

A Novel Optimized Path-Based Algorithm for
Model Clone Detection

Zhengping Liang, Yiqun Cheng, Jianyong Chen

College of Computer Science & Software Engineering, Shenzhen University,
Shenzhen Guangdong 518060, China

Email: jychen@szu.edu.cn

Abstract—According to previous reports software clones are
considered harmful for software maintenance. Likewise,
model clones are problematic in model-based development.
It is significant to detect model clones in software models. In
this paper, we present a novel optimized path-based model
clone detection algorithm (OPMCD). It first builds paths
from block graphs, and then identifies clone instances from
the common subsequence of paths. Moreover, an
experiment is designed to evaluate the algorithm through
comparing with the state-of-the-art of model clone detection
algorithm ConQAT model clone detection (CMCD). The
experiment result illustrates that OPMCD has better
performance in terms of efficiency, and it is practically
suitable for large-scale MATLAB/Simulink models.

Index Terms—Matlab/Simulink model, optimized path,
model clone, clone detection

I. INTRODUCTION

In classical programming languages, clone appears as
duplicated code fragments. It is well known that most
code clones are created by ad hoc reuse through frequent
copy & paste, i.e., fragments being copied rather than
being used with appropriate reuse mechanisms [1]. The
cloning of code segments in code-based software
development by copy & paste has adverse effects on
maintainability [2-4], such as unnecessary duplicates of
code which increase cost of maintenance, and
inconsistent changes to cloned code which can create
incorrect program behavior and lead to faults.

Code clone detection is very active area in software
clone research [5]. A variety of code clone detection
approaches have been proposed. In general, they can be
divided into five types based on their source
representations: text based, token based, metric based,
abstract syntax tree based (AST), and program
dependency graphs based (PDG). However, algorithms
for code clone detection commonly make no sense to
model clone detection as they using different
representation except PDG.

Over the years, model-based development has become
a promising approach for developing embedded software
systems. It has many advantages over traditional
development methodology [6]: independence of a target
language; higher abstraction level than traditional
programming languages; faster than traditional

programming; higher automation degree, and possibility
to detect errors earlier. MATLAB/Simulink is widely
used for modeling in the embedded system domain [7]
with which there is already up to 80% of the production
codes in embedded control units that are generated from
models [8].

Just as in code-based development, cloning also occurs
in model-based development when a developer copies
model elements instead of using an appropriate reuse
mechanism [9]. In model-based software development,
clone appears as redundant model elements. Since most
of the reasons leading to clones in code-based
development are also valid in model-based software
development, it is not surprising that clones can also be
found in models [10,11]. Cloned subgraphs in Simulink
models often appear for different reasons. Most
commonly, they are introduced by the habit of copy &
paste — deliberate copy model elements with slight
changes instead of using an appropriate reuse mechanism
[12], or by the use of elements from specific libraries in
general-purpose domain. Moreover, clones can also be
unintentionally created when similar solutions are
independently created [13].

Previous studies have proved that the existence of
clone is likely to hinder the maintainability of the model
in model-based development [10,11]. Besides the
potentially increases of maintenance effort, clone is a
potential source of bugs if not all impacted clone
instances are changed consistently. Hence, it plays an
important role for model-based development to identify
duplicated model elements in different parts of the
software model.

Existing algorithms for model clone detection have the
bottleneck in detection phase among the whole clone
detection pipeline. In this paper we propose a novel
optimized path-based model clone detection algorithm
(OPMCD), and compare it with ConQAT model clone
detection (CMCD) [4,10]. The proposed OPMCD builds
common subsequences from long paths which are
extracted from model graphs. Clone instances are
obtained by extending common subsequences. During the
process of building paths and finding common
subsequences, some optimized measures are introduced,
i.e., those nodes without incoming edge are chosen as
starting point to build path instead of an exhaustive
search, and only the longest path is considered.

1810 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1810-1817

Experiments with MATLAB/Simulink show that the
proposed OPMCD can significantly reduce detection
time.

The remainder of this paper is organized as follows.
Section 2 introduces the mainly processes of model clone
detection. Section 3 describes heuristic clone detection
algorithm of CMCD. Section 4 presents our approach and
elaborates the OPMCD. In order to validate the
effectiveness of OPMCD, section 5 implements a case
study and compares OPMCD with CMCD. Finally,
section 6 makes a conclusion.

II. RELATED WORK

The boom of model clone detection is accompanied
with the rapid and wide practices of model-based
development. Some people have studied model clone
detection within the past years. In graph models, clone
can be considered as isomorphic or similar subgraph. The
problem of frequent subgraph mining might be the most
similar problem to our work. An overview of algorithms
for frequent subgraph mining is presented in [14]. Most
of these algorithms focus on mining frequent item set
among molecules [15,16]. However, some notable
differences exist between Matlab/Simulink models and
chemical molecules in terms of size and structure.
Furthermore, frequent subgraph mining usually works
with a higher required minimum pattern frequency. Thus,
most of subgraph mining algorithms are not suitable for
clone detection in real-world models.

