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Abstract—Since the conventional algorithm for community 
structure detection in a stand-alone environment cannot 
handle the giant network whose number of nodes is more 
than 105, and the widely used MapReduce method has a 
limitation on dealing with excessive I/O operations during 
the iterative process, an efficient parallel computing method 
based on BSP (Bulk Synchronous Parallel) model for 
detecting community structure is proposed in this paper. 
The Fast Newman method is improved into parallel 
calculations with multiple steps under the framework of 
BSP model. It is more efficient to discover community 
structures in the large scale network. In order to testify the 
performance of the proposed method, a hama platform was 
built up on the same cluster of the hadoop platform. And a 
dataset, at a scale of 106, was also simulated for the 
experiments. It is approved that the proposed method is not 
only able to solve the issue of memory overrun in the 
conventional calculation on a stand-alone computer, but 
also to improve the performance effectively comparing to 
the MapReduce model. The proposed method has high 
practical value in large scale networks. 
 
Index Terms—complex networks, graph clustering, 
modularity, Fast-Newman algorithm, BSP model 
 

I.  INTRODUCTION 

With the development of the social network, the 
research on community structure detection has become a 
hot topic in the current data analysis. How to increase the 
data amount being processed without reducing the 
accuracy of the community structure detection has 
become a major research issue. Community structure 
detection derives from graph partitioning [1]. Graph is 
widespread in our daily life [2]. Many issues can be 
represented by the graphs in the real world, such as the 
biological networks, the social networks, etc. With the 
increase of the complexity of the modern system, the 
research on complex network [3-5] is playing more and 
more important roles in many fields of applications [6]. 
As people lucubrate the physical meaning and 
mathematical characteristics of complex networks, they 
found that many real networks have a common 
characteristic, being with community structures. 

Although there is no clear definition for the community, 
the networks have an obvious feature, i.e. a network is 
usually composed by several communities, and the nodes 
in the same community are gathered closely, whereas the 
nodes in different communities are connected sparsely 
[7-9]. It has great practical significance to study the 
community structures for many applications, such as in 
locating the user positions [10], analyzing and managing 
the social network [11], predicting the protein functions 
[12], identifying the master control genes, mining the 
Web communities and classifying the search engines, etc.  

Currently, there are many ways to solve community 
structure detections, such as Kernighan-Lin algorithm 
based on the local search [13], Girvan-Newman 
algorithm based on the edge betweenness [7], 
Fast-Newman algorithm based on the modularity [13] and 
so on. They solved the problem of community structure 
detections in small-scale network efficiently. However, 
when they face the large-scale network, their processing 
capacities become inadequate in the stand-alone 
computing.  

Since traditional methods for community structure 
detections require the entire network to be stored in 
memory, a stand-alone memory has been unable to store 
such a large volume of data if the data size reaches up to 
105. Therefore, how to deal with large scale data becomes 
a key problem. As the data size increases, the processing 
time increases as well. At a certain point, the efficiency 
of community structure detections will hit a bottleneck in 
the stand-alone processing. Parallel and distributed 
technology [14, 15] is one optimum solution for the 
above problems. As well known, MapReduce [16] is the 
main parallel technique at present. Nevertheless, there are 
still some deficiencies in MapReduce model for detecting 
community structures, especially in iterative calculations. 
Its efficiency would easily be affected by the repeated I/O 
operations for storing the intermediate states during the 
iterative calculations. There are a lot of inevitable 
intermediate states during the whole process of 
community structure detections. With the increase of the 
data size, the number of the intermediate state is also 
going to be increased. Excessive intermediate states result 
in that much of the processing time is consumed on the 
I/O operations, which is obviously not good for the large 
scale data processing.  
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Figure 1.  The structure of a superstep 

In this paper, the Fast-Newman algorithm based on 
BSP (Bulk Synchronous Parallel) model is proposed to 
address the above problems. It can hash the data which 
the memory cannot afford to the nodes of different 
clusters in a data partitioning way, and exchange the 
information among nodes via a message passing 
mechanism to update the intermediate states and control 
the execution procedures orderly by the barrier 
synchronization. Compared with the stand-alone 
processing, the proposed method solves both the 
problems of memory overflows and parallel computations. 
Compared with the MapReduce method which stores the 
calculation states in the disk, it greatly reduces the I/O 
times by using the total RAM of the computer cluster as 
the shared memory to store computing states.  

