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Abstract—In a model-driven development context, the
refinement of a Real Time Operating System (RTOS)
independent design model of a real-time application to a
RTOS specific implementation model is a non-trivial task.
Indeed, the different design choices made to guarantee the
application timing properties are not always implementable
on the target RTOS. In this paper, we propose a pattern-
based approach to perform the refactoring of the real-time
design model when a deployment problem appears. This
refactoring guarantees the deployment of the refactored
design model and the respect of its timing properties. This
paper explainsin details two examples of patternswhich are
the Equal Priority Merge Pattern (EPMP) and the Distinct
Priority Merge Pattern (DPMP). The automation of the
proposed approach allows showing its applicability on a
robotic case study.

Index Terms—Real-Time Embedded Systems, software
development, Model-Driven Development, Real-Time
Verification, Design Model, RTOS-Specific Model, Patterns,
Refactoring.

I. INTRODUCTION

In order to increase the productivity during the
development process of Real-Time Embedded Systems
(RTES), Model Driven Development (MDD) [1]
promotes a rise in level of abstraction by introducing
models from the specification to the implementation
passing through the design (see Figure 1). Each model
focuses on a particular aspect; the specification model
gives a functional and behavioral description of the
application. At the design level, architectural concerns are
introduced to express concurrency and data dependency.
The implementation model introduces technological
concerns related to the execution platform i.e. the Real-
Time Operating System (RTOS).
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Figure 1. Model-based flow

In a MDD context, Model-Driven Architecture (MDA)
[2] standardized by the OMG, recommends system
development along the lines of the Y-Chart approach [3].
Thus, the real-time application is described in a design
model independent from any particular RTOS. Then, this
design model is deployed onto a RTOS to produce the
implementation model. Indeed, as shown in Figure 2, the
specification model depicts a functional graph defining a
set of transactions to capture the system behavior. Each
transaction is defined by its period P, and has a deadline
D; that represents the maximum time value allowed for
the associated transaction to be executed. Each function is
characterized by its worst-case execution time c; . From
this specification model, the design model identifies the
abstract tasks (T;) implementing the application functions
and the software resources ( R;) that can be shared
between the tasks. The deployment phase corresponds
thus to a mapping between the abstract resources and the
running ones (the concrete ones) provided by the
considered RTOS.
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Figure 2. Real-time design model

Timing verification activities, at the design level, aim
to verify whether the different tasks complete their
executions within the time limit specified by the real-time
application i.e. the deadline. This verification requires an
abstraction of the underlying platform. To this end, at the
design level, execution nodes and communication media
are supposed to be known. In this paper, we consider only
single-processor  systems. In addition, software
assumptions related to the target RTOS such as
scheduling policy, priority order, etc. are implicitly
considered in order to keep RTOS-independence at this
level. There is indeed a wide variety of RTOSs [4]; some
are compliant to a specific standard (e.g. POSIX [5],
OSEK [6]), some are commercial or free. These RTOSs
share common concepts but with specific features. From
these considerations, the different software assumptions
considered at the design level for the timing verification
may be not supported by the target RTOS. In that case,
the design model is said to be not “implementable” on
that RTOS, and a new “implementable” RTOS-specific
design model shall be found by the designer. This time
consuming approach has several drawbacks among which
we can mention the portability of the new design model.

To tackle this issue, we focus in this paper on an
automatic refactoring of the design model when a
deployment problem appears. This refactoring is based on
a set of software patterns. Each pattern defines a way to
change the original design model with the aim to solve
the deployment problem. The resulting model after
applying a pattern must guarantee two points: (1)
portability i.e. still independent from the target RTOS, (2)
the respect of timing properties. In the present paper, we
deal with two examples of patterns; Equal Priority Merge
Pattern (EPMP) and Distinct Priority Merge Pattern
(DPMP). For each pattern, we explain the corresponding
deployment problem and we describe the proposed
solution.

The remainder of this paper is organized as follows.
Section 2 presents some related works. In section 3, we
introduce the timing verification at the design level and
we give an overview of a model-driven approach for
design refinement (toward implementation); we focus
especially on the refactoring phase. Sections 4 and 5
detail respectively Equal Priority merge Pattern (EPMP)
and Distinct Priority Merge Pattern (DPMP). In section 6,
we show the application of the refactoring phase and the
described patterns on a robotic case study. Finally,
section 7 concludes the paper and gives some future
perspectives.
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II. RELATED WORK

In the context of the software development of real-time
embedded systems, several works have been proposed
with the aim to ensure the respect of timing properties. In
[71, the author extends the RT-UML profile to support the
creation and validation of OSEK-compliant models .In
[8], the authors use OSEK-compliant abstract platforms
called SmartOSEK [9] and define a set of transformation
rules to create OSEK-compliant models from UML
models. In addition, this approach enables the simulation
of the resulting OSEK-compliant models and provides the
designer with the results to optimize this model at design
level. In [10], the authors use RT-UML to annotate UML
models describing real-time applications with timing
properties. Then they identify the mapping rules between
the resulting model and RT-Java as a target platform. The
objective of this work is to properly propagate the real-
time constraints into the RT-java [11] specific model in
order to validate them. These approaches focus especially
on real-time aspects without addressing the portability
issue which is less convenient when several RTOS are
targeted.

