
A Structured P2P-based Approach to Semantic
Web Services Publication and Discovery

Huayou Si

School of Computer Science and Technology, Hangzhou Dianzi University, 310018, Hangzhou, China
Email: sihy@hdu.edu.cn

Yun Zhao

School of Information Engineering, Zhejiang Agriculture and Forestry University, 311300, Hangzhou, China
Email: shilyze@gmail.com

Abstract—Semantic Web Service (SWS) technology is
developed to overcome the shortcomings of traditional
standards, such as WSDL and UDDI, and enable maximal
automation in all aspects of Web Service provision and use.
But great improvement of capability in SWS-based service
discovery is still desired. To address this issue, we present a
distributed approach for Semantic Web Service publication
and discovery by leveraging structured P2P technology. In
this paper, first, we introduce a semantics-based service
matching method. Then, in order to apply the method to our
approach, we propose several concepts and algorithms. Next,
we present a method to publish SWS and implement it as a
SWS registry. Finally, we design an approach to organize
the nodes with the registry into a structured P2P network to
cooperatively publish and discover SWS. We also conduct
experiments to validate our approach and the results
demonstrate its scalability and effectiveness.

Index Terms—Semantic Web Service (SWS), Service
Discovery, Ontology, Structured P2P

I. INTRODUCTION

As Web Services are emerging as a dominant
paradigm for constructing and composing distributed
business applications and enabling enterprise-wide
interoperability, some standards, such as WSDL (Web
Services Description Language) and UDDI (Universal
Description, Discovery, and Integration), are developed
and accepted for Web Service description, publication
and discovery [1]. These mainstream standards, which are
based on XML, just specify syntactic interoperability, not
the semantic meaning of messages [38]. Search requests
for Web Services based on these standards are generally
processed according to keyword and categorization.
Although such syntax-based approaches make them
support automatic invocation of Web Services, it is
difficult to guarantee automatic service discovery.
Therefore, with the wide deployment of Web Services,
automatic service discovery has obtained the academic
and industry’s attention currently.

To help address this issue, Semantic Web Services
(SWS) technology is developed. SWS technology is the
result from the combination of Web Service and
Semantic Web technologies. It adopts Semantic Web

technology to describe Web Services semantically so as
to enable maximal automation in all aspects of Web
Service provision and use, such as automatic service
discovery. Currently, the relevant standards and
technology of SWS have been developed, such as OWL-
S [6], WSMO [39], and SAWSDL [40], which supply
Web Service providers with a core set of markup
language to semantically describe the properties and
capabilities of their Web Services in unambiguous,
computer-interpretable form. In 2008, Daniel
Bachlechner [2] conducted an investigation on SWS
based on a comprehensive Delphi study. One of his
results indicates that SWS-based service discovery is
urgent and its capability should be improved greatly in a
few years.

To publish and discover SWS, some approaches [13,
23-24] have been proposed to extend UDDI to process
semantic information. These approaches take UDDI just
as storage by its tModel mechanism to store semantic
description of SWS and even the related ontological
concepts. They greatly increase the burden of UDDI
registry. So, a dedicated semantic registry standard and
technology is desired [14-15]. Accordingly, we proposed
and implemented a SWS registry in our previous work [5].
Similar to the approaches in works [14, 15, 16, 27], as a
centralized approach to SWS publication and discovery,
it will become a bottleneck of the whole system and
would cause single point of failure along with the wide
deployment of Web Services.

Consequently, in this paper, we present a distributed
approach to SWS publication and discovery by
leveraging structured Peer-to-Peer (P2P) network. In our
approach, the computers for SWS publication as
registries constitute a P2P network to maintain the
concepts in related domain ontologies and service
ontologies to facilitate SWS discovery. When a requestor
submits a semantic query for desired services, the P2P
network can effectively obtain semantically qualified
services. Our main contributions in this paper can be
summarized as follows:

 We present a semantic-based service matching
method for SWS discovery and taxonomy for
qualified services.

 In order to discover qualified SWS in open

1930 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1930-1940

distributed environment based on our service
matching method as mentioned above, we propose a
method to publish service ontologies on structured
P2P network.

 We design an algorithm for SWS discovery on
structured P2P network.

Moreover, we conduct experiments to validate our
approach. Their results demonstrate that it is scalable,
effective and has strong capability of callback.

The rest of the paper proceeds as follows. Section 2
presents overview of our approach. Section 3 discusses
the basic idea in our approach. Section 4 discusses
several algorithms to be used in our approach to match
qualified SWS. Section 5 firstly presents a corresponding
method to publish SWS as a centralized registry. Then,
based on the registry, it presents our P2P-based approach.
Section 6 conducts experiments to validate the approach.
Section 7 presents the related work. Section 8 draws a
conclusion and our future work.

II. RELATED TECHNIQUES AND OVERVIEW OF
OUR APPROACH

A. General Service Discovery Process
Service discovery usually refers to finding out the

desired services for requestors in a given way from a
number of published services. In general, first, service
requestors submit the properties of their desired services
as queries (or requirements) to a service registry. Then,
the registry selects the services from its repository. Each
property of the services selected must be consistent with
the corresponding property in queries respectively.

As far as service properties are concerned, they can be
divided into functional and non-functional properties.
Functional properties are fundamental, which include
“Input”, “Output”, “Precondition”, and “Result”, etc.
Non-functional properties refer to QoS (quality of
service), which can be further divided into static and
running-time QoS. Static QoS refers to availability,
reliability and security, etc., while QoS at run time refers
to response time, execution time, etc.

In general, a reasonable process for service discovery
can be listed as follows:

1. According to the query of requestor, service registry
finds out all the services as set S, which functional
properties meet the corresponding query.

2. Checks static QoS of each service in set S. If any
QoS of a service in set S does not meets related
requirements, removes it.

3. For each remaining services in set S, tests its QoS at
run time and determines whether they meet
corresponding requirements and removes the
incompetent one.

4. Classifies the remainders in set S in accordance with
a given taxonomy, and then recommends them to
the requestor.

In this paper when implementing our approach as a
prototype, we just focus on two functional properties of
web service, i.e., Input and Output. We suppose that our
distributed registry just processes semantics of Input and

Output when service descriptions are submitted to our
registry. We also suppose that, once receiving a query,
our registry returns a set of service descriptions URLs of
qualified services for requestor. With the URLs, we can
further check the other requirements in query. But they
are beyond the scope of our concerns in this paper.