II.  BSP MODEL OVERVIEW 

The BSP (Bulk Synchronous Parallel) model, also 
called overall synchronous parallel computing model, is a 
kind of parallel computing and programming model 
proposed by Leslie Valiant, in the 1980s [17]. It aims to 
build a parallel computing architecture, without 
depending on a certain specified structure, whose parallel 
nodes can be extensible as needed. It brings a bridge 
between the software and the hardware in the parallel 
computer field [18]. The BSP model is not only a kind of 
parallel architecture, but also a parallel programming 
model that can accurately analyze and predict the 
execution performance of the parallel program [19]. 

A BSP computation proceeds in a series of global 
supersteps. Fig. 1 shows the structure of a superstep. 
Three components are involved in one superstep [17]: 

(1) Concurrent computation: several kinds of 
computations occur on all the involved processors, each 
of which only uses and stores values in their local 
memory. Computations in this process are independent, 
while other processes, such as message passing, are 
asynchronous. 

(2) Global communication: all the processors exchange 
data in this process. After the computing tasks, each 
processor will send their non-local results to the message 
queues of other processors in a simplex mode. 

(3) Barrier synchronization: Since there is no time 
priority between the local concurrent computation and the 
global communication, the barrier synchronization is used 
to finish the superstep. When a process reaches the 
barrier synchronization point, it will not start the next 
computing process until all other processes have 
completed their communicating actions.  

One superstep is an iteration of the above three 
processes. Firstly, local concurrent computations are 
conducted respectively. The consuming time of these 
processes is usually different among all the processors as 
shown in Fig. 1. It indicates that the tasks assigned to 
each processor or the scales of the tasks are different. 
Secondly, each processor sends their own non-local 
computing results to the corresponding processors 
through the network communication. And at last, the 

barrier synchronization will wait until all the messages 
are sent out. The longest calculation time is taken as the 
superstep time.  

III.  PROBLEM DESCRIPIONS AND MODELING  

In this section, some important concepts are introduced 
and defined by mathematical descriptions, including 
complex network, community structure, node degree, 
connection of community and modularity, to formulate 
the problem of community structure detections according 
to a hierarchy clustering method. And the model of the 
problem is established combining with the characteristics 
of the BSP model. 

A.  Complex Networks and Community Structure 
Complex network is an abstract description of a 

complex system. The complex system can be researched 
as a complex network if regarding its constituent unit as a 
node and abstracting the relationship between the units as 
an edge connection. 

According to the definition of the complex network, 
we define a community structure network as a triple, 
G=(V, E, C). Let V= {v1, v2, …, vN} denote the set of 
nodes in a complex network G, in which N is the total 
number of vertices in the network. Let E= {(i1, j2), (i2, 
j2), …, ( iM,  jM)} be the set of connections between the 
nodes in the complex network G , in which M is the total 
number of edges in the network. If (i, j) = (j, i), the 
network is an undirected graph, otherwise it is a directed 
graph. And let C= {c1, c2, …, cK} as the set of 
communities in the complex network G, in which K is the 
total number of the communities. 

The community structure C is defined as a quadruple, 
C=(S, V, Ein, Eout), where S represents the community 
label of the community, V represents the set of nodes in 
the community C, Ein represents the set of edges within 
the community C, and Eout represents the set of 
connections among this community and other 
communities. 

An example of community structure which has been 
well divided in the network is shown in Fig. 2, in which 
the nodes in the same community are gathered closely, 
whereas the nodes in different communities are found in a 
lower density of edges. 
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Figure 2.  Diagram of community structure in networks

The types of community can be classified by the 
tightness of community. If A is a community, it can be 
expressed by a quad, C(A)=(A, V(A), Ein(A), Eout(A)). 
Then two definitions are given as follows. 

Definition 1 (Strong Community Structure): If C(A) is 
a strong community structure, it must satisfy (1): 

( ) ( )
( ) ( ) ( ) ( ) ( )
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Definition 2 (Weak Community Structure): If C(A) is 
a weak community structure, it must satisfy (2): 
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Since the constrain of the strong community structure 
is too strict, most of complex networks are analyzed by 
the weak community structure. 

B.  Degree and Community Connectivity 
As a basic parameter of the network topology structure, 

degree is an index for measuring the importance of a 
node and it can reflect the ability of the node to establish 
a direct connectivity with its surrounding nodes. 
Community connectivity is described by degree. It can be 
divided into internal and external connectivity. Internal 
connectivity represents the degree formed by the 
connections among the internal nodes, and external 
connectivity represents the degree formed by the 
connections of the edge nodes between the community 
and other community.  