Liu et al. [17] propose a clone detection algorithm for
UML sequence diagrams. The approach firstly linearizes
sequence diagram as an array and then detects clone by
using tree-matching algorithm. The detection time is
decreased by reducing duplicated subgraph identification
to common substring identification. However, this
approach is not appropriate for our work because a
similarity representation cannot be created in Simulink
models. Störrle [18] explores the problems and
possibilities which associated with detecting clones in
UML domain models, and designs a number of
algorithms and heuristics to carry out clone detection.
The basic idea of it is based on the observation that UML
models are loosely connected to fat nodes rather than
densely connected to graphs of lightweight nodes.

Deissenboeck et al [8,11] firstly proposed an algorithm
for model clone detection in graph based models and
developed a detection tool which called CMCD based on
this algorithm. The core pair detection of CMCD routine
performs iteration over all possible pairs of nodes in
breadth first search (BFS) manner. On one hand, it can be
solved in polynomial time and appropriate for large-scale
models, but on the other hand it naturally causes certain
clone instances that can’t be found, as leads to a lower
recall. It is heuristic because it only involves one
potential mapping of nodes. Since CMCD is the
state-of-the-art of model clone detection algorithm at
present, our proposed algorithm will be compared with it
in the following sections.

ModelCD (Model Clone Detection) was presented by
Pham et al. [19]. It consists of two algorithms eScan and

aScan. The core idea used by ModelCD to detect clones
is to identify bigger clones through adding extension
edges to already detected smaller clones. eScan is used to
identify exact clones within a model graph routine
through performing a depth first traversal of the clone
lattice. It uses a generating parent technique to ensure
each fragment and is processed only once. aScan is the
first algorithm that can identifies approximate clones
which uses a vector based approximation of the structure
with a subgraph called Exas [20]. It is different from
eScan that aScan traverses the clone lattice in a breadth
first manner.

Hummel et al. [21] presents an index based algorithm
for Matlab/Simulink model clone detection that is
incremental and distributable. Their main purpose is to
help developers who can quickly access all clones of a
model element to consciously manage cloning during
maintenance. To enable semantic clone detection of
Matlab/Simulink model, Al-Batran et al.[22] proposes a
pattern based approach with the concept of normal forms
to identify clones which have identical behavior but
different structure. In addition, Alalfi et al.[23] adapts
NiCad code clone detector to find near miss clone of
Matlab/Simulink by transforming graph-based models to
normalized text form.

III. MODEL CLONE DETECTION

In the context of Simulink models, model clone
appears as a connected submodel. Two submodels are
considered clone if they are isomorphic, non-overlapping,
and connected [11].

There are two types of model clones, exact clone and
approximate clone [24]. Exact clone is exactly matched to
one another — two data-flow model graphs have exactly
the same structure and corresponding labels.
Approximate clone contains syntactic clone and semantic
clones. Syntactic clone means that two data-flow model
graphs have essentially the same structure and labels,
allowing for minor adaptions like changes to the element
names, attributes, and parameters, etc. In contrast to
syntactic clones, semantic clones may exhibit a rather
different structure but have the same behaviors.

Within the last few years, the detection of model clone
has been an active area of software maintenance research.
Theoretically, model clone detection is the problem of
identifying all maximum common subgraphs within a
graph, which is a NP-Complete problem. Just as
mentioned in [25], one of most obvious source for
improvement is the clone detection phase. There exist
several algorithms to detect clones in models [11,19].

Generally, the model clone detection process includes
three major phases: preprocessing and normalization,
clone detection, postprocessing. To understand the
process of model clone detection easily, we list out the
flow-process diagram in figure 1.

In the preprocessing and normalization phase, the
models are converted to a labeled, directed graph
representation. Meanwhile, the nodes and edges are
assigned with normalization labels. To facilitate
following detection, all subsystems are flattened. Thus

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1811

© 2014 ACADEMY PUBLISHER

the hierarchic structure of system model is eliminated. In
detection phase, clone instances are identified by
similarity compare algorithms. Several clone detection
algorithms have been presented, such as heuristic graph
based, vector based, index based, etc.

Figure 1. The processes of model clone detection

Here, we propose OPMCD at the detection phase.
With our algorithm, clone instances can be found by
extending common subsequences of long paths which is
built from model graphs. In postprocessing phase, clone
groups which have common clone instances are merged
to a bigger group and the clone results are reported with
visualization form.

CMCD is the state-of-the-art of model clone detection
[10]. Our OPMCD algorithm implemented in Conqat
framework, both preprocessing and postprocessing of
OPMCD and CMCD are the same. But in the core clone
detection phase the two algorithms are completely
different.