B. Structured P2P Technique
In our approach, we publish SWS by leveraging Peer-

to-Peer (P2P) overlay networks, which is an efficient
distributed technology to share resources of each node in
an open and large-scale network environment.

Peer-to-peer (P2P) networks are distributed systems,
which consists of large numbers of autonomous nodes
(also called peers) and allows the sharable resources of
each node to be accessed by others in an open distributed
environment. P2P systems usually do not need any
hierarchical organization or centralized control. They
overcome the deficiencies of centralized registration
system and possess the properties, such as fault-tolerance,
self-organization, and scalability [41]. According to
different resource lookup mechanisms, P2P networks can
be classified into two categories: Structured and
Unstructured. Unstructured P2P networks organize nodes
into a random graph and use flooding or random walks on
the graph to query sharable resources provided by some
nodes. In most cases, the routing styles are inefficient in
large-scale network. Structured P2P networks usually
organize the nodes into an orderly graph in a systematic
way. For any sharable resource on any node, they can
assign a given node responsibility for it. Thus, structured
P2P can achieve very efficient lookup mechanism so that
it can provide very good scalability.

For example, as a classical structured P2P technique,
Chord [4] uses consistent hashing to assign a key to each
node in system. Then, based on order of the keys, Chord
organizes the nodes into an orderly ring. For a sharable
resource r with property p in any node in Chord, using
the same consistent hashing, Chord assigns the property p
of the resource r a key k and locates a given node N,
which has a smallest key that is bigger than k. So, it saves
the property p and the resource r as a pair <p, r> on the
node N. This process can be called resources publication.

Therefore, given a property p of a resource, according
to the key of property p, Chord can easily locate the node
N which is assumed responsibility for the key. Then, it
can take out all the pairs which involve in the property p
on the node N to further find out the corresponding
resources. This process can be called resources discovery.

Chord's lookup mechanism is very effective and can
find data using only log(n) messages, where n is the
number of nodes in the system. In practice, it is provably
robust in the face of frequent node failures and re-joins. It
can provide very good scalability and failure resilience.

Because of Chord with these strengths of resource
publication and discovery, we apply it to our approach for
SWS publication and location.

C. Overview of Our Approach
In our approach, each P2P node is taken as service

provider which provides many SWS services, or SWS

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1931

© 2014 ACADEMY PUBLISHER

Registry where many services register. When service
ontology to semantically describe a deployed service is
created in accordance with a standard, such as OWL-S
[6], and locates in or published to a P2P node, i.e., an
SWS Registry represented as a solid circle in Figure 1, it
processes the service ontology as follows:

 First, the registry parses the service ontology and
extracts all the semantic information it needs.

 Then, the registry re-describes the service with SWS
Model Ontology we designed, and loads (or creates
if necessary) corresponding local SWS ontologies to
store the service’s re-description.

SWS Model Ontology and SWS ontology will be
explained in detail in section 5 in this paper.

Then, as mentioned above, we apply structured P2P
Chord to compose all SWS registries as a Chord P2P
network for service discovery collaboratively, as shown
in Figure 1.

Figure 1. Overview of our approach

We name the P2P network as Chord Overlay Network
(CON), which is used to dynamically maintain the
information of published web services to facilitate SWS
discovery.

When an SWS registry joins a CON, the registry
publishes the related information of the local SWS
ontologies to CON. Once a requestor submits a semantic
query for desired services to any registry in CON, all the
registries in CON can effectively cooperate with each
other to find out which SWS ontologies may contain the
qualified services as much as possible. Then, the registry
which receives the query cooperates with relevant
registries to reason out all qualified services from these
SWS ontologies.

III. SERVICE MATCHING METHOD

A. Related Concepts and Definitions
With SWS technology, the types of a web service’s

inputs and outputs are always denoted as classes (i.e.,
concepts), which are defined in related domain ontology.
In this case that just inputs and outputs of SWS are
considered, in order to conveniently describe the service
matching rule, we format a service’s inputs with a set of
ordered pair named as Input-Type-Pair Set (ITPS). An
ordered pair in ITPS presents an input-type and the
number of its instances (i.e., inputs), which are necessary
to a service. Similar to ITPS, Output-Type-Pair Set
(OTPS) is used to format service outputs. For example, if

a service requires two horses and a dog as its inputs,
which returns a cow as its output, its ITPS is {<horse, 2>,
<dog, 1>}, and its OTPS is {< cow, 1>}.

In practice, the query for desired service can be
submitted in the same format of ITPS and OTPS. For
example, if a requestor needs a service, which inputs is a
horses and a dog, while outputs is a cow, then the
requestor’s query can be described as ITPS {<horse, 1>,
<dog, 1>} and OTPS {< cow, 1>}.

In addition, we have to refer to two definitions, which
are discussed in our previous work [5], and re-define
them as follows:

 Class-Up-Closure (CUC): if C is a class defined in
ontology, C’s CUC is a class set denoted as CUCC,
which includes C and all parent and equivalent
classes of any class in CUCC. CUCC is formally
defined as follows:

' '

' '

{ | () ((

(() ())))}
C CCUC cls cls C C C CUC cls

parentCls C equivalentCls C

= = ∨ ∃ ∈ ∧ ∈

∪
(1)

where function parentCls(C’) returns all the super-
classes of C’ as a set in a given ontology, and
function equivalentCls(C’) returns all the equivalent
-classes of C’ as a set in the ontology.

 Class-down-closure (CDC): if C is a class defined
in ontology, C’s CDC is a class set denoted as
CDCC, which includes C and all subclasses and
equivalent classes of any class in CDCC. Similar to
CDCC, CDCC is formally defined as follows:

' '

' '

{ | () ((

(descendantCls() ())))}
C CCDC cls cls C C C CDC cls

C equivalentCls C

= = ∨ ∃ ∈ ∧ ∈

∪
(2)

where function descendantCls (C’) returns all the
descendant classes of C’ as a set in a given ontology.

B. Service Matching Rule
As matter of fact, subsumption-relationship between

concepts is particularly important in ontology, which is
always defined clearly, or can be reason out. Therefore,
the service matching method can adopt the idea that a
sub-concept always contains all the information of its
super-concept. For example, if a service requires a
“horse” as one of inputs which type is “horse”, it is
appropriate to give it a “white horse”; analogously, if we
need a service which can generate a “horse”, a service is
appropriate which can return a “white horse”.