Let EAA denote the internal connectivity of the 
community A,  and set N is the number of nodes in the 
community A. If there is an edge between the node vi and 
node vj, then it has: 

1
0ij
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⎧ ∈

∈
⎪= ⎨
⎪⎩

              (3) 
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Let FAB express the external connectivity of the 
community A related to the community B, and set M is 
the number of nodes in community A and N is the number 
of nodes in community B, then it has: 

,
AB ij

i M j N

F d
∈ ∈

= ∑               (5) 

C.  Modularity 
Modularity, an index invented by Girvan and Newman 

[20], is used to quantitatively evaluate the quality of 
network community partition. It is initially defined to be 
that Q = (number of edges within groups) - (expected 
number within groups). The modularity is measured 
relative to a null model which is defined by the 
probability of an edge between the nodes vi and vj. The 
modularity function Q can be defined as follows: 

( )
,

1 ,22
i j

ij i j
i j
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where bij represents there is an edge between the nodes vi 
and vj, δ is a membership function, if the vertices vi and vj 
belong to the same community, i.e. σi=σj, then δ(σi, σj)=1, 
otherwise, δ(σi, σj)=0, and 

,
0.5 ij

i j
M b= ∑ describes the 

total nodes in the network. The probability of the edge 

between vi and vj is 
2

i jk k
M

 in a random network, in which 

ki is the degree of vi. 
If Q is much closer to 1, then the partition of the 

community structure is much better. 

D.  Mathematical Model based on Modularity 
According to the above descriptions of complex 

network, community structure, degree, community 
connectivity and modularity, assume that a network, 
G=(V, E, C), has been partitioned into k communities. It 
has eAA=EAA/2M expressing the fraction of all edges that 
link internal nodes of community A in the network, 
fAB=FAB/2M representing the fraction of all edges that link 
the nodes in community A to the nodes in community B, 
and aA= AB

B C
f

∈
∑  denoting the fraction of edges that 

connect to the nodes in community A. According to the 
definition of the modularity function, the optimum 
community structure can be constructed at the Qmax as 
follows [21]:  

2
max

1

( )
N

AA A
i

Q e a
=

= −∑               (8) 

Due to the rule that the larger value of Q, the better the 
community structures are, the principle of modularized 
increment is used to merge communities. The increment 
of Q is calculated as follows: 

2AB BA A BQ f f a a= + −             (9) 
The communities can be merged iteratively in pairs in 

the way of increasing Q the most or decreasing Q the 
least until the calculation covering all the nodes goes into 
the convergence [22]. 

1878 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER



 

 

 
Figure 3. Iterative merging process  

E.  Community Structure in BSP Model  
In the BSP model, the nodes in the network, as 

separate entities, are hashed into the whole cluster. Based 
on the description of community structure in the complex 
network, a triple CS=(vS, S, (

iSC , 
jSC )) is defined as the 

data structure of the community structure which can 
represent the community as well and a quad vi=(i, S, Nin, 
Nout) is defined as the data structure of the nodes in BSP 
model, in which i is the ID of the node, S is the 
community label of the node, Nin is the set of the internal 
nodes of the community connecting to the node, Nout is 
the set of adjacent nodes connecting to the external 
communities of the community S. Several related 
definitions, the leader of community (LC), the parent 
community, the sub-merger and the main-merger, are 
given as follows for community merge in the BSP model. 

Definition 3: vS is the LC of the community S whose 
label is the same as that of the community. The LC is 
responsible for managing the unification of the internal 
nodes of the community CS and combining with other 
communities. 

Definition 4: the parent community CS is composed of 
two sub-communities.  

Definition 5: 
jSC is the main-merger if its community 

label does not change during the process of merging. The 
ID of the LC of the parent community Cs is the ID of the 
LC of the main-merger, and the community label of the 
parent community is that of the main-merger. 

Definition 6: 
is

C is the sub-merger, referring to the 
community whose label is changed. Its LC needs to 
update the community labels of all the internal nodes in 
this sub-merger.  

In the following section, a parallel computing 
algorithm will be built on the basis of the above model. 

