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Abstract—Depth perception is one of the most important 
characteristic in three-dimensional (3D) images different 
from traditional two-dimensional (2D) images. Therefore, 
3D visual attention will be advantageous to improve 3D 
visual experience and particularly depth perception. In this 
paper, we propose a 3D visual attention model for 
stereoscopic image quality assessment task. The proposed 
model is constructed based on 2D saliency model, center 
bias, depth cue (foreground cue and background). Different 
combination and modulation means of the 3D visual 
attention model for quality assessment are investigated. The 
experimental results show that compared with other 
schemes, the proposed 3D visual attention-based pooling 
scheme can achieve higher consistency with the subjective 
assessment of stereoscopic images. 
 
Index Terms—3D visual attention, stereoscopic image 
quality assessment, saliency model, center bias, depth cue 
 

I.  INTRODUCTION 

Three-dimensional (3D) technologies have received 
wide attention as a result of great push from the industry 
and academia[1,2]. The necessity for designing perceptual 
3D image quality assessment (3D-IQA) approach is 
increasingly important[3], since such perceptual issues in 
3D are hardly considered in the traditional 2D image 
quality assessment (2D-IQA)[4]. Following the research of 
2D-IQA, 3D-IQA approaches can fall into two categories: 
subjective assessment and objective assessment. Some 
publicly available 3D databases were provided, such as 
LIVE 3D image database[5], EPFL 3D image database[6], 
etc, by adding different types of stimuli (e.g., distortion or 
camera distance) on left and right images. 

In objective assessment, the term ‘quality of 
experience (QoE)’ should be considered to capture the 
various factors that contribute to the overall visual 
experience of the 3D visual signal[7]. In contrast to the 2D 
case, QoE of 3D involves not only evaluating 2D image 
quality, but also additional aspects of quality, e.g., depth 
perception, visual comfort, and other visual experience. 
In some cases, the latter factors will be much important. 
The depth processing is mainly based on identifying 
relative objective positions and the bottom-up 
processing[8]. Therefore, visual attention can be useful to 
improve 3D QoE and particularly depth perception[9]. 
Recently, visual attention for 2D-IQA was explored by 
integrating visual attention into quality metrics to 
improve prediction performance, according to the 
principle of more weight to the distortions appearing on 

the saliency areas[10-11]. However, how to derive the 3D 
visual attention information for quality assessment is still 
an open issue.  

Many computational models have been proposed to 
predict the visual attention through saliency map by 
adopting bottom-up and top-down mechanisms[12-13]. 
Compared with 2D services, 3D much emphasizes the 
visual perception of viewers, while depth cues are the 
most important features on the understanding of 
3D/stereoscopic visual perception. Therefore, it is 
interesting to investigate whether depth cues can improve 
the performance of saliency model. Lang et al. 
quantitatively assessed the contribution of depth cues in 
visual attention in 3D scenes by analyzing the visual 
saliency information from eye tracking datasets[14]. Li et 
al. proposed a human-brain-inspired framework for the 
fusion of the depth cues by analyzing the reliability of the 
depth cues locally[15]. Patapova et al. learned probabilistic 
models of various 2D and 3D saliency cues and fused 
them into a final saliency map[16]. Zhang et al. proposed a 
bottom-up visual attention model for stereoscopic content 
by using the depth map as an additional cue, and used a 
depth-based fusion with the spatial and motion saliency 
map[17]. Park et al. proposed a 3D visual attention model 
by combining bottom-up and top-down models for 
comfortable 3D viewing[18]. However, the impact of 
depth cues on stereoscopic perception is not taken into 
account.  