To address portability requirement, some exiting
approaches follow the lines of the MDA approach [2] by
performing timing verification at the design level. Indeed,
these approaches aim at verifying a real-time application
before its deployment on the RTOS i.e. timing
verification of RTOS-independent models. In order to
enable such verification, these approaches consider in
general some software assumptions related to the
underlying RTOS. Indeed, in [12], the authors provide an
approach to automatically generate the architectural
model from the functional blocks. The focus of this work
is to automate this generation and ensure optimized
architectural models in terms of timing properties while
assuming Earliest Deadline First (EDF) scheduling
strategy [13]. In [14] authors propose a MARTE-based
[15] methodology by introducing analysis from the
functional level to guide the generation of a valid design
model in terms of timing requirements. For this
achievement, this work assumes that the underlying
RTOS provides a fixed-priority scheduling policy [16].
The main objective of these approaches is to produce a
description of a real-time application which guarantee the
respect of its timing properties and still independent from
a particular RTOS. However, for that purpose, they
consider in general an ideal RTOS without any attention
to the deployment problems which may occur due to the
implementation constraints and consequently may affect
the timing properties already verified at the design level.
Hence, our approach aims at extending the methodology
presented in [14] by focusing on the refinement toward
implementation of the resulting design model. This work
is a step toward providing portability and separation of
concerns from one side and early verification of timing
properties from the other side during the deployment
process of a real-time application on a several RTOSs.

III. REAL-TIME DESIGN MODEL REFINEMENT TOWARD
IMPLEMENTATION
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In this section, we firstly give some real-time concepts
related to timing verification at the design level. Then, we
introduce the pattern-based refactoring phase by giving
an overview of the model-based approach proposed to
guide the refinement of the real-time design model to a
RTOS-specific implementation model.

A. Timing Verification at the Design Level

The real-time design model consists of m periodic
tasks that we denote by M, = {T;, T,, ..., Ty } running in a
single-processor system. Each task T; is defined by a set
of parameters deducted from the specification model and
the architectural choices enabling thus the timing
verification. Indeed, a task T; is characterized by its
worst-case execution time c;, its activation period P, and
its deadline D; that represents the time limit in which a
task must complete its execution.

The software assumptions considered at the design
level to enable timing verification strongly depends on
the type of analysis to perform. In this paper, we are
interested in the Rate-Monotonic (RM) response time
analysis [17]. Thus, we assume that a fixed-priority
strategy is used to schedule the different tasks.
Consequently, a task T; is also characterized by its
priority p;. Besides, we suppose that 0 is the lowest
priority level and that tasks may share the same priority
level.

The architectural model may consist also of a set of
software resources R = {R, R, ..., R;} that can be shared
between one or several tasks (e.g. a mutex to access a
critical section). We denote cRi_Tjthe worst-case duration

for the task Tj to acquire and release the lock of the
resource R; in case of no contention. Let us remark that
CRy,T| is considered as an input and that CRyT; = G Due

to the presence of shared resources, a task is also
characterized by a blocking time B;. The blocking time
accounts for the time a higher-priority task has to wait,
before acquiring the lock, since a lower-priority task
owns this lock. The computation of this term depends on
the synchronization protocol (e.g. Priority Ceiling
Protocol PCP [18], Priority Inheritance Protocol (PIP)
[19]) used to implement the access to the shared resource.
The choice of which synchronization protocol will be
used in the design model corresponds to one of the
software assumptions, at this level, and has a direct
impact on the timing analysis results. Indeed, if the
Priority Ceiling protocol (PCP) [18] is used as a
synchronization protocol to avoid unbounded priority
inversion and mutual deadlock due to wrong nesting of
critical sections, the expression just below will be used to
compute the blocking time :

Bi = maxrc upRryer {CRk,T]-: pj < pjand Ty = pi} (1)

In this protocol each resource R; is assigned a priority
ceiling m;, which is a priority equal to the highest priority
of any task which may lock the resource.

The analysis results correspond to the computation of
the processor utilization U and the response time Rep; of
the different tasks in the model. The model satisfies its
timing constraints if and only if U<1 and Vi €
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{1..m}, Rep; < D;. The expressions used to compute U
and Rep; are given just below, where HP, represents the
set of tasks with priority higher than T .

U= Zremp )

Rep; = C; + B + e HPi[Ri/Tj] G 3)

Figure 3 shows an example of execution of two
periodic tasks ( T; and Tj) sharing the resource R
implemented using the PCP protocol.

| Execution [ Critical section

R =Y

Ti [ Y Ti and Tjuse R
P] Pi=pij
4 D] 4 U
T =pi
' [ [y P

Figure 3. Real-Time Concepts

The priority ceiling of R is equal to the priority of Tj
as it is the highest. Up-raising arrows represent the
instants of tasks activation, for their part, down-raising
arrows determine the deadline for each task activation.
The response time to activation is defined as the time
between the activation and the completion instants. We
also show the blocking time B; of the task T; resulting
from the utilization of R byTj. In addition, each task
implements a set of functions that we denote by f €
F such as card(f) = 1 such as F is the set of applicative
functions defined in the specification model.