IV.  PARALLELED FAST-NEWMAN ALGORITHM 
ORIENTED TO BSP MODEL  

A.  Algorithm Description 
The main idea of the algorithm is as follows. Firstly, 

the program hashes the nodes to the cluster as 
independent communities to manage them separately. 
And then the LC, representing its community, merges 
with other communities by computing their respective 
modularized increment in parallel during the process of 
merging. Each community filters out the potential merged 
object whose local modularized increment is the 
maximum. A predefined master node then collects all the 
potential merged objects and calculates the target that has 
maximal modularized increment globally. At last, based 
on the community label of this target, the LC data of the 
sub-merger is merged into the LC data of the 
main-merger to complete the community merge for once. 
In the above step of merging, the LC of the sub-merger 
needs to update the community labels of its internal nodes. 
The leader broadcasts the main-merger community label 
within its community, including all internal nodes and the 
nodes of sub-communities. Every sub-community 
updates in the same way until all nodes in the community 

have been updated with the new community label. Since 
updating the nodes and merging the nodes are exclusive 
with each other, they are executed in parallel. Recursively 
execute above steps until the modularized increment turns 
into negative, which implies the community partition is 
achieved at the maximum Q. The algorithm stops until all 
the nodes have been updated. 

B. Community Merge Strategy 
BSP model utilizes the leader merge strategy. The 

iterative merging process is shown in Fig. 3. Every node 
in the initial state in the network is an independent 
community. They are the leaders of their communities. 
Each LC passes the necessary information to its adjacent 
communities. The information is used to calculate the 
modularized increment between each adjacent pairs. Then 
each LC finds out the potential merged object, (

iSC ,
jSC , 

∆Qij), corresponding to the object with  local maximum 
modularized increment, and sends it to the predefined 
master node. And the predefined master node compares 
all the modularized increments and finds out the pair of 
communities, (

iSC ,
jSC ), with global maximum 

modularized increment. At last, the two communities are 
merged into a new community CS. The new LC, Sv , is 
equal to the LC of the main-merger, 

jSv , i.e. the new 
community and the main-merger have the same 
community label. During the process of merging, the new 
community sends its community label to the LCs of the 
sub-mergers for updating all nodes of the 
sub-communities. In the meantime, the LC of the new 
community continues to merge with other communities. 
The step of merging and the step of updating are executed 
in parallel.  
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Figure 4. Parallel execution process 

C.  Multi-step Parallel Execution 
The parallel computing is divided into two levels in 

BSP model. One is the parallel execution within the same 
superstep, e.g. multiple nodes in the same superstep 
compute the local modularized increments in parallel. 
The other one is the parallel execution of multiple steps, 
e.g. the step of merging and the step of updating are 
executed in parallel. Since community structure detection 
cannot be completed only via a single type of operation, 
the whole process is divided into the following steps: 

Step 1: Calculate the modularized increment, select the 
merged objects, and merge the community. 

Step 2: Update communities. 
Step 3: Judge the termination. 
The parallel execution process of the three steps is 

shown in Fig. 4. The overlaps in time axis indicates the 
parallel executions of multiple steps happen. In Fig. 4, 
Step 1 is the merging process. Each merging process 
consists of five supersteps. Step 2 is the updating process 
and Step 3 is the terminating process. The five supersteps 
of Step 1 execute orderly. Step 2 is triggered by Step 1. 
The execution times of Step 2 are determined by the 
number of the sub-communities of the sub-merger. Step2 
can be almost interspersed throughout the whole process. 
It updates the community labels of the nodes within the 
sub-merger through the iterative message passing among 
the sub-communities. Step 2 can be executed in parallel 
not only with Step 1, but also with the previous 
uncompleted updating process of Step 2, i.e., as shown in 
Fig. 4, the mth updating executes in parallel with the 
(n–1)th updating.  

Step 3 is caused by two types of conditions. The first is 
triggered by the nth merging. This terminal condition, i.e. 
the global modularized increment becomes negative, is 
found in the superstep 3 of the nth merging, which shows 
that the community structure of the network has been 
divided into the optimal state. Thus, the superstep 4 and 5 

become the virtual supersteps of Step 1. The virtual 
supersteps no longer perform the merging process, but 
terminate the calculations of all nodes. The predefined 
master node will inform these two merged communities 
to terminate their calculations. These two communities 
will terminate their calculation status and transmit the 
terminating messages to their adjacent communities and 
sub-communities to terminate their calculation status as 
well. The previous uncompleted updating process of Step 
2 can be executed in parallel with Step 3. For Step 2 and 
Step 3, they are both executed step by step. And the 
execution of Step 3 on each node is after the execution of 
the final execution of Step 2. Therefore, such parallel 
execution can still ensure that all nodes in the network 
have no more operations when they terminate their 
calculations. As shown in Fig. 4, the (n–1)th updating and 
the nth terminating execute in parallel. 

The second terminal condition for Step 3 is triggered 
when a new community has no adjacent communities. 
The new community becomes an independent community. 
In Fig. 4, after the (m-1)th merging, the new community 
becomes an independent community, and it will never 
merge with others. Spread this message to its nodes and 
sub-communities to terminate their calculations. At this 
time, Step 3 can be then executed in parallel both with 
Step 1 and Step 2. 