From another perspective, visual perceptual properties 
were another important clue in 3D-IQA. Maalouf et al. 
computed the cyclopean image from left and right images 
to simulate the brain perception, and used contrast 
sensitivity coefficients as the basis of evaluation[19]. 
Gorley et al. proposed a Stereo Band Limited Contrast 
(SBLC) algorithm to evaluate the stereoscopic image 
quality, which accounts for the HVS sensitivity to 
contrast and luminance changes at regions of high spatial 
frequencies[20]. Hwang et al. proposed a metric by 
considering the impact of visual attention, depth variation 
and stereo distortion prediction, to detect visually 
significant distortions based on human visual 
properties[21]. Wang et al. proposed a metric by 
considering the binocular spatial sensitivity to reflect the 
binocular fusion and suppression properties[22]. Bensalma 
et al. proposed a Binocular Energy Quality Metric 
(BEQM) by modeling the simple cells responsible for the 
local spatial frequency analysis and the complex cells 
responsible for the generation of the binocular energy[23]. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1841

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1841-1847



However, these methods are simple extensions of the 
monocular visual properties into the binocular vision, and 
how these monocular visual properties affect the 
binocular vision is still not accounted. 

In this paper, we examine the 3D visual attention 
deployment for quality assessment task. More specifically, 
the goal is to determine whether a significant relationship 
exists between visual attention and quality assessment. 
The main contributions of this work are as follows: 1) We 
construct a 3D visual attention model by applying 2D 
saliency model, center bias and depth cue (foreground 
and background); 2) We investigate various combination 
means of 3D visual attention and different modulation 
means for quality assessment. The rest of the paper is 
organized as follows. Section II presents the 
computational models of 3D visual attention, which helps 
to motivate the method. Section III presents the proposed 
quality assessment method. The experimental results are 
analyzed in Section IV, and finally conclusions are drawn 
in Section V.  

II.  COMPUTATIONAL MODELS OF 3D VISUAL ATTENTION 

The mechanism of visual attention is an important 
conception when explaining HVS. Recent researches 
have found that visual attention is closely relevant to the 
image perceptual quality[24]. For 2D image, many bottom-
up and top-down visual saliency models have been 
proposed by investigating various perceptual 
characteristics[25]. While for 3D/stereoscopic images, they 
have additional characteristics, e.g., depth perception, that 
makes them different with 2D images. In this paper, we 
apply 2D saliency model, center bias and depth bias 
(foreground and background cues), to create a 3D visual 
attention model. The proposed model, S3D, is defined as 
follows 

{ }3 2 , , ,D DS S CB FM BM=                                        (1) 
where S2D is the 2D saliency model, CB is the center bias 
information, FM and BM are the foreground and 
background information for 3D viewing (disparity used 
for depth perception in this regard), respectively. Fig.1 
shows the concept diagram of the proposed 3D visual 
attention model.  
 

 
Figure 1. Flow-chart of the proposed 3D visual attention model. 

 

2.1 Model of 2D Saliency 

The measure of visual importance of different regions 
plays an important role in evaluating the image quality. In 
this paper, we employ the spectral residual model[26] for 
saliency calculation. Given an image, we first apply 
Fourier transform to obtain the amplitude spectrum A(f) 
and phase spectrum R(f). Then, the spectral residual P(f) 
can be generated based on the log-spectrum 
representation ( ) log( ( ))L f A f= according to 

( ) ( ) ( )aR f L f L f= −                                                 (2) 
where La(f) denotes the averaged spectrum, which is 
obtained by convolving the log-spectrum L(f) with an 
median filter. Then, the saliency map is obtained by 
convolving a 2D spectrum map with a 2D Gaussian 
function 

1 2( , ) ( , ) ( (exp( ( ) ( )))SM x y g x y R f jP fς −= ∗ +         (3) 
where g(x,y) is a Gaussian function, 1ς − denotes the 
inverse Fourier transform.  