Thus, given the ITPS and OTPS of a service S and the
ITPS and OTPS of a query Q, we can determine whether
or not service S is a qualified service following the
service matching rule below:

 Service Matching Rule: If S is a qualified service, for
each input-type (named as itp) of Q, the CUC of itp
must contain an input-type of S, and the corresponding
figure of itp is no more than the quantity of the
relevant input-type of S. At the same time, for each
output-type (named as otp) of the query, the CDC of
otp must contain an output-type of S, and the
corresponding quantity of otp is no more than the
quantity of the relevant output-type of S.

1932 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

In practice, subsumption-relationship may exist
between input-types (or output-types) of a service or
query. For example, the ITPS of a service is
{<white_horse, 1>, <horse, 3>, <animal, 2>}. In that case,
in the implementation of the matching rule, some
strategies need to be considered, such as sorting the
relevant concepts semantically. Here, we do not discuss it
in details.

C. Classification of Qualified Services
Usually, for a service query, a matching method will

discover a number of qualified services. To recommend
the discovered services in reasonable order, we need to
measure the matching degree of a discovered service.
Based on the service matching method as mentioned in
section 2.2, we design the taxonomy to classify the
services returned, shown in Figure 2.

Figure 2. Taxonomy of matched services

We assume that the number of inputs (or outputs) of a
qualified service is inQS (or ouQS), and the number of
inputs (or outputs) of the service desired by requestor (i.e.,
the query of requestor) is inDS (or ouDS).

If inQS and ouQS are respectively equal to inDS and
ouDS, the service is a Complete Match Service or a
Conceptual Match Service. Furthermore, if any input
(output) of the desired service, which type is T, is
matched to an input (output) of a qualified service, which
type is T too, the service is named Exact Match Service.
This is to say, the ITPS and OTPS of the service is
respectively identical to ITPS and OTPS of query. If a
qualified service is not an Exact Match Service, just
because there is at least one input (output), which
corresponding input (output) of desired service is not the
same type, but the two types are equivalent classes, the
service is named Equivalent Match Service. In this case,
if a qualified service is not an Exact or Equivalent Match
Service, the service is named Conceptual Match Service.
Here, Exact Match Service and Equivalent Match Service
are called Complete Match Service together.

If inQS is not equal to inDS or ouQS is not equal to
ouDS, the qualified service is named Consistent Match
Service. Furthermore, if inQS is equal to inDS and ouQS
is greater than ouDS, the service is named Big Match
Service. This means that the service can produce
unnecessary results. If inQS is greater than inDS and
ouQS is equal to ouDS, the service is named Small Match
Service. This means that, to call the service, requestor
needs to provide at least one additional input. If inQS and
ouQS are respectively greater than inDS and ouDS, the
service is named Related Match Service.

Obviously, it is reasonable to recommend the
discovered services to requestor in the order as follows:

Exact, Equivalent, Conceptual, Big, Small and Related
Match Service, which reflect the matching degree of a
discovered service in descending order.

IV. ALGORITHMS TO GENERATE CUC AND CDC

According to our service match rule, in order to
implement our service matching method, we have to
obtain the CUC of every concept that are used as input-
type in query’s ITPS and the CDC of every concept used
as output-type in query’s OTPS from related domain
ontology or given environment. As matter of fact, in an
open distributed environment, such as Internet, the
complete definition of an ontological concept maybe
involves several domain ontologies, which are developed
and maintained by different developers. As the common
situations, a concept may be defined based on another
concept which is defined in a different ontology, or a
concept is re-defined incrementally in other ontologies.
Therefore, it is unrealistic or even impossible to obtain all
semantics of a concept by parsing or reasoning all
ontologies. For the same reason, it is unrealistic to parse
out all the equivalent and super (or sub) concepts of a
concept as its CUC (or CDC).

However, we still design an algorithm, which can as
much as possible reason out all the equivalent and super
(or sub-) concepts of a concept as its CUC (or CDC). The
algorithm is shown in Figure 3 and 4, which is used to
obtain the CUC of a concept.

Figure 3. Algorithm getCUC to get CUC for a concept from

a given ontology

Using algorithm getCUC in Figure 3, we can get the
CUC of a given concept cpt from a given domain
ontology O. Its strategy is that:

First, from ontology O, we reason out all equivalent
concepts of cpt as a list L which contains cpt. Then, one
by one take out a concept from L and reason out its all
directly defined super-concepts from O as set S. Next,
take out each concept from S, reason out all equivalent
concepts and put them into L. So it iterates on the last two
steps until we take over each concept in L.

Some detailed explanations in Algorithm getCUC in
Figure 3 are listed as follows:

1. Algorithm getCUC
2. Input otlg, cls: otlg is the ontology from which CUC of cls is

reason out
3. Output cuc: CUC of cls
4. Begin
5. define a List as inList;
6. inList.addAll(getAllEqu(otlg,cls));
7. For each element in inList as clsC Do
8. superClasses = getSuperClasses(otlg, clsC);
9. For each element in superClasses as desc Do
10. equv=getAllEqu(otlg, desc);
11. For each element from equv as acls Do
12. If any one in inList is not identical to acls Then
13. put acls into inList;
14. End If
15. End Do
16. End Do
17. End Do
18. Return inList;
19. End

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1933

© 2014 ACADEMY PUBLISHER

1. In the step 6, function getAllEqu reasons out all the
equivalent concepts of cls as a set from ontology
otlg. This is to say, in the context of ontology otlg,
the set returned contains cls and all equivalent
concepts of any concept in the set. And then, the set
is putted into list inList.

2. In the step 9, function getSuperClasses parses out all
the direct super-concepts of cls from ontology otlg.

Figure 4. Algorithm getAllCUC

The algorithm getAllCUC in Figure 4 attempts to find
out as much as possible relevant domain ontologies to
reason out a concept’s CUC based on the algorithm
getCUC. The strategy is that:

For a concept C, if we reason out a super-concept D
from ontology onto where C is defined, but D is not
defined in onto, we need to further obtain the CUC of D
from the ontology where D is defined. So it iterates on.
Naturally, the CUC of D is part of the expected CUC.