B. Overview of the Proposed Approach

The purpose of the proposed model-based approach is
to guide the refinement of the real- time design model to
a RTOS-specific model. As depicted on Figure 4, this
approach is based on the definition of two types of
platforms; the abstract platform used at the design level
for the timing validation and the concrete platform which
corresponds to the RTOS. Each platform is represented
by its model. The abstract platform model explicitly
describes the different software assumptions considered
to enable the timing verification of the real-time design
model. However, the RTOS model describes the software
resources provided by the RTOS to enable the execution
of the real-time application. One objective of this
approach is the generation of implementation models
from a RTOS-independent design model satisfying the
timing requirements of the application. This generation is
performed when no deployment problems are raised. It
must also ensures that the resulting model i.e. RTOS-
specific implementation ( M;p,;) model still meet the
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timing requirement (i.e.V T; € My, Rep; < D;) while
taking into consideration the RTOS characteristics. This
objective achievement has been described in details in
previous works [20] [21] and is carried out by the vertical
path in Figure 4 involving the feasibility evaluation phase,
the mapping phase and mapping verification phase.
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Figure 4. Model-based approach for design refinement

In this paper, we focus on the case where the design
model is non-implementable on the target RTOS. The
refinement becomes not feasible. In such situation, the
refactoring phase proposes solutions to change the
original design model with the aim to solve the
deployment problem. To this end, this phase is based on a
set of predefined patterns. Each pattern corresponds to a
deployment problem and is applicable in a particular
context (i.e. when some assumptions are fulfilled by the
original design model). When the patterns base does not
provide any solution for the considered problem (i.e.
design model and deployment problem), an error is
generated to inform the designer. Otherwise, the
refactoring phase applies the appropriate pattern and
generates the refactored design model which is at the
same level of abstraction as the original design model (i.e.
the refactored design model is also an RTOS-
independent model). A timing verification of the resulting
model is also required to verify whether the timing
constraints are still met after the refactoring. When a
schedulability issue appears, an error is also generated to
inform the designer that the application of the pattern
affects the timing properties.

In the following sections, we detail two examples of
patterns from the patterns base: Equal Priority Merge
Pattern (EPMP) and Distinct Priority Merge Pattern
(DPMP).

IV. EQUAL PRIORITY MERGE PATTERN: EPMP

In this section, we explain the deployment problem
related to EPMP and we describe the proposed solution.
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A. Problem Statement

The deployment problem associated to this pattern is
described in algorithm 1. Indeed, an error is generated
when the original design model M, defines at least two
abstract tasks having the same priority level from one
side. From the other side, the target RTOS does not
support that the running tasks share the same priority
level. One example of this RTOS family is MicroC-OS\I
[22].

Algorithm 1: Equal Priority Levels Detection

Inputs:
M, Original design model

Mp¢ : RTOS model
Output:
Verdict S = {E, NP} ; E: Error,, NP: No Problem
Notations:
isPriorityShared, : A boolean variable to verify whether the
design model defines tasks that share the same priority level
isPriorityShared,,: A boolean variable to mention whether
the RTOS supports that tasks share the same priority level.
Begin
isPrioritySharedy, < getExistShared( M, )
isPriorityShared,y, < geSupportShared( My )
if (isPriorityShared, = true) Then
if (isPrioritySharedy,. = false) Then

S=E

else

S=NP

Return S
End

One key point of this work is platform modeling which
has been detailed in previous work [20]. In fact, the
RTOS model M, describes the information required to
evaluate the feasibility of the original design model on a
given RTOS. The different RTOS models are described
using the Unified Modeling Language (UML) enriched
with the Software Resource Modeling (SRM) sub-profile
of the MARTE standard [15]. Figure 5 shows an excerpt
of the MicroC-OS\I [22] focusing on the concept of task.
For instance, a MicroC-OS\MI task is represented by a
class called MicroC_task annotated with
<<swSchedulableResource>> from SRM to mention that
it is a runnable entity. The property isPriorityShared is
defined to describe whether the RTOS supports that its
tasks share the same priority level. We can see from
Figure 5 that this property is valuated to false for
MicroC-OS\IIL.
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«<SAM::swSchedulableFesources>
wvel isPriorityDynamic,isPriorityShared

priorityElements=[priorityValue minPrioritylevel maxPriorityL

<<swSchedulzbleResourcex>
MicroC_Task

priorityValue: Integer [1.]

sPriprityDynamic :Boolean =true

Figure 5. Excerpt of the MicroC-OS\II model

B. Solution Description

Let us consider an original design model M, =
{T,,T,, ...., Ty} defining m tasks and n distinct priority
levels. In the case where n < m, this means that there
exist at least two tasks Tj, Tj € M, such as p; = p;. In
such situation, this pattern merges the tasks having: (1)
the same priority levels, (2) harmonic rates (i.e. two
tasks T; and Tj are harmonic if and only if P, mod P, =
Oand P, = P). Indeed, this second condition permits to
preserve the high level specification (i.e. in terms of
functions activation rates). Consequently, the task T';
resulting  from the merge of the  tasks
Ti = (pi' Ci! Pi! Di' Bi! fl) and T] = (p], C], Pj, D], B], f]) €
M, , such as Pi = pj and