To better illustrate and compare with the proposed
OPMCD, we firstly analyze the heuristic clone pair
detection algorithm of CMCD.

The algorithm of CMCD is depicted in Figure 2. The
input is model graph which is preprocessed from models.
At first, node pair set N is created. All node pairs are put
into N if they have the same node labels. If node pair (u,
v) has not been visited, put them into queue Q. If queue Q
is not null, pair (m, n) will be dequeued from Q (line 6).
Line 7 is the most important heuristic place as a list P of
node pairs is constructed from the neighborhood of node
pair with a high similarity value. More details of the
algorithm can be found in [8].

1 function Heuristic model clone detection
2 Input: model graph G = (V, E, L)
3 create node pair set N containing all pairs, each pair has same

node label, D : ൌ	∅
4 for each node pair (u, v) in N do
5 if {u, v } ∉	D then
6 Q : ൌ	{(u, v)}, C : ൌ	{(u, v)}
7 while Q്∅ do
8 dequeue pair (m, n) from Q
9 P = build_list (m, n)
10 for each (x, y)	∈	P do
11 if (x, y)	∈	D
12 jump to the loop at line2
13 else if x	്	y	∧	{x, y} has not been visited
14 C := C	∪	{(x, y)}
15 enqueue (x, y) in Q
16 export clone result C
17 D := D	∪	C

Figure 2. Heuristic algorithm of CMCD for detecting clone pairs

The core pair detection of CMCD routine performs
iteration over all possible pairs of nodes in BFS manner.
To improve time complexity, the algorithm uses heuristic
search which is used to quickly extend new pairs of nodes
that can be combined with the current pair of nodes to
form a larger clone pair. Finally, clone pairs are
combined to clone groups. Therefore, on the one hand it
can be solved in polynomial time and appropriate for
large-scale models, but on the other hand it naturally
causes that certain clone instances can’t be found, which
leads to a lower recall.

IV. OPTIMIZED PATH-BASED MODEL CLONE DETECTION
ALGORITHM

Our proposed OPMCD focuses on diagram model with
exact clone identification, and contributes to the detection
phase, which is the bottleneck of performance and kernel
phase in clone detection pipeline.

A. Definitions
Given G = (V, E, L) as the representation graph of a

model, we use the following definitions:
Definition 1 (Labeled Directed Graph) A labeled

directed graph G is a pair G = (V, E, L) consisting of a set V
of nodes and a set E ⊆ V ൈ V of directed edges, with an
additional labeling function L: V 	∪	E→N which maps
nodes and edges to labels from a set N.

Definition 2 (Graph Component) A graph component is
a set of connected nodes of G which forms a weakly
connected subgraph.

Definition 3 (Longest Path in Graph) The longest path is
simple node path of maximum length in a graph
component. This longest path is a simple path in which
every node appears exactly once.

Definition 4 (Common Subsequence) A common
subsequence in a pair of sequences is a node subsequence
that appears in both sequences. The longest common
subsequence is a common subsequence with maximal
length.

Definition 5 (Clone Instance) A clone instance is the
exactly matched or similar subgraph in model graph. All
clone instances within a clone group have clone
relationship with each other. Both graphs are called clone
instances if they are isomorphic.

Definition 6 (Clone Group) A clone group is a set of
clone instance, where any two instances are a clone pair.

B. Optimized Path-Based Model Clone Detection
Algorithm

In this paper, we focus on the detection algorithm with
graph based data-flow models.

The kernel idea of the detection algorithm is based on
an observation that the longest path in a data-flow model
contains majority nodes of the model. For instance, the
longest path in model shown in figure 3 contains 7 nodes,
which cover 77.8% nodes of total. Basically, our
algorithm consists of three main steps: building path,
finding common subsequences, and identifying clone
instances. The procedure to identify clone instance is as
follows.

models

preprocessing & normalization

clone detection

postprocessing

reporting result

1812 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

First, all connected components are exacted from
model graph. Then, the proposed OPMCD uses those
nodes which have no incoming edge as the starting point
to build paths. If the length of one path is long enough, it
will be selected for subsequent processing. Figure 3
displays an example. From nodes “input” without
incoming edge, two paths with (input, gain, add, divide,
sum, output) and (input, select, add, divide, sum, vector,
output) are constructed separately from the components
of figure 3 (a) and figure 3 (b). Meanwhile, those paths
whose length is smaller than a desired value will not be
considered (e.g., the path (subsys, vector, output) in the
figure 3 (b)). Next, the common subsequences (add,
divide, sum) of long paths are created between two paths.
Finally, all common subsequences are expanded by the
extension with nodes with the same label in a BFS
manner. All nodes contained in clone instances which are
marked with gray color are identified.