If we replace function getSuperClasses in step 9 in
algorithm getCUC with a function which can obtain a
concept’s subclasses, the whole algorithm will return the
CDC of a given concept. Here, the new algorithms are
named getCDC and getAllCDC respectively.

In fact, if we take function getCUC and getCDC as the
operating point, the times to call getCUC or getCDC is
the number of elements in theCnct, which is a list,
defined in algorithm getAllCUC.

V. ARCHITECTURE OF OUR APPROACH

With the idea to match service semantically as mention
above, first, we design a centralized SWS registry. And
then, we apply it to our desired distributed registry. In the
distributed registry, each centralized registry can
collaborate with each other to publish and discover
services for requestors.

A. Architecture of an SWS Registry
As an SWS registry (also as a service provider), its

architecture can be described in Figure 5. This
architecture consists of four main parts included in the
doted-line box, i.e., SWS Publication Broker, SWS
Discovery Broker, SWS Ontologies and Mapping Table.

Figure 5. Architecture of a semantic web service registry

In compliance with a standard, such as OWL-S [6], a
deployed-service provider will use concepts defined in
related domain ontologies to describe the service. The
service description is named service ontology. When
service ontology is submitted to an SWS registry, the
registry creates one SWS Ontology for each concept
which is used to describe the service. These SWS
Ontologies are used to store a service individual
corresponding to the service ontology. For example, a
web service is described using concepts C1 and C2.
When its related web ontology is published to our registry,
two SWS Ontologies are created which respectively
correspond to the concepts C1 and C2. Furthermore,
based on SWS Model Ontology, an individual named I
representing the service are constructed and stored in the
two SWS Ontologies. Of course, if one of the SWS
Ontologies is existing which correspond to the concept
C1 or C2, we just load it and store I in it. Thus, in our
registry we must maintain a Mapping Table to describe
the relationship between the concepts and their
corresponding SWS ontologies.

Suppose that we want to get a service which is
described using concepts C1 and C2, according to the
Mapping Table, we just need to randomly select one
SWS Ontology which corresponds to the concept C1 or
C2 and reason out the qualified services.

In practice, when implementing our SWS registry, we
only use service’s input-types to determine in which SWS
ontologies the service individual is stored. For example,
if a service’s input-types are horse and dog, according to
the Mapping Table in a registry, the corresponding SWS
ontologies of the concepts horse and dog are horseSWSO
and dogSWSO respectively, we store the service
individual in the two SWS ontologies. Therefore, we can
draw an important conclusion as follow:

 Conclusion 1: for the desired ITPS and OTPS as
query, an appropriate service only exists in these
SWS ontologies, each of which corresponds to at
least one concept in CUC of itp based on Mapping
Table. The itp refers to any given input-type in ITPS.

Since every appropriate service must meet
requirements of submitted ITPS as query, it must meet
every ordered pair of the ITPS. We suppose that the
input-type of an ordered pair in the ITPS is D. Based on

1. Algorithm getAllCUC
2. Input cls: concept which CUC should be parsed out
3. Output cuc: CUC of cls parsed out from all relevant ontology
4. Begin
5. define three List objects as closure, theCnct and theCuc;
6. put cls into theCnct;
7. For each element from theCnct as clsC in sequence Do
8. parse out the ontology where clsC defined as onto;
9. theCuc= getCUC(onto,clsC);
10. For each element from theCuc as acls Do
11. If any element in closure is not identical to acls Then
12. put acls into closure;
13. parse out the ontology where acls defined as ot;
14. If onto is not identical to ot Then
15. put acls into theCnct; End If
16. End If
17. End Do
18. End Do
19. Return closure;
20. End

1934 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

our service matching method, every appropriate service
must have an input-type (named as T) which is an
element of CUC of D. And then, based on our service
publication rules, the appropriate service must be stored
in the SWS ontology which corresponds to the concept T.
Therefore, we reach the conclusion. In fact, our SWS
Discovery Broker is based on the conclusion.

B. Architecture of a Node in Distributed Registry
In order to make a node with an SWS registry to

collaborate with other nodes to find all the qualified
services for requestors, the architecture of a node is
designed as a peer in CON and shown in Figure 6. In a
peer, there are a Mapping Table and a certain number of
SWS Ontologies and five brokers, i.e., Publication Broker,
Discovery Broker, Chord Node Broker, Service Matching
Broker and Inference Engine Broker. In addition, there
may be several domain ontologies and an SWS Model
Ontology.

Figure 6. Architecture of a peer in distributed registry

As far as SWS Ontologies, SWS Model Ontology,
domain ontology, Publication Broker, and Mapping Table
are concerned, they work in the same way as in a single
registry. That is, Mapping Table is composed of two
columns, i.e., a concept and its corresponding local SWS
ontology (represented by its URL). SWS Model Ontology
and domain ontologies may well locate in other node.
Just their concepts are quoted by the local SWS
Ontologies.

 Inference Engine Broker is used to reason out the
CUC or CDC of a concept from a given ontology.
We implement it as web service which encapsulates
the algorithm getCUC (and getCDC) in Figure 3.
Therefore, with the broker, if the algorithm
getAllCUC in Figure 4 (or getAllCDC) wants to get
the CUC (or CDC) of a concept from ontology O, it
needs to parse out the peer B where ontology O
locates and remotely calls the broker in peer B.

 Service Matching Broker encapsulates our service
matching rule as discussed above as a web service.
Once ITPS and OTPS of query and relevant SWS
ontology are given, it reasons out qualified services.
In our implementation, when the CDC of an output-
type and the type’s corresponding quantity are given,
it reasons out the suitable services as intermediate

results from related SWS ontology.
 Chord Node Broker is designed based on Chord as
mentioned above. With the broker, we can publish a
value based on an ID. With an ID, a node in CON
can obtain the corresponding values published on
CON. Thus, with the broker, once a registry joins a
CON, it needs to publish its Mapping Table, which
regards the concept in the Mapping Table as ID and
its corresponding local SWS ontology URL as value.
Two relevant functions of the broker must be
designed as follows:
a) pubMapTable(a_concept,SWS_ontology_URL),

the function is used to publish an SWS Ontology
based on a concept. It is necessary when a
registry joins a CON and its Mapping Table is
not empty. It publishes every SWS Ontology
based on its corresponding concept in a node.

b) lookupSWSOnto(a_concept), the function is
used to get all the SWS Ontologies which are
published based on the a_concept by the
function pubMapTable.