D.  Algorithm Details 
Some notations used in the proposed algorithm are 

illustrated first. 
Constant parameters are listed in Table I. 
Input: R= {(vi, vj)|i, j∈G(V)}. 
Output :{(CS, S, V)|S∈G(V),V≠0)}. 
The variable declarations are given as follows: 
Send message format: Send (t, m), where Send is the 

function for sending messages, t expresses the goal of the 
message and m represents the content of the message. 
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TABLE I  
CONSTANT PARAMETERS 

Parameter name Symbol 

Number of the cluster nodes N 

Number of edges M 

Synchronous node I 

Receive message format: m.getFirst(), representing 
extracting the first parameter from the message m. The 
method of extracting other parameters is similar to the 
above method.  

Message types:  
(1) m1: The content of m1 is composed of the 

sub-merger label and the degree of the sub-merger. It is 
sent to the LC of other community for calculating the 
local modularity increment of the LC. 

(2) m2: The content of m2 is composed of local 
sub-merger label, local main-merger label, local 
modularized increment and the degree of local 
sub-merger. It is sent to the predefined master node for 
finding out the global merged target. 

(3) m3: The content of m3 is composed of global 
sub-merger label, global main-merger label, global 
modularized increment and the degree of global 
main-merger. It is sent to the LC of the main-merger and 
the LC of the sub-merger for merging into a new 
community. 

(4) m4: The content of m4 is composed of the 
sub-merger label and the main-merger label. It is sent to 
the LCs of the adjacent communities of the sub-mergers 
for inform them to replace the sub-merger label with the 
new community label in the set of their adjacent 
communities. 

(5) m5: The content of m5 is composed of the adjacent 
community label of the sub-merger. It is sent to the LC of 
the main-merger for expanding its set of their adjacent 
communities. 

(6) m6: The content of m6 is composed of the 
main-merger label. It is sent to the internal nodes and 
sub-communities of the sub-merger for updating their 
community labels. 

(7) m7: The content of m7 is composed of termination 
signal. It is triggered when the global modularized 
increment becomes negative. The message is then spread 
to the whole network for terminating the calculations. 

(8) m8: The content of m7 is also composed of 
termination signal. It is triggered when the new 
community becomes an independent one. The message is 
sent to the internal nodes and sub-communities of the 
new community for terminating their calculations. 

Since Step 2 and Step 3 execute in random, and they 
can both execute in parallel with Step 1, we add them into 
each superstep of Step 1. If the nodes need to execute 
these two steps, then they will stop executing Step 1. 
Therefore, these three steps can be executed in parallel in 
the cluster. 

One merger is completed by five supersteps. The 
whole community division can be finished by repeating 
the supersteps below. The operations of update and 
termination can be executed throughout the five 
supersteps. If the nodes receive m6, m7 and m8, they 
would perform update or termination operations. The 
nodes will handle them with these supersteps in parallel, 
in which Handle(m) is a function used to replace the 
processing procedure and its pseudo code is as follows. 

Handle(m): 
  if type(m)=m8 

   then isStop true 
  for each t∈Nin 

  Send(t, m8) 
         End 

  elseif type(m)=m6 
  then Si m.getFirst() 

  for each t∈Nin 
  Send (t, m6) 

                  end 
  elseif type(m)=m7 

  then isStop true 
  for each t∈(Nout∪Nin) 

  Send(t, m7) 
                  end 
  end if 

The implement details of the paralleled Fast-Newman 
algorithm oriented to BSP model are as follows. 

Initialization: Initialize the nodes and averagely assign 
them onto the cluster. Firstly, initialize the node vi= (i, Si, 
Nin, Nout, Di, isStop). i is the ID of vi. Si is the community 
label of the node. Si=i represents the node is the LC of the 
community. Nin=∅ and Nout= {(i, j)| j∈G(V), i≠j}. Di and 
isStop are additional properties. Di is the degree of the 
community, Di = CountDeg(Nout) in which CountDeg is a 
function for counting the degree of the community. isStop 
is used to mark the calculating status of the node, if 
isStop=false, the node performs calculations, otherwise, it 
stops. Every node is its own LC in the beginning. Then, 
assign all the nodes to their corresponding cluster node by 
the calculation function Hash ({vi| vi∈G(V)})%N which is 
a function for calculating the location of the node on the 
cluster. 