P
( ]/P- =,qisaninteger and P, = P) is defined as
1
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Algorithm 2: Equal Priority Merge Pattern

follows:
Count=0;
Pi=pi=p while(true)
:’:r: f :i:((};fil P) if (count mod q = 0) Then

T=@ ,C,P.D,B,f | )
i (Fl wPluD'u B ) D,-:mm(Dl-,D,-} fi

By = max(B;, B)) i}
' [F, . |
fi=fuf) |- ;ja{

wait (P';)}

The consequent model after merging these two tasks
consists of m -1 tasks and n distinct priority levels.

C. EPMP Formulation

The formulation of this pattern is described in
algorithm 2. This algorithm has as input the design model
and generates as outputs an Error or the new design
model after refactoring M,¢s. This algorithm generates an
error when the rates of the tasks that share the same level
are not harmonic. In that case, these tasks cannot be
merged because it is not possible to guarantee that the
initial functions implemented by the involved tasks will
be executed with the same activation rates defined by the
application. This algorithm generates also an error when
the proposed solution can be applied but the validation
generates a negative output. Thus, the resulting design
model after refactoring consists of tasks having all
distinct priority levels and respecting their timing
requirements.

©2014 ACADEMY PUBLISHER

Inputs:
M,: The design Maodel

Output:
Mpges: Re-factored design model
Error: indicates an error when the pattern is not applicable
Notations:
Type (i): The concept of the platform that types the instance i
Ref_Priority: The reference priority level
Ref_Task: A task having a priority equal to Ref_Priority
Current_priority : The priority that references the current
level
E Tasks : The list of tasks having priority levels equal
to Current_priority
Begin
Ref_Priority € getHighestPriority(M,)
Current_priority < Ref_Priority
Ref_Task € getReferenceTask (M,, Current_priority )

While (Ref_Task != null) do
For each i, € M, / Type (is) is a periodic task do
if (isPriorityEqual (i, Ref_Task)) Then
if (isPeriodHarmonic(is, Ref _Task)) Then
L add (i, E_Tasks)

elss Error =true; Return Error

if (5izeOf (E_Tasks) >1) Then M', € Merge
(E_Tasks)
Currentpriority & getHighestPriority
(M, Ref _Priority)
Ref _Priority € Current_priority
Ref_Task €& getReferenceTask
(Mg, Current_priority )

if (validate (M',)=0K ) Then Mg € M,
else
Error =true; Return Error
Return MRes;
End

V. DISTINCT PRIORITY MERGE PATTERN : DPMP

In this section, we explain the deployment problem
related to DPMP and we describe the proposed solution.

We denote by n the number of distinct priority levels
used in the design model. Besides, N represents the
number of distinct priority levels allowed for the
considered application.

A. Problem Satement

The deployment problem associated to this pattern is
described in algorithm3.

Algorithm 3: Distinct priority levels number Detection

Inputs:
M, Original design Model

Mpc : RTOS model
Ext_degree: the number of distinct priority levels reserved by
the designer for the considered application
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Output:
Verdict S = {E, NP} ; E: Error, NP: No Problem

Notations:
n Number of distinct priority levels used at the design model
Nbr_Levelsy,.: Number of distinct priority levels authorized
by the RTOS
N: the number of distinct priority levels allowed for the
application
Begin
Nbr_Levelsy €< getNumberPriorityLevel (M)
Nbr_Levelsy,. € getNumberPriorityLevel(Mp()
N=  Nbr_Levelsy,,.
if (Ext_degree! = null) Then
N= Ext_degree
if ((Nbr_Levelsy, <N Then
S=NP
else
S=E
Return S
End

This algorithm generates an error when the number of
distinct priority levels used in the design model M, is
higher than the number allowed for the considered
application (i.e. n = N). Indeed, this situation may occur
in two cases:

(1) large scale applications i.e. n is too large with
regard to the number allowed by the RTOS

(2) extensibility requirement i.e. the designer limits
the number of distinct priority levels allowed for
the considered application (Ext degree in
algorithm 3) to enable the possibility to integrate
additional applications (or functions) on the
same platform.

The number of distinct priority levels allowed by the
RTOS (Nbr_Levelsy,,. in algorithm 3) is described in its
model. In fact, this number is derived from the maximum
and the minimum priority levels allowed by the RTOS.
For instance, in Figure 5, these two parameters are
represented respectively by maxPriorityLevel and
minPriorityLevel properties of the class MicroC_Task.