However, the distortion in image usually hinders 
accurate saliency feature detection, e.g., some distorted 
regions will become more salient. To distinguish the 
effects of the same saliency regions in the original and 
the distorted images, we define the final 2D saliency map 
as follows 

2 ( , ) max( ( , ), ( , ))D org disS x y SM x y SM x y=                 (4) 
where SMorg and SMdis are the saliency maps from the 
original and the distorted images, respectively,  

2.2 Model of the Center Bias 
Based on the results of the literatures and subjective 

experiments, the viewers tend to focus on the central 
fixation location than other locations[27]. That is, pixels 
located near to the center may provide more information 
than the other pixels, thus be coming more salient. Even 
though 3D fixation map can be constructed by eye 
tracking equipment[28], center bias property is still 
prominent in 3D viewing. In this paper, central bias is 
modeled by 2D Gaussian with the strong central fixation 
distribution on the center and then spreads to the 
neighbors. The center fixation of the visual field is fixed 
on the center of the input image 

( ), ,
2 2
im im

c c
W H

x y ⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                               (5) 

where Wim and Him are the width and height of the image, 
Then, we apply a Gaussian convolution at the center 
fixation, and calculate the distance to the center for each 
pixel by  

2 2

2 2

( ) ( )
( , ) exp

2 2
c c

x y

x x y y
CB x y

σ σ
⎧ ⎫⎛ ⎞− −⎪ ⎪= − +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

              (6) 

where (xc, yc) is the center of the image, σx
2 and σy

2 are 
the variance along the two directions respectively. In the 
experiment, σx

2 is set to 0.5Wim and σy
2 is set to 0.5Him. 

2.3 Model of the Depth 
Stereoscopic contents provide additional depth cues 

(e.g., occlusion, binocular disparity, accommodation, etc) 
that are used by humans in the understanding of visual 
attention in 3D scenes. However, how and to what extent 
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these depth cues affect the visual attention is still an open 
issue. In this work, we only consider the case of depth 
from binocular disparity, since this factor is particularly 
important in binocular vision. Intuitionally, the closes 
objects will attract more attention than the farthest one. 
The binocular disparity is estimated from the left and 
right images by the disparity estimation method[29]. In 
order to characterize depth cue, disparity map is first 
transformed through a sigmoid function. Then, 
foreground map (FM) and background map (BM) are 
separated from the disparity map by comparing a given 
threshold T1, i.e., the pixels values higher or smaller than 
a given threshold are classified into the foreground or 
background. The combination of the foreground and 
background maps is call depth model Sdepth, which is 
computed as follows: 

1,     ( , )>
,       depth

FM if f x y T
S

BM otherwise
⎧

= ⎨
⎩

                                     (7) 

Here, the threshold T1 is set to the half the maximum 
and minimum disparity values through a sigmoid function. 
Fig.2 shows an example of the result for foreground and 
background separation.  

 

 
Figure 2. Example of the result for foreground and background 

separation. 
 

2.4 Proposed 3D visual Attention Model 
Since it is hard to simulate the process of combination 

of various saliency cues in binocular vision, we 
investigate summation combination to obtain a final 
saliency map. The final 3D saliency map S3D is equal to 
the sum of individual cues: 

3 1 2 2

3 4

( , ) ( , ) ( , )
              ( , ) ( , )

D DS x y S x y CB x y
FM x y BM x y

ω ω
ω ω

= ⋅ + ⋅
+ ⋅ + ⋅

                  (8) 

where 1iω =∑ and we set the weights adaptively by 
taking the relative importance of each cue into account. 
Other combination means will be discussed in the next 
subsection 4.4. In this work, we train these weighting 
parameters by optimizing the evaluation results between 
the objective and subjective scores.  

III. PROPOSED QUALITY ASSESSMENT METHOD 

3.1 Cyclopean Image Formation 
In binocular vision, the images from left and right eyes 

are combined into a single image, i.e., cyclopean image, 

by matching the local regions in the left and right images. 
However, the quality of stereoscopic image is not a 
simple combination of the qualities of left and right 
images. For example, the high-quality view will suppress 
the low-quality one based on suppression theory of 
binocular vision[30]. Therefore, in order to better account 
for these binocular visual characteristics, we use the 
energy of the Gabor filter responses to simulate the 
cyclopean image by locally weighting a stereoscopic pair, 
because simple cell in the primary visual cortex can be 
well-modeled using Gabor filter response[31]. The 
simulated cyclopean image is expressed as[32] 

