing the number 
of merge, however this function should be aware of some 
constraints that limit the exploration space and eliminate 
non meaningful merging situations. These constraints are 
presented just below: 

                                                          ݊ െ	∑ ሼଵ..௠ሽ	∈	௜,௝௜,௝݁݃ݎ݁ܯ ൌ ܰ                              (5) 

 ∀	݅, ݆	 ∈ ሼ1. .݉ሽ,݁݃ݎ݁ܯ௜,௝ ൌ 0	݂݅	൫݅ܿ݅݊݋݉ݎܽܪݏ	௜,௝ ൌ0൯ݎ݋	݌)௜ ൌ  ௝ሻ                                                          (6)݌

 ∀	݆	 ∈ ሼ1. .݉ሽ, ∑ 	௜,௝݁݃ݎ݁ܯ ൑ 1;	∀	݅, ݆, ݇	 ∈௜	∈ሼଵ..௠ሽሼ1. . ݉ሽ	݁݃ݎ݁ܯ௜,௝	 ൅ ௝,௞	݁݃ݎ݁ܯ	 ൑ 1                         (7) 

 

In constraint (5), n and N represent two input 
parameters which are defined previously. This constraint 
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means that we have to maximize the number of merged 
tasks and thus minimize the number of distinct priority 
levels used in the design model until the number 
authorized by the RTOS. Indeed, this Equation serves as 
a bound for the objective function (i.e. the number of 
merge). Constraint (6) defines a new input parameter 
which is isHarmonic, this parameter is used to mention if 
two tasks are harmonic. Thus if the value 
of	݅݅ܿ݅݊݋݉ݎܽܪݏ௜,௝  is equal to 1, then the corresponding 
tasks ௜ܶ 	and ௝ܶ 	 have harmonic rates. Consequently, this 
constraint avoids the merge of non-harmonic tasks and 
avoids also the merge of tasks having equal priority levels 
௜݌) ൌ  .௝ሻ݌

Finally, the constraint in (7) is used to avoid non-
meaningful situations which correspond to the merge of a 
task already merged. 

We define also a new boolean variable that we denote 
by TASKS and which refers to the resulting task model 
after merging the different tasks. Therefore, constraint (8) 
is defined to create the new obtained model. In fact, when ݁݃ݎ݁ܯ௜,௝		is equal to 1, ܶܭܵܣ ௝ܵ  will be equal to 0 and ܶܭܵܣ ௜ܵ	will be equal to 1. This constraint is defined as 
follows: ∀		݆	 ∈ ሼ1. .݉ሽ, ܭܵܣܶ	 ௝ܵ ൌ 1 െ	∑ ∈ሼଵ..௠ሽ	௜	௜,௝݁݃ݎ݁ܯ 		    (8) 

(iii) Real-time constraints  
The constraints defined in this section are related to 

real-time requirements. Indeed, the model obtained after 
applying the merge pattern should satisfy the timing 
constraints which are expressed in constraints (9) and 
(10). ∀	݅	 ∈ ሼ1. .݉ሽ, ௜݌ܴ݁ ൑ 	݊݋݅ݐܽݖ݈݅݅ݐݑ ௜                                      (9)ܦ ൑  (10)                      ݊݋݅ݐܽݖ݈݅݅ݐܷ_ݔܽܯ

Constraint (9) ensures that the response times ܴ݁݌௜	of 
the different tasks in the resulting model are lower or 
equal than their deadlines. Constraint (10) verifies 
whether the processor utilization is lower or equal than 
the maximum authorized utilization. Constraint (11) gives 
the computation formula of ௜ܶ 	response time while taking 
into consideration the different decisions of merge. 
 ∀	݅	 ∈ ሼ1. .݉ሽ, ௜݌ܴ݁ ൌ ௜ߜ	 ൅ ௜ߠ ൅  ௜                   (11)ߚ

 
The first term of the expression (11) is ߜ௜	 which 

corresponds to the worst case execution time of the 
task		 ௜ܶ. This term is computed as follows: 
 ∀	݅	 ∈ ሼ1. .݉ሽ, ௜ߜ ൌ ܭܵܣܶ	 ௜ܵ ∗ ௜ܥ ൅	∑ ௜,௝݁݃ݎ݁ܯ ∗௝	∈ሼଵ..௠ሽܥ௝                                                                                  (12) 

The execution time of a deleted task will be equal to 0 
since the term 	ܶܭܵܣ ௜ܵ  is equal to 0 and 	∀		݆	 ∈ሼ1. .݉ሽ,݁݃ݎ݁ܯ௜,௝ ൌ 0. However, the execution time of a 
task resulting from the merge of different tasks will be 
equal to the sum of the execution times of these tasks. 
The second term in the expression is ߠ௜ representing the 
overhead induced by the interferences of the task 		 ௜ܶ with 
the different tasks in the model having higher priorities. 
We denote by ܪ ௜ܲ the set of these tasks. This variable is 

defined ∀	݅	 ∈ ሼ	1. . ݉ሽ	as the sum of two terms	߮௜,	ߴ௜ and 
it is defined just below: 			ߠ௜ ൌ 	߮௜ ൅	ߴ௜                                                            (13) ߮௜ ൌ ܭܵܣܶ	 ௜ܵ ∗ 	 ෍ ܭܵܣܶ ௝ܵ ∗ ቆቜܴ݁݌௜௝ܲ ቝ ∗ ∈ு௉೔,௝∈ሼଵ..௠ሽ	௝	௝ቇܥ	  