B. Solution Description
Let us consider an original design model M, =
{T, T,, ..., Ty} defining m tasks and n distinct priority
levels (n < m). In order to reduce n to be equal to N, this
pattern merges the tasks having:
e  distinct priority levels
e harmonic rates (i.e. two tasks T; and Tj are
harmonic if and only if bmodP, =0 and
P = P in order to preserve the high level
specification (i.e. functions rates)
Let us consider also two tasks T;, T; € M, , each task
is defined by a set of parameters; T; = (p;, C;, B, D;, B;)

P
and T; = (p;, C;, B, D;, Bj) such asp; # pjand ]/Pi =q;

q is an integer. The resulting task from merging these two
tasks is denoted T'; == (p;,C;,P';,D';,B’;) such
as p'i = max(p;, p;) , Ci= G+ ,
P’i = Pi = min (PIJP]) , D’i = min (Di! D]) and B’i =
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max(B;, B;). Consequently, the model resulting from this
merge consists of m-1 tasks and n-1 distinct priority
levels. Let us note that we can merge more than two tasks
at once.

C. DPMP Formulation

In previous work [23], we have shown that using a
heuristic method (i.e. algorithmic description) to describe
this pattern is not always effective. Indeed, the problem
of merging tasks with the objective to reduce the number
of distinct applicative priority levels is a combinatorial
problem (i.e. many possible solutions may exist for a
given situation). Consequently, we have proposed to
formulate this problem using Mixed Integer Linear
Programming (MILP) [24] techniques in order to find the
best way (in terms of processor utilization U), if any, to
merge tasks.

MILP techniques define an objective function which
corresponds to a formulation of the considered problem.
This formulation is interpretable by a solver that seeks to
find a solution for this problem under a set of defined
constraints. We give below the objective function and we
explain the different constraints defining this pattern.

(i) Objective function
Expression (4) defines the objective function for our

problem. We denote by m the number of tasks in the
initial model.

maximize: Y,; ; e (1.my Merge; ; — Utilization 4)

Merge is a boolean variable used to mention whether two
tasks are merged (if Merge;; is equal to 1, this means that
the tasks T ; is absorbed by the task T ;). Consequently,
this objective function aims at maximizing the number of
merge while minimizing the processor utilization.
(i) Merging situations constraints

The objective function aims at maximizing the number
of merge, however this function should be aware of some
constraints that limit the exploration space and eliminate
non meaningful merging situations. These constraints are
presented just below:

n-— Zi.je{l..m}MeTgei,j =N (5)

Vi,j €{l..m},Merge;; = 0if (isHarmonic ;; =
0)or (p; = p)) (6)

Vj €{l.m}, Xicu.myMerge,; <1, Vi jk €
{1..m} Merge; ; + Merge ;; <1 7

In constraint (5), n and N represent two input
parameters which are defined previously. This constraint
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means that we have to maximize the number of merged
tasks and thus minimize the number of distinct priority
levels used in the design model until the number
authorized by the RTOS. Indeed, this Equation serves as
a bound for the objective function (i.e. the number of
merge). Constraint (6) defines a new input parameter
which is isHarmonic, this parameter is used to mention if
two tasks are harmonic. Thus if the value
of isHarmonici; ; is equal to 1, then the corresponding
tasks T; and 7; have harmonic rates. Consequently, this
constraint avoids the merge of non-harmonic tasks and
avoids also the merge of tasks having equal priority levels
(i = p))-

Finally, the constraint in (7) is used to avoid non-
meaningful situations which correspond to the merge of a
task already merged.

We define also a new boolean variable that we denote
by TASKS and which refers to the resulting task model
after merging the different tasks. Therefore, constraint (8)
is defined to create the new obtained model. In fact, when
Merge; ; is equal to 1, TASKS; will be equal to 0 and
TASKS; will be equal to 1. This constraint is defined as
follows:

vV j €{l..m}, TASKS; =1 — X, cu.myMerge;;  (8)

(iii) Real-time constraints
The constraints defined in this section are related to
real-time requirements. Indeed, the model obtained after
applying the merge pattern should satisfy the timing
constraints which are expressed in constraints (9) and
(10).
Vi € {1..m},Rep; < D; )

utilization < Max_Utilization (10)
Constraint (9) ensures that the response times Rep; of
the different tasks in the resulting model are lower or
equal than their deadlines. Constraint (10) verifies
whether the processor utilization is lower or equal than
the maximum authorized utilization. Constraint (11) gives
the computation formula of T; response time while taking
into consideration the different decisions of merge.
The first term of the expression (11) is §; which
corresponds to the worst case execution time of the
task T;. This term is computed as follows:

Vi € {1711}, 61' = TASKSl * Ci + Z] €{1.m} Mergel-‘j *
G (12)
The execution time of a deleted task will be equal to 0
since the term TASKS; is equal to 0 and V j €
{1..m}, Merge; ; = 0. However, the execution time of a
task resulting from the merge of different tasks will be
equal to the sum of the execution times of these tasks.
The second term in the expression is 6; representing the
overhead induced by the interferences of the task T; with
the different tasks in the model having higher priorities.
We denote by HP; the set of these tasks. This variable is
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defined Vi € { 1..m} as the sum of two terms ¢;, 9; and
it is defined just below:

0;= ¢;+ 9, (13)

e
ep; *C]_)

TASKS:;

Q; = TASKSl *

Jj EHP;,je{1.m}
(14)
191' = TASKSl *

e,
[Z]’ enpyje{1.m} TASKS; * (Zk e(r.myMerge; . * sf ] *
6| as)

The interference term is equal to 0 if the corresponding
task is a deleted one (TASKS; = 0). Otherwise, this term
computes the overhead resulting from the interferences of
tasks T;/ j € HP; This expression takes into
consideration the different situations when higher priority
tasks correspond to deleted ones ( TASKS; in the
expression) or tasks resulting from merging decision
( Mergej, in the expression). We notice that the
expressions (14) and (15) are not linear and thus in order
to be interpretable by the solver these expression must be
linearized.