( , ) ( , ) ( ( , ), )L L R R LCI x y I x y I x d x y yω ω= ⋅ + ⋅ −        (9) 

where
( , )

( , ) ( ( , ), )
L

L
L R L

GE x y
GE x y GE x d x y y

ω =
+ −

,

( ( , ), )
( , ) ( ( , ), )

R L
R

L R L

GE x d x y y
GE x y GE x d x y y

ω −
=

+ −
, GEL and GER are 

the magnitudes of left and right images respectively 
summed on all scales and orientations, and dL(x,y) denote 
the disparity vector. Considering that disparity estimation 
algorithm cannot operate well in the distortion images, 
we use the original disparity to calculate the cyclopean 
image for the distorted stereoscopic images.  

Fig.3 shows the constructed cyclopean images from 
the original and Gaussian Blur distorted stereoscopic 
images. As observed from the figures, artificial contours 
will appear among the boundaries due to 
occlusion/disocclusion in disparity matching. For 
example, the background behind the foreground in the 
left image will be disoccluded in the right image. As a 
result, monocular vision will occur in these regions. 
Therefore, in order to accurately account for binocular 
vision, these regions are excluded in quality assessment, 
and a full-reference assessment metric is applied on the 
remaining regions of the original and distorted cyclopean 
images.  

 

 
Figure 3. The constructed cyclopean images. 

 

3.2 Proposed Quality Assessment Method 
The 3D saliency map S3D(x,y), created by the above 

computational models, can be used as a modulation 
function for IQA pooling. Thus, we define saliency 
modulated the IQA as follows 

,

,

( , ) ( , )

( , )
kx y

kx y

m x y IQA x y
Q

m x y

⋅
=
∑

∑
                                 (10) 

where ( , )km x y is the value of saliency map, IQA(x,y) is 
the value of local distortion map. In this work, for 
simplicity, we use Structural SIMilarity (SSIM)[33] for 
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measuring the IQA. Besides, in order to demonstrate the 
impact of saliency map on IQA pooling, we design the 
following modulation methods by using different saliency 
maps  

( )
( )
( )

1

2 2

3 2

4 2

5 2

6 3

7 3

8 3

( , ) 1
( , ) ( , )
( , ) ( , ) ( , ) / 2

( , ) ( , ) ( , ) / 2

( , ) ( , ) ( , ) / 2
( , ) ( , )
( , ) ( , )

( , ) ( , )
b

n

D

D

D

D

D

D

D

m x y
m x y S x y
m x y S x y CB x y

m x y S x y FM x y

m x y S x y BM x y
m x y S x y
m x y S x y

m x y S x y

=⎧
⎪ =⎪
⎪ = +
⎪

= +⎪⎪
⎨ = +⎪
⎪ =
⎪

=⎪
⎪

=⎪⎩

                    (11) 

Where 3 ( , )DS x y is the proposed 3D saliency map, 
detailed explaining about 3 ( , )DS x y are presented in 
section 4.2. 3DbSM is a binarized 3D saliency 

map, 3 2
3

1,      ( , )
( , )

0,                  
D

Db

if SM x y T
SM x y

otherwise
>⎧

= ⎨
⎩

, 

3 ( , )DnSM x y is a labeled 3D saliency 

map, 3 3 2
3

( , ),   ( , )
( , )

0,                              
D D

Dn

SM x y if SM x y T
SM x y

otherwise
>⎧

= ⎨
⎩

, and 

threshold T2 equals to 14 in the experiment.  

IV.  EXPERIMENTAL RESULTS 

4.1. Stereoscopic Image Quality Database 
In the experiment, we have used the database 

presented in [34]. Twenty-six non-expert adult viewers 
were participated in the subjective evaluation of the 
database. According to Double Stimulus Continuous 
Quality Scale (DSCQS) testing method described in ITU-
R recommendation BT.500-11, the subjective ratings for 
the distorted stereoscopic images were obtained on a 
scale of 0-100. The database includes 12 original 
stereoscopic image pairs, from which 312 distorted 
stereoscopic images are generated with five types of 
distortion: JPEG, JPEG2000, Gaussian Blur, White Noise 
and H.264. The symmetric distortions are added on left 
and right images. More specifically, there are 60, 60, 60, 

TABLE.1.  
PERFORMANCE COMPARISON OF DIFFERENT WEIGHTING SCHEMES. 