௜ߴ (14)      ൌ ܭܵܣܶ ௜ܵ ∗൤∑ ܭܵܣܶ	 ௝ܵ ∗ ൬∑ ௝,௞݁݃ݎ݁ܯ ∗௞	∈ሼଵ..௠ሽ ඄ோ௘௣೔௉ೕ ඈ ∗௝	∈ு௉೔,௝∈ሼଵ..௠ሽ	ܥ௞൰൨		(15) 
 

The interference term is equal to 0 if the corresponding 
task is a deleted one (ܶܭܵܣ ௜ܵ ൌ 0). Otherwise, this term 
computes the overhead resulting from the interferences of 
tasks 	 ௝ܶ/		݆	 ∈ ܪ	 ௜ܲ . This expression takes into 
consideration the different situations when higher priority 
tasks correspond to deleted ones ( ܭܵܣܶ ௝ܵ  in the 
expression) or tasks resulting from merging decision 
( ௝,௞݁݃ݎ݁ܯ  in the expression). We notice that the 
expressions (14) and (15) are not linear and thus in order 
to be interpretable by the solver these expression must be 
linearized. 

For instance, the linearization of the expression (14) is 
given by the following constraints: 
 ∀	݅, ݆	 ∈ ሼ1. .݉ሽ, 0	 ൑ 	 ௜ܺ,௝	 െ 	൬ோ௘௣೔௉ೕ ൰ ൏ 1                     (16) ∀	݅, ݆	 ∈ ሼ1. .݉ሽ, ௜ܻ,௝ ൑ ௜ܺ,௝; 	 ௜ܻ,௝ ൑ ܯ ∗ ܭܵܣܶ ௝ܵ;	 ௜ܺ,௝ െܯ ∗ ൫1 െ ܭܵܣܶ ௝ܵ൯ ൑ ௜ܻ,௝                                            (17) 
 

In order to linearize the expression (14), we define new 
constraints (16) (17) and 2 additional variables X and Y. 

The constraint (16) permits to compute the term	඄ோ௘௣೔௉ೕ ඈ, 
however the constraints in (17) are defined to determine 

the value of ܭܵܣܶ	 ௝ܵ ∗ ൬඄ோ௘௣೔௉ೕ ඈ൰ . Eventually, the 

constraints in (18) and (19) are used to compute the final 
value of	߮௜	∀	݅	 ∈ ሼ1. .݉ሽ. 
 ∀	݅	 ∈ ሼ1. .݉ሽ, 	߮௜ ൑ ∑ ௜ܻ,௝ ∗ ு௉೔,௝∈ሼଵ..௠ሽ	∈	௝௝ܥ ;	 	߮௜ ൑ ܯ ܭܵܣܶ∗ ௜ܵ                                                                        (18) ∀	݅ ∈ ሼ1. .݉ሽ, ൣ∑ ௜ܻ,௝ ∗ ு௉೔,௝∈ሼଵ..௠ሽ	∈	௝௝ܥ ൧ െ ܯ ∗(1 െ ܭܵܣܶ ௜ܵሻ ൑ 	߮௜                                                    (19) 
 

Finally the third term in the expression of the response 
time is ߚ௜ which represents the blocking time experienced 
by a task when lower priority tasks delays the access to a 
shared resource. This variable is computed as follows: 
 ∀	݅	 ∈ ሼ1. .݉ሽ, ௜ߚ ൌ ܭܵܣܶ	 ௜ܵ ∗ ܤ ௜ܶ                              (20) 
 

This term is equal to 0 if the task corresponds to a 
deleted task. Otherwise, the blocking time of the 
considered task is equal to ܤ ௜ܶ  which is defined as 
follows:                 
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ܤ ௜ܶ ൌ 	 ቊ maxܤ
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Figure 8.  Select target RTOS from the model library 

In that case, as shown in Figure 9, the feasibility 
evaluation phase generates an error status for the equal 
priority levels test (described in algorithm 1). Indeed, the 
tasks positionProcessingTask and 
ultrasonicSensorControTask in the original design model, 
given in Figure 7, have the same priority level equals to 
20. However, MicroC-OS\II does not allow that tasks 
share the same priority level. Consequently, the designer 
looks for a solution to this deployment problem using the 
button Find a Pattern (see Figure 9).  
 

 
Figure 9.  Feasibility evaluation for MicroC-OS\II 

In that case, the patterns base proposes EPMP pattern 
as a potential solution (Figure 10). The application of this 
pattern corresponds to the execution of algorithm 2 
(defined in section 4.3).  
 

 
Figure 10.  Select a pattern from the patterns Base 

Then, the framework generates a warning to mention 
that a re-validation of the resulting model is required 
(Figure 11).  
 

 
Figure 11.  Re-validation request after applying EPMP 

The resulting model after applying this pattern is given 
in Figure 12. This model consists of only four tasks 
having all distinct priority levels and two shared 
resources. Indeed, the two tasks positionProcessingTask, 
ultrasonicSensorControTask which have the same 
priority level are merged to a single task called 
positionUltraSProcessingTask. This pattern is applicable 
since the merged tasks have harmonic rates (i.e. 40 20ൗ ൌ2; ݍ ൌ 2ሻ  and the resulting model satisfies the timing 
requirement (i.e. the response time of the different tasks 
in the model are lower than their deadlines).  
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