Superstep 1: Prepare for computing modularized 
increment. Every LC will send the message, i.e. Send(t, 
m1), t∈Nout, to its adjacent communities. The format of 
the message is m1= (Si, Di). The content of the message is 
the label and the degree of the community. If there are no 
messages sent out, declare that the community is an 
independent one, stop its calculation and send the 
termination message to its internal nodes and 
sub-communities, i.e. Send(t, m8), m8=(stop), t∈Nin, to 
inform its internal nodes and sub-communities to stop 
their calculations. The pseudo code of this superstep is as 
follows. 

Superstep 1: 
for each m∈list(M) 

if type(m)= m6 || type(m)= m7 || type(m)= m8 
then Handle(m) 

    end if 
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if i= Si  
      if Nout=∅ 
        then for each t ∈Nout 

Send(t, m1) 
end 

else  
for each t∈Nin 

Send(t, m8) 
          end 
      end if 
    end if 
end 

Superstep 2: Compute local modularized increment. 
The LC of the community Sj receives the list of m1. 
Firstly, it extracts all the related Si from every m1 and 
counts the number of the connections, fij, between Sj and 
Si in the node set Nout (fij=Count (Si, Nout) where Count is 
a function for counting the number of Si in Nout). 
Secondly, the LC of Sj calculates the modularized 
increment of the pair of communities, (Si, Sj), i.e. 

ij i j
ij 2

2f (D * D )
Q = -

2M 2M
Δ . Then, the LC of Sj compares all the 

∆Qij and finds out the local pairs with the largest 
modularized increment, ( local

iS , local
jS ,

max

local
ijQΔ , local

iD ), in 

which 
local
iD  equals to the Di of local

iS . At last, it sends 
the message to the predefined master node, i.e. Send(t, 
m2), in which m2=( local

iS , local
jS , 

max

local
ijQΔ , local

iD ) and t=I. 
The pseudo code of this superstep is as follows. 

Superstep 2: 

max

local
ijΔQ -Double.MAX_VALUE 

for each m ∈list(M) 
if type(m)= m6 || type(m)= m7 || type(m)= m8 

then Handle(m) 
      else if type(m)= m1 

fij=Count (Si, Nout) 
ij i j

ij 2

2f (D * D )
ΔQ = -

2M 2M
 

if 
max

local
ijΔQ <∆Qij 

then 
max

local
ijΔQ ∆Qij 

local
iS m.getFirst() 
local
iD m.getSecond() 
local
iS  Sj 

                Send(I, m2) 
            end if 
     end if 
end 

Superstep 3: Compare global modularized increments 
and select global merged target. The predefined master 
node I receives the list of m2. Then it compares all the 

max

local
ijQΔ  in the list of m2 and finds out the largest one as 

the global maximum increment (
maxij

globalQΔ =
max

local
ijQΔ ). If 

maxij

globalQΔ >0, the potential merged object of the m2, 

corresponding to 
maxij

globalQΔ , constitutes the global merged 

object , m3 = ( global
iS , global

jS ,
maxij

globalQΔ , global
iD ), in which 

the global
iS is the local

iS  of the m2, the global
jS is the local

jS of the 

m2, the global
iD  is the local

iD of the m2. Then Send(t, m2), 

t= global
iS , global

jS . If 
maxij

globalQΔ <0, it is the end of merging, 

and Send(t, m7), m7=(stop), t=i, j. The pseudo code of this 
superstep is as follows. 

Superstep 3: 

maxij

globalΔQ -Double.MAX_VALUE 

for each m∈list(M) 
if type(m)= m6 || type(m)= m7 || type(m)= m8 

then Handle(m) 
   elseif type(m)= m2 

if m.getThird()>
maxij

globalΔQ  

then 
maxij

globalΔQ  m.getThird() 
global
iS  m.getFirst() 
j
globalS  m.getSecond() 
global
iD  m.getFourth() 

           end if 
end for 
if i=I 
  if 

maxij

globalΔQ >0 

     then Send( global
iS , m3) 

          Send( j
globalS , m3) 

     else Send( global
iS , m7) 

         Send( j
globalS , m7) 

  end if 
end if

Superstep 4: Prepare for merging. For one situation, if 
the ID of the node is equal to the global

jS  in the m3, then 

the node is the LC of the main-merger. The global
iS  of the 

m3 is moved into its Nin by the LC. Then Dj= ∆D +Dj, in 
which ∆D is the global

iD  of the m3 and Dj is the degree of 
the new community. At last, the LC of the main-merger 
removes the global

jS  of the m3 from Nout. 
For another situation, if the ID of the node is equal to 

the global
iS  of the m3, then the node is the LC of the 

sub-merger. Firstly, the LC of the sub-merger updates its 
community label Si to be the global

jS  of the m3. Secondly, 

Send(t, m4), t∈Nout, m4=( global
iS , global

jS ) for informing its 

adjacency LCs to replace global
iS  to global

jS  in their Nout. 