For instance, the linearization of the expression (14) is
given by the following constraints:

Vij €{1.m},0 < X;; — (Re'f'i) <1 (16)
Vl,] € {1m}, Yi,j < Xi,j; Yi,j <M *TASKS], Xi,j -
M« (1 —TASKS;) <Y, (17)

In order to linearize the expression (14), we define new
constraints (16) (17) and 2 additional variables X and Y.

The constraint (16) permits to compute the term [% ,

J
however the constraints in (17) are defined to determine
: ]) . Eventually, the
j

constraints in (18) and (19) are used to compute the final
value of @; Vi € {1..m}.

the value of TASKSj*([R;pi

Vi €e{l.m}, ¢; <¥jenr,jermYij*Cjs @i <M *

TASKS; (18)
Vie{l.m}, [Z, e HPyje{1.m} Yij * Cj] — M+
(1 —TASKS)) < o, (19)

Finally the third term in the expression of the response
time is [3; which represents the blocking time experienced
by a task when lower priority tasks delays the access to a
shared resource. This variable is computed as follows:

Vi €{l1..m},B; = TASKS; = BT; (20)

This term is equal to O if the task corresponds to a
deleted task. Otherwise, the blocking time of the

considered task is equal to BT; which is defined as
follows:
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BT, = { B; if Xijerr.myMerge ;=0 ' @
max jer.my Merge; j * B; Otherwise

The term B; in expression (21) is an input parameter
representing the blocking time of the task T; .
Consequently, if the considered task is not merged with
other tasks in model (X;;e(1.myMerge;j=0), the
blocking time is kept the same. Otherwise, the blocking
term corresponds to the maximum of the merged task
blocking times.

The processor utilization represents an important term
in scheduling analysis. In fact, in order to confirm that the
design model meets the timing constraints the following
constraint must be verified:

Utilization < 1 (22)

We define the Utilization term by the constraints just
below:

Utilization = uy + U, (23)
Ci
tr = Tieq.m TASKS; * (2) (24)

Ho = Tieqr.m TASKS; * Ljeqr.m Merges; + () 25)

Under these constraints, the objective function will
seek for the best way to merge tasks (i.e. the optimized
solution in terms of utilization) in order to reduce the
number of used priority levels while ensuring the respect
of timing properties.

e
. @
E/ Transformation et

Design model

-

Refactored design

&
Transformation é}

interpret Resulis & Re-factoring

model

Figure 6. Refactoring by applying DPMP
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As shown in the Figure 6, from the original design model,
a transformation is defined to call the solver. The solver
executes the linear program and generates the appropriate
output. The solution generated by the linear program will
be interpreted in order to perform the refactoring. This
refactoring permits to solve the problem of insufficient
priority levels for the considered application while
ensuring the respect of timing properties.

VI. EXPERIMENTS

The objective of this section is to evaluate the
proposed refactoring phase. Indeed, this phase and the
previously detailed patterns (EPMP and DPMP) were
integrated in the Qompass-Architect tool. Starting from a
functional description of a real-time application,
Qompass-Architect  automatically  generates  the
corresponding design model satisfying the timing
requirements. In order to evaluate the applicability of the
proposed patterns, we consider as entry point an original
design model describing a classical robotic real-time
application. This design model was generated by the
Qompass-architect tool (see Figure 7). For sake of clarity,
we give a tabular description of the different models. As
depicted on Figure 7, this model consists of five periodic
tasks; positionProcessingTask, power Control Task
ultrasonicSensor ControTask, goalPositionProcessTask,
controlProcessingTask and two shared data resources;
position and goalPosition.

The tasks positionProcessingTask and
ultrasonicSensorControTask have the higher priority
value which is equal to 20. However, power Control Task
has the lowest priority equal to 0. This original design
model satisfies the timing requirements since the
response of the different tasks are lower than their
deadlines.

Starting from this design model, the objective is to
generate the appropriate RTOS-specific implementation
model. One key point of this work is to target several
RTOSs. Consequently, as shown in Figure 8, the first step
is to select a target RTOS from the model library. If the
designer selects MicroC-OSS\I1, the feasibility evaluation
phase verifies whether the original design model is
implementable on the selected one.