 Weight m1 m2 m3 m4 m5 m6 m7 m8 

JPEG 

PLCC 0.9479 0.9499 0.9475 0.9376 0.9588 0.9464 0.9491 0.9455 

SROCC 0.9499 0.9508 0.9512 0.9486 0.9579 0.9541 0.9599 0.9570 

KROCC 0.8055 0.8075 0.8115 0.8135 0.8297 0.8196 0.8297 0.8257 

RMSE 4.4218 4.3372 4.4363 4.8248 3.9425 4.4834 4.3700 4.5201 

JPEG2000 

PLCC 0.8988 0.9549 0.9125 0.9325 0.9116 0.9474 0.9384 0.9555 

SROCC 0.9252 0.9651 0.9431 0.9466 0.9260 0.9572 0.9536 0.9596 

KROCC 0.7657 0.8364 0.7939 0.8020 0.7697 0.8162 0.8061 0.8202 

RMSE 4.8968 3.3175 4.5702 4.0329 4.5917 3.5755 3.8599 3.2950 

Gaussian Blur 

PLCC 0.9550 0.9789 0.9625 0.9647 0.9472 0.9702 0.9554 0.9663 

SROCC 0.9561 0.9741 0.9632 0.9550 0.9608 0.9646 0.9538 0.9603 

KROCC 0.8317 0.8722 0.8479 0.8297 0.8540 0.8479 0.8196 0.8378 

RMSE 5.8732 4.0434  5.3727    5.2151 6.3519 4.800 5.8479 5.1005 

White Noise 

PLCC 0.9672 0.9596 0.9653 0.9690 0.9583 0.9652 0.9604 0.9571 

SROCC 0.9648 0.9584 0.9680 0.9735 0.9555 0.9698 0.9673 0.9650 

KROCC 0.8364 0.8283 0.8424 0.8606 0.8202 0.8505 0.8465 0.8424 

RMSE 3.8085 4.2137 3.9104 3.6991 4.2838 3.9214 4.1746 4.3396 

H.264 

PLCC 0.9231 0.9698 0.9350 0.9448 0.9291 0.9588 0.9419 0.9611 

SROCC 0.9382 0.9542 0.9435 0.9401 0.9281 0.9527 0.9495 0.9536 

KROCC 0.7863 0.8213 0.8045 0.7905 0.7765 0.8269 0.8073 0.8227 

RMSE 4.9097 3.1128 4.5287 4.1833 4.7217 3.6269 4.2885 3.5256 

All 

PLCC 0.9165 0.9202 0.9227 0.9267 0.9168 0.9301 0.9233 0.9277 

SROCC 0.9264 0.9298 0.9291 0.9307 0.9283 0.9347 0.9304 0.9329 

KROCC 0.7543 0.7679 0.7626 0.7640 0.7619 0.7751 0.7633 0.7725 

RMSE 6.5149 6.3765 6.2771 6.1195 6.5023 5.9830 6.2569 6.0789 

 

1844 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER



60 and 72 distorted stereoscopic images in the database 
with JPEG, JPEG2000, Gaussian Blur, White Noise and 
H.264 distortions, respectively; there are different 
distortion levels for each distortion type. The 
corresponding differential mean opinion score (DMOS) 
values are provided.  

4.2. Performance Determination 
To obtain the relationship between the objective 

scores and the subjective scores, we use the nonlinear 
regression with four-parameter logistic function by 

1 2
2

3 4

=
1 exp( ( ) / )pDMOS

x
β β β

β β
−

+
+ − −

                    (12) 

where β1, β2, β3 and β4 are determined by using the 
subjective scores and the objective scores. 