Then, Send(t, m5), global
jt S= , m5=(out),

 
out∈ 

{ }| and  gl
t

o l
jou

baE N N E S∈ ≠  for merging the community 

data. At last, Send(t, m6), t∈Ein, m6=( global
jS ) for updating 

the internal nodes and sub-communities of the sub-merger. 
If the LC of the main-merger and the LC of the 
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TABLE II  
RUNNING TIME TABLE  

Data size 
(nodes/edges) 

Running time(s) 

Stand-alone MapReduce BSP 

10/14 0.016 1089.9 12.711 

102/196 0.094 10899 44.339 

103/1997 2.27 108990 400.7 

104/19992 2620.64 989920 3333.012 

105/199993 NULL 10804700 51282.05 

106/1999995 NULL 202000000 1111111.1

sub-merger receive m7, they will stop calculations and 
Send(t, m7), m7=(stop), t∈(Nout∪Nin) to inform others.  

The pseudo code of this superstep is as follows. 
Superstep 4: 
for each m∈list(M) 

if type(m)= m6 || type(m)= m7 || type(m)= m8 
then Handle(m) 
else 

if i=m.getSecond()  
then Dj  m.getFourth()+Dj 
     Nin.add(m.getFirst()) 
     Nout.remove(m.getFirst()) 

      elseif i= m.getFirst() 
then Si  m.getSecond() 

for each out∈{E|N∈Nout and E≠ global
jS } 

Send( global
jS , m5) 

                    end  
for each t∈ Nout 

Send(t, m4) 
                    end 

for each t∈Nin 
Send(t, m6) 

                    end 
         end if 
    end if 
end 

Superstep 5: Merge the communities. If the LC of the 
main-merger receives the list of m5, it will add the 
variable out of the m5 to Nout. If the other LCs receive the 
list of m4, they will replace global

iS  with global
jS  in their 

Nout. If the nodes receive the massage m6, they are the 
LCs belonging to the sub-communities of the sub-merger. 
They will update their community labels. If they has 
sub-communities, then Send(t, m6), t∈Nin, m6=(j). If the 
nodes receive the massage m7, they will continue to 
Send(t, m7), m7=(stop), t∈(Nout∪Nin). The pseudo code of 
this superstep is as follows. 
Superstep 5: 
for each m∈list(M) 

if type(m)= m6 || type(m)= m7 || type(m)= m8 
then Handle(m) 

elseif type(m)= m4  
then replace(m.getFirst(), 

m.getSecond(), Nout)  
elseif type(m)= m5 
     then Nout.add(m.getFirst()) 

     end if 
end 

The above supersteps consist of the whole process of 
paralleled Fast-Newman oriented to on the BSP model. 

V.  EXPERIMENT AND ANALYSIS 

The experimental software platform is HAMA - 0.6.1. 
The computer cluster used to test and compare the 
parallel programs (BSP-based Fast-Newman and 
MapReduce-based Fast-Newman) is composed of 5 PCs. 
The CPU is Core i5, the capacity of RAM is 4G. Classic 

stand-alone-based Fast-Newman was tested by a PC 
whose CPU is also Core i5 but the capacity of RAM is 
8G. 

In order to test the efficiency of the program, we 
counted the running time of the three algorithms at 
different orders of magnitude. The results are shown in 
Table II. Since the MapReduce program runs slowly, the 
estimated time is used, i.e. the total time ≈ (time of a 
merging) * (the number of merging). 

From Table II, it can be seen that the program running 
on stand-alone PC showed obvious superiority when the 
amount of the nodes was less than 1*104. Its performance 
was much better than those of BSP and MapReduce. 
When the amount of the nodes was more than 1*104, the 
stand-alone program appeared memory overflows. Both 
MapReduce and BSP based program can still operate. 
However, the running time of Fast-Newman based on 
MapReduce model had become intolerable. 