Based on Conclusion 1, with the brokers in Figure 6,
the algorithm of service discovery can be designed and
shown in Figure 7. The strategy is that:

1. First, we take out an input-type ipt from the ITPS of
query and based on ipt find out all the SWS
ontologies from CON. The qualified services just
exist in the SWS ontologies.

2. Then, based on an output-type otp in OTPS, from
the SWS ontologies we parse out the services which
has the outputs in compliance with otp.

3. Finally, we determine whether the services are
qualified.

In the service discovery process, if we record matching
information in detail, the returned services can be
classified based on our taxonomy and recommended to
requestor. In addition, if we just view the accessing
network as the operating point and take an accessing
CON as one time access of network, the number T of
accessing network can be described as follows:

|ITPSofQ| |OTPSofQ|

1 1
| | | |

| | | |

i i
i i

T theCnct theCnct

inCuc swsOntSet
= =

= +

+ +

∑ ∑ (3)

In the formula, ITPSofQ, OTPSofQ, inCuc and
swsOntSet are the corresponding sets in the algorithm in
Figure 7. theCnct denotes the list theCnct in the algorithm
in Figure 4 when relevant CUC (or CDC) is parsed out.

In practice, in order to reduce the T in formula 3, when
implementing our approach, we slightly modify the
service publication rule as follows: After a peer A parses
out the ITPS and OTPS from a published service
ontology, if the peer has not an existing SWS ontology
which corresponds to an input-type itp in the ITPS, the
peer A firstly call the function lookupSWSOnto as
mentioned above with itp as parameter to get an SWS
Ontology swsOnto. And then, the peer A parses out the
peer B where swsOnto locates and sends the ITPS and
OTPS to the peer B to store them into swsOnto. If the

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1935

© 2014 ACADEMY PUBLISHER

function lookupSWSOnto does not find out a related SWS
Ontology, the peer A has to create a new one.

VI. IMPLEMENTATION AND EVALUATION OF OUR
APPROACH

Supposed that domain and service ontologies are in
compliance with the standards OWL [7] and OWL-S [6]
respectively, adopting the development kits OWL API [8]
and open-chord [9], we implement our approach. And
then, we use OWLS-TC3 [10] as experimental data to test

it. OWLS-TC3 provides more than one thousand OWL-S
service ontologies and dozens of relevant domain
ontologies. It is intended to support the evaluation of the
performance of OWL-S service matchmaking algorithms.

When publishing all service ontologies in OWLS-TC3,
we test our approach with the 15 queries shown in table 1,
which are constructed and described with the concepts
defined in domain ontologies in OWLS-TC3 in our
previous work. Table 2 shows the number of returned
services with their types according to our taxonomy.

Figure 7. Algorithm: serviceDiscover

TABLE 1.
THE QUERIES CONSTRUCTED

Query ITPS OTPS
Q1 {<University,1>} {<Professor-In-Academia,1>}
Q2 {<Geographical-Region,2>} {< Icon,1>}
Q3 {<BreadOrBiscuit,1>} {<RecommendedPriceInEuro,1>,<TaxedPriceInEuro,1>}
Q4 {<Title,2>} {<quality,1>,<TaxedPrice,1>,<ComedyFilm,1>}
Q5 {<MP3Player,1>,<PortableDVDPlayer,1>} {<Price,1>}
Q6 {<Author,1>} {<RecommendedPrice,1>,<Monograph,1>}
Q7 {<Bicycle,1>,<Auto,1>} {<TaxedPrice,1>}
Q8 {<Government,1>,<Degree,1>} {<Scholarship,1>}
Q9 {<Title,3>} {<TaxFreePrice,1>,<quality,1>,<ActionFilm,1>}

Q10 {<Country,1>,<City,1>} {<Hotel,1>}
Q11 {<ShoppingMall,1>} {<Price,1>,<Calendar-Date,1>,<Camera,1>}
Q12 {<MP3Player,1>,<PortableDVDPlayer,1>} {<RecommendedPrice,1>,<TaxedPrice,1>}
Q13 {<Award,1>} {<Duration,1>,<Funding,1>}
Q14 {<GroceryStore,1>} {<PreparedFood,1>,<Quantity,1>}
Q15 {<User,1>,<Science-Fiction-Novel,1>} {<Review,1>,<RecommendedPrice,1>}

In fact, unlike the current approach (M1), in our
previous work [11] we also implement a P2P approach
(M2) to SWS discovery, which is based on the similar
service matching rule. The difference is that M2
publishes the concepts with the relationships between
them defined in domain ontology to P2P network. At the
same time, it also publishes services, input-types and
output-types with the relationships between them defined
in service ontology. Service discovery is based on
retrieving relevant values from P2P network, but not on

ontology inference. The same is that the both approaches
need to repeatedly access network in the process of
service discovery. With the same query, their numbers of
accessing network may be different. Obviously, as the
similar service semantic-matching methods, given a
query, in the case of discovering the same results, if a
method has the relatively small number of accessing
network, it mean that it uses very limited network and
computing resources to process a query, so it is superior
to the other.

1. Algorithm serviceDiscover
2. Input ITPSofQ, OTPSofQ: ITPS and OTPS of query
3. Output services: available services discovered
4. Begin
5. Randomly takes out an input-type from ITPSofQ as aIn;
6. With the function getAllCUC(aIn) in Figure 3, get CUC of aIn as inCuc;
7. Randomly takes out an output-type from OTPSofQ as aOut;
8. With the function getAllCDC(aOut) as mentioned above, get CDC of aOut as outCdc;
9. Define a set as swsOntSet;
10. For each concept cpt in inCuc Do
11. With the function lookupSWSOnto(cpt) as mentioned above, get all the relevant SWS Ontologies from

CON. And put the SWS Ontologies into swsOntSet.
12. End Do
13. Define a set as interServ;
14. For each SWS Ontology swsOnt in swsOntSet Do
15. Parse out the peer Pr where swsOnt locates;
16. Remotely call Matching Broker of Pr with the parameter outCdc, from swsOnt reason out the services which

one output-type is an element of outCdc;
17. Put every service reasoned out just now with its ITPS and OTPS into interServ;
18. End Do
19. Define a set as services;
20. For each service sv in interServ Do
21. ITPSofS, OTPSofS= getServInfo(sv);
22. If isMatchable(ITPSofS, ITPSofQ, OTPSofS, OTPSofQ) Then
23. Put sv into services; End If
24. End Do
25. return services;
26. End

1936 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

TABLE 2.