2 ModelExplorer 33 EECGRAEBE Y-8 i i . — i
4 B Robot NKTContrl Applicstion — = Period Deadline TimeBudget priority  Blocking  Response
b ?-::, <Package Import> Qompass M Time Time
p» B3 Robot NXTControl_Functionnal
4|3 <GaAnalysisContexts RobotNATCortral_OriginalDesign| positionProcessingTask 20 20 1 20 2 17
b @ PositionProcessingTask N
» @ goalPositionProcessTask 2 ultrasonicSensorControTask 40 40 § 20 0 13
e goalPosionProcessTask 100 100 4 15 2 %
P 0. oksoiicSisrCoptnTek controlProcessing Task 100 100 12 10 0 38
» @ position -
» @ godPosition powerControlTask 300 300 7 0 0 60
Ba design-model v

Figure 7.
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Original design model generated by Qompass-Architect tool
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- . ' -
£ Select RTOS & Feasibility Evaluation ["‘:"' o= éj
Import Target RTOS From Registered Libraries
Select Target RTOS: | -]
RTEMS
MicroC_05-T
AUTOSAR
Mano-RK
- T
Show All RTOS
[ Extensibility Requirement
Reserved Priority Levels : -
® < Back Next = Finish

Figure 8. Select target RTOS from the model library

In that case, as shown in Figure 9, the feasibility
evaluation phase generates an error status for the equal
priority levels test (described in algorithm 1). Indeed, the
tasks positionProcessingTask and
ultrasonicSensor ControTask in the original design model,
given in Figure 7, have the same priority level equals to
20. However, MicroC-OS\II does not allow that tasks
share the same priority level. Consequently, the designer
looks for a solution to this deployment problem using the
button Find a Pattern (see Figure 9).

r ’ A
£ Select RTOS & Feasibility Evaluation (= el

Feasibility Evaluation

@ ERROR:Equal priority levels is not allowed by the selected RTOS

Test Mame Description Status
|Equal Priority | Verifies whether equal priority levelsis allo..  ERROR
Shared Resources i,  Verifies whether the implementation of sha.. OK

Variable Priority Le... Verifies whether variable priority levels is all...  OK

Periodic Task Verifies whether periodic task is allowed by... 0K

Test Scheduler
Priority Levels

Verifies whether the scheduler provided by .. OK
Verifies whether the number of applicative ... OK

Perform Validation

Change Design Model
Change RTOS

Apply Pattern

Mext = Finish

® (=) (o) |

Figure 9. Feasibility evaluation for MicroC-OS\IL
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In that case, the patterns base proposes EPMP pattern
as a potential solution (Figure 10). The application of this
pattern corresponds to the execution of algorithm 2
(defined in section 4.3).

% Select Pattern

Mo

Eqaul Priority Merge Pattern (EPMP)

| @ Lo JI

Cancel ]

Figure 10. Select a pattern from the patterns Base

Then, the framework generates a warning to mention
that a re-validation of the resulting model is required

(Figure 11).

O v o] C—— =

A re-validation of the Refactored Design Model is required

Al

Figure 11. Re-validation request after applying EPMP

The resulting model after applying this pattern is given
in Figure 12. This model consists of only four tasks
having all distinct priority levels and two shared
resources. Indeed, the two tasks positionProcessingTask,
ultrasonicSensorControTask which have the same
priority level are merged to a single task called
positionUltraSProcessingTask. This pattern is applicable

since the merged tasks have harmonic rates (i.e. 40/ 20 =

2;q = 2) and the resulting model satisfies the timing
requirement (i.e. the response time of the different tasks
in the model are lower than their deadlines).
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B Mode! Explorer 3 i, A
4 [ Robot NXTControl Application & Period  Deadline TimeBudget priority  Blocking  Response
, B <Package Import> Qompass Time Time
» B3 Robot_NXTControl_Behavior
+ B3 «GaAnalysisContext= RobotNXTControl_OriginalDesign poﬂuunUTmSProcwimgTask 20 20 15 0 2 17
4 B2 «GahnalysisContexts EPMP : Refactored Design Model &
» [@ PositionUltraSProcessingTask . goa]PositioancessTask 100 100 4 15 2 6
+ [@ goalPositionProcessTask
+ [@ controlProcessingTask contro]Procm'.ngTask 100 100 12 10 0 76
b [@ powerControlTask
, [@ position powerControlTask 300 300 7 0 0 9%
» @ goalPosition

B3 RefactoredDesion Diaaram

Figure 12. Refactored design model by applying EPMP

To show the applicability of the second pattern, we
choose now as a target RTOS RTEMS [25]. In addition,
we assume that the designer for extensibility
requirements limits the number of distinct priority levels
for this application to only 3 (as shown in Figure 13). As
depicted on Figure 14, the feasibility evaluation phase, in
that case, generates an error status for the distinct priority
levels number test (given in algorithm 3). Indeed, the
original design model defines four distinct priority levels;
however, the designer wants to deploy this application
using only three distinct levels.