From Table II, we can also obtain the increment ratio 
of the running time among different data scales. The 
increment ratio represents the incremental volume of the 
running time with the growth of the data scale. It is an 
objective index for evaluating the effectiveness of the 
parallelism. The smaller the increment ratio is, the better 
the effectiveness of the parallelism is. The experimental 
results are shown in Table III and Fig. 5. It can be seen 
that the increment ratios of the BSP and the MapReduce 
model were relatively small, which means the growth of 
the data size made a little influence on the effectiveness 
of the parallelism on the BSP and MapReduce models. 
However, the influence was deep on the stand-alone. 
Combined with the increment ratio of the running time on 
the data size in Fig. 5, it can be predicted that when the 
amount of the nodes exceeds 105, even increasing the 
RAM of the stand-alone model until it can run any size of 
a single serial program, the running time of BSP-based 
parallel algorithm will be also less than that of the 
stand-alone-based. Although both MapReduce and BSP 
based parallel programs had a similar increment ratio, the 
MapReduce-based parallel program was limited by the 
running time as shown in Table II. To sum up, compared 
with the FastNewman algorithm based on stand-alone and 
MapReduce models, the BSP-based has obvious 
advantages in processing large-scale data. 

The influence of the number of cluster nodes on the 

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1883

© 2014 ACADEMY PUBLISHER



 

 

TABLE III  
THE INFLUENCE OF DATA SIZE 

Data size 
(nodes) 

Increment ratio 

Stand-alone MapReduce BSP 

10 1 1 1 

102 5.875 10 3 

103 24.149 10 9 

104 1154.47 9.08 8.33 

105 NULL 10.91 10.91 

106 NULL 18.695 21.67 Figure 5. The influence of data size 

Figure 6. The influence of the number of cluster nodes on the 
BSP-based Fast-Newman algorithm  

BSP-based Fast-Newman algorithm is also tested in our 
experiments. The purpose of the experiment is to evaluate 
t the degree of parallelism in processing large-scale data. 
Due to the message passing mechanism used on BSP 
model，increasing cluster nodes cannot ensure the high 
efficiency of parallelism. When the amount of the 
calculation and the communication achieves an 
equilibrium, the efficiency of parallelism becomes the 
highest. The experimental results are shown in Fig. 6. It 
can be seen that when the nodes of the network were less 
than 102, the merging times in per second reduced with 
the increase of the cluster nodes. The reason is that when 
the data size was small, the calculation could be 
completed instantly, but most of the processing time was 
spent on waiting for network communications. The more 
cluster nodes was, the longer the communication time 
was. Moreover, the time of task allocation in the whole 
running time was also quite considerable. 

When the nodes of the network reached to 103, the 
merging times in per second increased at first, and then 
decreased, as shown in Fig. 6. It achieved the maximum 
point when the cluster nodes were 2, which can be 
deemed that it achieved the equilibrium between the 
calculations and the communications. 

 When the nodes of the network reached up to 104, the 
merging times in per second were proportional to the 

increase of cluster nodes. In this situation, the calculating 
time was more important. The time for calculation 
became dominant. The more the cluster nodes were, the 
higher the merging efficiency was.  

When the nodes of the network reached up to 106, the 
merging times in per second were significantly less than 
those whose nodes were less than 106 since the increase 
of data size would easily result in increasing the 
calculation time. Nevertheless, the merging times in per 
second were still proportional to the increase of cluster 
nodes as shown in Fig. 6.  

Through the above experiment, it showed that the 
paralleled Fast-Newman on BSP model could increase 
the degree of parallelism. It was helpful for processing 
large-scale data. Nevertheless, it was not the more cluster 
nodes, the better the degree of parallelism, just as the 
instance of 103. It can be inferred that the merging times 
in per second at different order of magnitude has the 
same trend, i.e. increased at first and then decreased. In 
order to achieve the best efficiency of the parallelism, the 
balance point between the data scale being processed and 
the number of the cluster nodes should be found in 
advance for constructing the optimum processing 
environment. 

VI.  CONCLUSION 

The paralleled Fast-Newman algorithm based on BSP 
model is proposed in this paper. It takes full advantage of 
the characteristics of the parallelism and the distributed 
computing framework. It can solve the network scale 
problem which the stand-alone computation cannot 
handle. Under the same conditions, it is more efficient 
than the MapReduce-based Fast-Newman algorithm. The 
experiment proved that, when the data size was between 
104 and 106, the proposed algorithm appeared a better 
efficiency without reducing the accuracy of community 
structure detection. It can be used in community structure 
detections in the order of magnitude at 106 nodes. 

The time complexity of the improved Fast-Newman 
algorithm in the BSP model is O(n2). It reduces the 
running time of modularity increment calculations, but 
the merging times do not reduce. When the network scale 
enlarges to a certain degree, the merging times will be the 
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main factor that affects the efficiency of community 
structure detections. Therefore, the next step is to address 
the problem how to merge unconcerned 
multi-communities in parallel during one time 
calculation. 
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