MATCHED SERVICES

QUERY Complete Conceptual Consistent Total
Exact Equivalent Big Small Related

Q1 1 0 2 0 0 0 3
Q2 1 0 1 0 0 0 2
Q3 1 0 0 0 0 0 1
Q4 0 0 0 0 0 0 0
Q5 3 0 3 5 0 0 11
Q6 1 0 3 0 0 0 4
Q7 1 0 1 0 0 0 2
Q8 3 0 1 1 0 0 5
Q9 0 0 0 0 0 0 0

Q10 2 0 0 0 0 0 2
Q11 1 0 0 0 0 0 1
Q12 2 0 0 0 0 0 2
Q13 1 0 0 0 0 0 1
Q14 1 0 0 0 0 0 1
Q15 1 0 1 0 0 0 2

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

T

M1

M2

Figure 8. Number of the Access to Network of the Approaches

TABLE 3.

EXECUTION TIME OF EACH APPROACH

Scales 100 200 300 400 500 600 700 800 900 1000
M1 1663 1696 1698 1752 1774 1898 1930 1959 1963 1981
M2 244 249 252 254 257 268 274 284 294 320
M3 809 925 1041 1178 1329 1488 1622 1729 1912 2071

1

1.2

1.4

1.6

1.8

2

2.2

2.4

100 200 300 400 500 600 700 800 900 1000

published service scale

t
i
m
e
(
m
s
) M3

M2

M1

Figure 9. Relative growth rate of execution time of the approaches

Publishing all service ontologies in OWLS-TC3, with
the 15 queries as mentioned above, the two approaches
are tested. The results are shown in Figure 8. The vertical
axis represents T (for M1, defined in formula 1.1), i.e.,
the number of the access to network. From Figure 8,
obviously we can find the M1 is better than M2. With the
same query, it requires less network access than M2.

In addition, in previous work [5] we have implemented
a centralized SWS discovery approach (M3) based on the

similar service matching rule too. The Table 3 indicates
the time changes of service discovery of the three
approaches (i.e., M1, M2 and M3) along with the
increasing number of publishing services. Each execution
time (in milliseconds) of each approach is the average
time that the 15 queries are executed twice. For the M1
and M2 in the testing process, its P2P network consists of
10 nodes in the computer where M3 is tested.

If the execution times of an approach in different

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1937

© 2014 ACADEMY PUBLISHER

scales are divided by the execution time of the approach
in the scale of 100 services published, we will get the
relative growth rate of execution time of the approach,
which are shown in Figure 9.

From Figure 9, obviously we can find the current
approach M1 and M2 have almost similar relative growth
rates of execution time. They have strong scale efficiency.
Unlike M3, as distributed approaches, they are unlikely to
become a bottleneck of the system. Further, if we take
into account the testing results in Figure 8, we can
speculate the current approach M1 will be superior to M2
in large and real distributed application environment.

Moreover, since the approach is based on Chord, it
inherits many advantages of the structured P2P technique,
such as robustness, efficiency, extendibility, etc.

Consequently, it can be seen that the approach in the
paper is a weight-light and effective distributed method to
publish and discover SWS. Although, it has a drawback
that the returned service is not always the service
requestor needs, since the services with the same inputs
and outputs do not necessarily have the same
functionality. In fact, the semantic description of input
and output minimizes this risk. Besides, based on the
results, we can further process the other requirements,
such as service precondition, effect, and QoS etc.

VII. RELATED WORK

The current research works on SWS publication and
discovery can be divided into three categories, i.e.,
extended UDDI, SWS broker, and distributed SWS
registry. The works in the first category extend UDDI to
support SWS publication and discovery; the second
category designs an independent SWS agent; and the
third category mainly applies P2P technology to realize
distributed SWS discovery, which includes our approach.
The typical works of the first category are discussed as
follows:

Earliest of all, M. Paolucci et al [23-24] propose an
approach to compile DAML-S (from which OWL-S [6]
derives directly) profiles into UDDI and design an
algorithm to discovery services. In their approach, an
extension mechanism of UDDI is presented.

Aguilera, U. et al [25] design a SemB-UDDI to register
SWS and related business entities. They focus on a
generic matching algorithm that can allow the discovery
of the registered entities beyond SWS. In addition, their
approach needs a knowledge base to store all related
ontologies.

Luo, J. et al. [13] present a scheme that allows users to
store OWL-S service descriptions in UDDI and use it to
perform semantic query processing. Their approach tries
to import the entire ontology into the registry and
represent each ontological concept, property, and
anonymous instance with a separate tModel.

Tian, Q. et al. [26] also propose an approach for
integrating semantic features into UDDI. In order to
improve efficiency, their approach needs building a set of
ontological concept inverted indices and a set of concept
similarity tables.

These approaches, which extend UDDI, usually take

UDDI just as storage by its tModel mechanism to store
semantic descriptions of SWS and even the related
ontologies, which greatly increase the burden of UDDI
registry. In practice, a dedicated semantic registry for
SWS is more appropriate. Hence, quite a few related
approaches are proposed as mentioned as follows:

Paolucci, M. et al [14] provide an analysis of the
requirements of a broker that performs mediation
between agents and SWS. Besides publication and
discovery, their desired broker also involves service
selection, invocation and control tasks.

To mediating between service requesters and service
providers, Domingue, J. et al [15] design a framework for
creating and executing SWS as a semantic broker-based
approach. Their main purpose is to provide a set of tools
to support SWS developers at design time.

Erdem S. I. et al [16] introduce a SWS matchmaking
algorithm based on bipartite graphs, which can rank the
services in a candidate set according to their semantic
similarity to a given request.

Klusch, M. et al [27] develop a hybrid Semantic Web
Service matchmaker for OWL-S services, called OWLS-
MX. In case logic-based semantic matching of OWL-S
services, the approach complements it with token-based
syntactic similarity measurements.