Four commonly used performance indicators are 
employed to further evaluate the metric: Pearson linear 
correlation coefficient (PLCC), Spearman rank order 
correlation coefficient (SROCC), Kendall rank-order 
correlation coefficient (KROCC), and root mean squared 
error (RMSE), between the objective scores after 
nonlinear regression and the subject scores. Among these 
four criteria, SROCC and KROCC are employed to 
assess prediction monotonicity, and PLCC and RMSE are 
used to evaluate prediction accuracy. For a perfect match 
between the objective and subjective scores, 
PLCC=SROCC=KROCC=1 and RMSE=0.  

In the proposed scheme, we determine the 
parameters ( 1, 2,3, 4)i iω = in Eq.(8) by training to 
optimize the PLCC values between the objective and 
subjective scores. In the experiments, we select a subset 
of the database to train the parameters. For simplicity, the 
parameters are chosen by linear regression optimization. 
The parameter determination results are ω1=0.800, 
ω2=0.005, ω3=0.190 and ω4=0.005. It is obvious that 2D 
saliency map component is more important than other 
components. In the following experiments, the proposed 
metric is tested on the remaining test sequences in the 
database (in this way, we avoid same sequences for 

training and testing). Thus, totally 234 distorted 
stereoscopic images are adopted in the evaluation.  

4.3. Overall Assessment Performance 
The values of PLCC, SROCC, KROCC and RMSE of 

each distortion type with the database are listed in 
Table.1. From the table, some observations are given. 
Firstly, by considering the salience map modulation, the 
evaluated results can be significantly improved (from m2 
to m8), and the best results are obtained by using 
weighting m6 for different saliency cues, which suggest 
that a simple saliency-based pooling is not a good 
solution to improve the visual quality prediction. 
Secondly, the 2D saliency weight m2 seems to be more 
effective for independent distortion type, but the overall 
evaluated results are lower than other schemes (e.g., 
weight with m2, m4, m6, m7, m8). Thirdly, by comparing 
the evaluated results with weighting m4 and m5, it is 
obvious that foreground cue of disparity map will 
dominate the depth perception in quality assessment, 
which conform to the fact that this phenomenon widely 
exists in stereoscopic vision. Also, the overall 
performance of partial region weights (m7 and m8) will be 
decreased even though it may be effective for some 
individual distortion types. The scatter plots of different 
weighting schemes are shown in Fig.4. 

4.4. Impact of Different Combination Schemes 
To demonstrate the impact of different combination of 

cues, we design the following two schemes for 
comparison, denoted by Scheme-A and Scheme-B. For 
Scheme-A, we use multiplication combination method. 
Noted that, in order to avoid being zero after 
multiplication, a small constant is added to the 
foreground and background cues, and all cues are 
normalized before multiplication. For Scheme-B, we set 
ωi=0.25 in Eq.(8). The results of PLCC and SROCC are 
presented in Table.2. From the tables, we can see that the 
overall evaluation performance can be gradually 
promoted by properly weighting the importance of each 

                              (a)                                                        (b)                                                       (c)                                                      (d) 

                     (e)                                                         (f)                                                      (g)                                                      (h) 
Figure 4. The scatter plots of different weighting schemes: (a) weight m1; (b) weight m2; (c) weight m3; (d) weight m4; (e) weight m5; (f) weight 

m6; (g) weight m7; (h) weight m8. 
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cue, and the performances for most of distortion types are 
also promoted.  

V.  CONCLUSIONS 

This paper presents a new three-dimensional (3D) visual 
attention model for stereoscopic image quality 
assessment. The prominent advantage of the proposed 
method is that we construct the 3D visual attention model 
by applying two-dimensional (2D) saliency model, center 
bias, depth cue (foreground and background), and 
investigate various combination and modulation means 
for quality assessment task. It can be observed from the 
experimental results show that the proposed method can 
achieve much higher consistency with the subjective 
assessments. In this research, we only take the depth cue 
from binocular disparity into account. In the future work, 
more comprehensive study of various depth cues on 
visual saliency is needed, and more importantly, visual 
comfort factor should be fully considered in the 3D visual 
attention model. 
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