£ Select RTOS & Fessibility Evaluation = | D e

Import Target RTOS From Registered Libraries
(@ your selected RTOS is: RTEMS

Select Target RTOS:  [RTEMS -

Apply Filter |

Change Design J
Show All RTOS

Reserved Priority Levels : [3 v]

Extensibility Requirerment

®@

< Back MNext > Finish

o |

— )

Figure 13. Select RTOS and set extensibility

In that case, the framework proposes the DPMP as a
way to solve this problem. The application of this pattern
was explained in Figure 6 and corresponds to the
execution of the linear program detailed in section 5.3.
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& Select RTOS & Feasibility Evaluation _ o o |

Feasibility Evaluation

@ ERROR: the selected RTOS does not authorize this number of priority levels

Test Name

Equal Priority
Shared Resources i...
Variable Priority Le...
Periodic Task

Test Scheduler
Priority Levels

Description

Verifies whether equal priority levels is allo...

Verifies whether the implementation of sha...
Verifies whether variable priority levels is all...
Verifies whether periodic task is allowed by...
Verifies whether the scheduler provided by ...
Verifies whether the number of applicative ...

m

Status
aK

aK

ak

ak

aK
ERROR

— = —

[ < Back ” Mext = | | Finizh

I

Cancel

Figure 14. Feasibility evaluation for RTEMS

Ho.

Column name

Derivity Lower bound

Upper bound

1 TASKS[1]
2 TASKS[2]
3 TASKSIS]

4 [TRSXS[2]

5 TRSKS[S]

6 Merge[1,1]
7 Mergell, 2]
& Merge[l,3]
9 Mergell, 4]
Merge([1,5]
Merge[2,1]
Merge[2,2]
Merge[2,3]
Merge[2, 4]
Merge([2,5]
Merge[3,11
Merge[3, 2]
Merge[3, 3]

19 [Hexrge[3, 2]

Rep[l]
Repl2]
Rep(31

Mergel3,51
Merge[4,11
Merge[4,2]
Merge[4, 3]
Merge[4, 4]
Merge[4,5]
Merge[5,11
Merge[S, 2]
Merge[5, 31
Merge[S, 21
Merge[5,5]

=T T T T I T Y I T 1 = T = T = = I = T = = B B T =1 N S

E O T S T N Y T R T T S SO SN ] I

34 [Rep[2]

35 Repl[5]

OCDDDOCO0OODOOOO0OODORO0ODOD0O00O0OD0000DO0O0OR

Figure 15. Output of the linear program
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Figure 15 shows an excerpt from the output file of the
linear program describing the DPMP pattern. By
executing the linear program for the considered problem,
the solver confirms that a solution exists. This solution
corresponds to the merge of the tasks 3 and 4 (Merge [3,
4] = 1 in figure 15) which correspond respectively to the

tasks goal PositionProcessTask and
control ProcessingTask. Indeed, the
controlProcessingTask is absorbed by the task
goal PositionProcessTask. Consequently, the

controlProcessingTask corresponds to a deleted task
(TASKS[4] =0 in Figure 15) and thus its response time is
equal to 0 (Rep [4] =0 in Figure 15).

This solution was interpreted by the framework to
generate the refactored design model given in Figure 16.
We can see from this figure that the resulting model
consists of four tasks and three distinct priority levels.
This model still satisfies the timing requirements since
the response times of the different tasks are lower than
their deadlines.

VII. CONCULSION AND FUTURE WORK

In this paper, we have shown that timing verification
of a real-time design model requires an abstraction of the
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model-driven context, this abstraction leads to a
consideration of software assumptions to keep the RTOS-
independence of the design model. This may cause
deployment problems when these assumptions are not
verified for the target RTOS. In such situation, this work
proposes a pattern-based approach when a deployment
problem appears with the aim to solve the latter. This
approach performs the refactoring of the original design
model while maintaining its portability and the respect of
timing properties. The automation of the proposed
approach permits to evaluate its applicability on a robotic
case study.

As perspective of this work, we aim at considering
other problems such as timer granularity, shared
resources implementation, etc. and proposing for each
particular problem a software pattern to enrich our pattern
base. In addition, we can extend this work by considering
the behavioral aspect and thus other problems must be
considered and consequently additional software pattern
must be defined. Another possible perspective of this
work is to propose software patterns to perform the
refactoring of the original design model with the aim to
optimize non-functional criteria (other than timing
properties) such as memory energy, etc.

underlying Real Time operating System (RTOS). In a
& Model Explorer 51 EZABREs =0
4 [0 Robot_NXTControl_Application
B PackageImport> Qompass Period Deadline Time Budget  priority Blocking Response
B3 Robot_NXTControl_Behavior Time Time
B3 sGahnalysisConteds RobotMXTControl OriginalDesign postionProcessngTase 2 0 7 0 3 T
4 B «GaknalysisConteds DPMP : Refactored Design Model (edensibility =3)
2 PositionProcessingTask ultrasonicSensorControlTask 40 40 H 0 0 15
] u?trascm(.Senschon'.m!!ask goalPosifionControProcessTask 100 100 16 5 b 40
2 goalPositionControProcessTask
2 powerControlTask powerControlTask 300 30 1 0 0 60

3 position
B} RefactoredDesign Diagram -

Figure 16. Refactored design model by applying DPMP
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