Wen et al. [28] proposes a Semantic Web Service
discovery method based on semantics and clustering. In
this approach, similarities among services must be
computed by using the semantic information of their
textual descriptions and ontological concepts to cluster
service set.

Ganapathy et al. [29] proposed a two-stage filtering
approach to identify candidate services during semantic
service discovery. It must calculate similarity between
services and query to identify the candidate services
based on WordNet.

These approaches, as SWS matching brokers, are
difficult to get rid of the weaknesses of centralized
approach. Therefore, in recent year, research works begin
to adopt P2P technology to realize distributed SWS
discovery. The typical works of this category is listed as
follows:

Skoutas et al. [30] presents an approach for Semantic
Web Service discovery, which is suitable for both
centralized and P2P environments. The approach is based
on a encoding of the service descriptions they design and
focuses just on inputs and outputs of SWS. But, they do
not discuss how to match inputs or outputs in query to the
semantic similar inputs or outputs of services.

Vu et al. [31] propose an approach for Semantic Web
Service discovery, where the QoS characteristics are
taken into account. For each semantic web service
description, the approach publishes it on given nodes of
their structured P2P network to store it. Then, for a query,
it identifies the nodes containing most likely matched
services according to user requests. In additional, they
categorize concepts into different groups based on
semantic similarity and assign groups to related nodes.

Li et al [20] present an approach, which indexes web
service descriptions with keywords taken from service

1938 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

ontologies and published to store on a DHT network. Its
ability to process semantic information is very limited.
Similarly, Heine et al [21] also present an approach based
on structured P2P and the approach do not require a
central ontology for resource description and matching.
However, the approach has to face the challenge of
ontology mapping.

Meghazi et al. [32] propose an approach to Semantic
Web Services discovery by leveraging a P2P discovery
mechanism. But, it is depend on a specific execution
environment, namely Web Service Modeling eXecution
environment (WSMX).

According to the domains or the types of the web
services registered in a node, Verma et al [18], Paolucci,
M. [33], Basters, U. [34], Maguitman et al [35] and
Gharzouli [36], respectively propose approach to
establish links between registry nodes to construct
unstructured P2P network to realize distributed service
discovery. However, the unstructured P2P limits the size
and efficiency of their application.

In addition, Wang et al [3], Yu et al [22] and Jia et al
[37] propose an approach to achieve distributed SWS
publication and discovery respectively. In order to further
improve ability of semantic process and efficiency of
service discovery, the approaches are based on multi-tier
P2P network. Their structures usually are rather complex.
Moreover, the approach in [35] needs category ontology
to help service discovery.

VIII. CONCLUSION AND FUTURE WORK

In the paper, we design a distributed and semantic-
matching-based approach for web service publication and
discovery by leveraging P2P and Semantic Web Service
(SWS) technology. With our experiment, the approach is
proved to be scalable and effective. In this approach, first,
we introduce our semantic-based service matching rule.
In order to apply it to our approach, we design an
algorithm to as much as possible parses out the
subsumption-relationship between concepts from domain
ontology in an open environment. And then, we propose
an SWS publication method and design a corresponding
SWS registry. Next, based on SWS registry we design a
P2P approach to publication and discovery SWS. The
algorithm of SWS discovery in the approach is discussed
in details.

As a further work, we consider more properties of
SWS, such as precondition, effect and so on. Moreover,
we intend to conduct the experiment in a large distributed
environment and quantitatively analyze its performance.

ACKNOWLEDGMENT

The research work was supported by Scientific Starting
Foundation of Hangzhou Dianzi University under Grant
No. KYS055612041 and National Natural Science
Foundation of China under Grant No. 61003077.

REFERENCES

[1] Cristina Schmidt, Manish Parashar. A Peer-to-Peer
Approach to Web Service Discovery. World Wide Web:

Internet and Web Information Systems, 7, 211–229, 2004
[2] Bachlechner, D. Toward a Semantic Web Service

Technology Roadmap Research. Challenges in Information
Science, 2008. RCIS 2008. Second International
Conference on, 2008, 17-28

[3] Wang, Z. & Hu, Y. An Approach for Semantic Web
Service Discovery Based on P2P Network. Wireless
Communications, Networking and Mobile Computing,
2008. WiCOM '08. 4th International Conference on, 2008,
1-4.

[4] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F.
Kaashoek, F. Dabek, H. Balakrishnan, Chord: A Scalable
Peer-to-peer Lookup Protocol for Internet Applications,
IEEE/ACM Transactions on Networking (TON) 11(1)
(2003) 17-32.

[5] Si Huayou, Ni Yulin, Chen Zhong, Yu Lian, Zhao Yu. An
Approach to Semantic Web Services Publication and
Discovery Based on OWL Ontology Inference.
Proceedings of the 5th IEEE International Symposium on
Service-Oriented System Engineering (SOSE’10). 2010,
129 -136

[6] W3C. OWL-S. http://herman.w3.org /services/owl-s/. 2012.
12

[7] W3C. OWL: Web Ontology Language Overview. http://
www.w3.org/TR/ owl2-overview/. 2009.10

[8] The OWL API. http://owlapi. sourceforge.net/. 2012.08
[9] Open Chord. http://open-chord.sourceforge.net/. 2012.04
[10] OWLS-TC version 3.0 revision 1. http://www.semwebcentral.

org/frs/shownotes.php?release_id=369. 2009. 11
[11] Huayou Si, Zhong Chen, Yong Deng, Lian Yu. Semantic

Web Services Publication and OCT-based Discovery in
Structured P2P Network[J]. Journal of Service Oriented
Computing and Applications (JSOCA). Online First™
(Article in Press), 5 January 2012. pp.1-12

[12] D. Kourtesis and I. Paraskakis. Combining SAWSDL,
OWL-DL and UDDI for Semantically Enhanced Web
Service Discovery. Lecture Notes in Computer Science,
the Semantic Web: Research and Applications, 2008,
Volume 5021/2008, 614-628.

[13] Luo, J.; Montrose, B.; Kim, A.; Khashnobish, A. & Kang,
M. Adding OWL-S Support to the Existing UDDI
Infrastructure. International Conference on Web Services
2006 (ICWS '06). 2006, 153-162

[14] Paolucci, M.; Soudry, J.; Srinivasan, N. & Sycara, K. A
Broker for OWL-S Web Services. Extending Web Services
Technologies, 2004, 79-98

[15] Domingue, J.; Cabral, L.; Galizia, S.; Tanasescu, V.;
Gugliotta, A.; Norton, B. & Pedrinaci, C. IRS-III: A
Broker-based Approach to Semantic Web services. Web
Semantics: Science, Services and Agents on the World
Wide Web, 2008, 6, 109 – 132

[16] Erdem S. I., A. B. B. SAM: Semantic Advanced Match-
maker. Studies in Computational Intelligence, Evolution of
the Web in Artificial Intelligence Environments, 2008,
Volume 130/2008, 163-190.

[17] Deng Shui-Guang, Yin Jian-Wei, Li Ying, Wu Jian, Wu
Zhao-Hui. A Method of Semantic Web Service Discovery
Based on Bipartite Graph Matching. Chinese Journal of
Computers, 2008, 31(8): 1364-1375.

[18] K. Verma, K.Sivashanmugam, A. Sheth, A. Patil, S.
Oundhakar, and J. Miller. METEORS WSDI: A Scalable
P2P Infrastructure of Registries for Semantic Publication
and Discovery of Web Services. Inf. Tech. and Management,
6(1):17–39, 2005.

[19] Wu, H.; Jin, H. & Chen, H. Semantic-Overlay-Driven Web
Services Discovery. Semantics, Knowledge and Grid, 2005.
SKG '05. First International Conference on, 2005, 9-9.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1939

© 2014 ACADEMY PUBLISHER

[20] Yong Li, Sen Su, and Fangchun Yang. A Peer-to-Peer
Approach to Semantic Web Services Discovery. V.N.
Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994.
2006, 73–80

[21] Heine, F.; Hovestadt, M. & Kao, O. Towards ontology-
driven P2P Grid resource discovery. Proceedings-IEEE/
ACM International Workshop on Grid Computing, 2004,
76 – 83.

[22] Shoujian Yu, Jianwei Liu, Jiajin Le. Decentralized Web
Service Organization Combining Semantic Web and Peer
to Peer Computing. L.-J. Zhang and M. Jeckle (Eds.):
ECOWS 2004, LNCS 3250, 2004, 116–127.

[23] Paolucci, M.; Kawamura, T.; Payne, T. & Sycara, K.
Importing the Semantic Web in UDDI Web Services, E-
Business, and the Semantic Web, 2002, 815-821

[24] Paolucci, M.; Kawamura, T.; Payne, T. & Sycara, K.
Semantic Matching of Web Services Capabilities. The
Semantic Web(ISWC 2002), 2002, 333-347

[25] Aguilera, U.; Abaitua, J.; Diaz, J.; Bujan, D. & Lopez de
Ipina, D. A Semantic Matching Algorithm for Discovery in
UDDI. Semantic Computing, 2007. ICSC 2007. International
Conference on, 2007, 751-758

[26] Qiu, T. and Li, P. Web Service Discovery Based on
Semantic Matchmaking with UDDI. Proceedings of the 9th
International Conference for Young Computer Scientists,
ICYCS 2008, 2008, pp.1229 – 1234

[27] Klusch, M.; Fries, B. & Sycara, K. OWLS-MX: A Hybrid
Semantic Web Service Matchmaker for OWL-S Services.
Web Semantics, 2009, 7, 121 – 133

[28] Wen, T.; Sheng, G.; Li, Y. & Guo, Q. Research on Web
Service Discovery with Semantics and Clustering
Information. 2011 the 6th IEEE Joint International
Technology and Artificial Intelligence Conference (ITAIC),
2011, 1, 62 -67

[29] Ganapathy, G. Surianarayanan, C. An Approach to Identify
Candidate Services for Semantic Web Service Discovery.
2010 IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), 2010, 1-4

[30] Dimitrios Skoutas, Dimitris Sacharidis, Verena Kantere
and Timos Sellis. Efficient Semantic Web Service
Discovery in Centralized and P2P Environments. Lecture
Notes in Computer Science, 2008, Volume 5318, The

Semantic Web - ISWC 2008, Pages 583-598.
[31] Le-Hung Vu, Manfred Hauswirth and Karl Aberer.

Towards P2P-Based Semantic Web Service Discovery
with QoS Support. Lecture Notes in Computer Science,
2006, Volume 3812, Business Process Management
Workshops, Pages 18-31

[32] Meghazi, H., Aklouf, Y. Toward a Better Automation of
the Distributed Discovery Mechanism for Semantic Web
Services. 2010 International Conference on Machine and
Web Intelligence (ICMWI), 2010, 88 -93

[33] Paolucci, M., Sycara, K.P., Nishimura, T., Srinivasan, N.:
Using DAML-S for P2P Discovery. In: ICWS, pp. 203–
207 (2003)

[34] Basters, U., Klusch, M.: RS2D: Fast Adaptive Search for
Semantic Web Services in Unstructured P2P Networks. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS,vol. 4273, pp. 87–100. Springer, Heidelberg (2006)

[35] A. G. Maguitman, F. Menczer, H. Roinestad, and A.
Vespignani. Algorithmic Detection of Semantic Similarity.
in Proce. of 14th International Conference on World Wide
Web, 2005, pp. 107–116.

[36] Gharzouli, M. & Boufaida, M. A distributed P2P-based
Architecture for Semantic Web Services Discovery and
Composition. 2010 the 10th Annual International
Conference on New Technologies of Distributed Systems
(NOTERE), 2010, 315 -320

[37] Jia, J.; Meng, C. Zhou, H. Hierarchical Architecture for
Semantic Peer-to-Peer Web Service Discovery. 2010
International Conference on Web Information Systems and
Mining (WISM), 2010, 2, 166 -170

[38] Semantic Web Services. http://en.wikipedia.org/wiki/
Semantic_Web_Services

[39] WSMO, Web Service Modeling Ontology (WSMO). http://
www.wsmo.org/TR/d2/v1.4/, 2007.

[40] Semantic Annotations for WSDL and XML Schema
(SAWSDL). http://www.w3.org/TR/sawsdl/. 2012.08

[41] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi
Sharma, and Steven Lim. A Survey and Comparison of
Peer-To-Peer Overlay Network Schemes. IEEE
Communications Surveys & Tutorials Second Quarter
2005, Volume 7, No.2. pp:72-93.

1940 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