(a)

(b)

Figure 3. The illustration of finding clone instance with OPMCD

The pseudo-code of OPMCD is described in figure 4.
G denotes set of graph representations transformed from
system model by preprocessing and normalization. C
denotes set of connected components. Container stack S
is used to store nodes temporarily. T denotes set of nodes
which have been visited.

1 function OPMCD
2 input: labeled directed graph G = (V, E, L)
3 extract connected components from model graph G, and put

into the set C
4 path_list := ∅,	seq_list := ∅
5 for each component x in C
6 T := ∅
7 for each node n in component x do
8 S := ∅
9 if(getIncomingEdge(n) = 0)
10 buildPath (n)
11 for each pi, pj ∈	path_list and	pi്pj do
12 findSubseq(pi, pj)
13 for each subSeq s in seq_list do
14 clones := clones	∪	findClones(s)
15 perform cluster on clones and report the results
16
17 function buildPath(n)
18 push n into S, T := T	∪	{n}
19 nodeCluster := getNodeCluster(n);
20 if nodeCluster ് 	∅
21 for each node y in nodeCluster

22 if y ∉ T
23 buildPath(y)
24 else
25 if (S.size >	∂1)
26 path_list := path_list ∪	constructPath(S)
27 pop n from S
28
29 function findSubseq(p, q)
30 m = p.size+1, n= q.size+1
31 create an m×n all zero matrix M
32 for each element M[i][j] in M
33 if node p[i-1] and q[j-1] have same label
34 M[i][j] = M[i - 1][j - 1] + 1
35 for each element M[i][j]
36 if(M[i][j] >∂2)
37 seq_list :=seq_list∪p.substring(i-M[i][j], i-1)

Figure 4. Pseudo-code of OPMCD

First, model is represented as a sparse, labeled directed
graph G = (V, E, L). In line 3, all labeled directed graph are
enumerated, and then all connected components are
extracted to construct set C. If the size of a component is
small, it would be eliminated.

Since the first node of a path has no incoming edge, we
use those nodes without incoming edges as a starting
point to build path instead of enumerating all nodes, as
shown in line 9. It can effectively prevent the
construction of vast redundant paths, which helps to
reduce time consumption of the algorithm.

Line 10 calls function buildPath that is detailed in lines
17-27. A depth first search (DFS) backtracking algorithm
is used in the construction of path within graph
components. At first, the starting node n is put into S and
T in line 18, and then getNodeCluster performs a BFS
traversal from n using forward edges to get node cluster
in line 19. If nodeCluster is not empty, the function
buildPath is repeatedly called for each node which has
not been visited in nodeCluster (lines 20-23). In line 22,
OPMCD guarantees that each node be visited at most one
time and no repeated nodes existed in different paths.
When a node without forward edge has been reached, a
path is constructed from node sequence in S supposing
the size of S is big enough (lines 23-25). Next, the top
node n of S is popped in line 26.

What must be emphasized is that we choose all
non-overlapping candidate paths which are greater than a
given threshold besides the longest path in line 25. This is
due to the fact that some large graph components contain
hundreds of blocks. If only the longest path is considered,
we may lost the chance of finding potential candidate
clones resulted from other path. At the same time, short
paths are not being considered because clones that
resulted from those paths often tend to duplicate with
clone result from long paths. Consequently, it can
guarantee that our algorithm has high recall and fast
detection.

After that, the common subsequence set seq_list is
obtained by function findSubseq in line 12. Function
findSubseq identifies all kinds of common subsequences
with a trick of matrix in lines 33-34. The primary
character of it is introducing a threshold in line 36 to
eliminate trivial common subsequences from which
meaningful clone instances generally can’t be generated.

width

divide

delay

vector
sum

subsys input

add

output

select

output

gain

const

input add divide

width

sum

delay

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1813

© 2014 ACADEMY PUBLISHER

Later, clone instances in model graph are identified by
function findClones through the extension of common
subsequences via BFS search in line 14. Finally, all clone
groups are clustered and the results are reported.

Totally, the optimized measures are introduced in lines
3, 22, 25 and 36 respectively. The heuristic mechanism in
line 9 not only helps to significantly reduce total time for
detection, but also ensure that OPMCD has excellent
detection performance in precision and recall.

C. Time Complexity
Assume that d is the maximum number of the nodes

without incoming edge in components, m is the average
size of components, n is the number of connected
components, and N is the total number of nodes in model
system. The OPMCD mainly consist of three functions:
building path, finding common subsequence, extending
from common subsequences.

For building path function, all nodes in a connected
component are traveled only once from a given starting
point (nodes without incoming edge) by DFS. Building
path function in our algorithm runs O(d*m*n) times, in
which m*n equals to N. Moreover, in practice, nodes
without incoming edge are small proportion of all nodes
of a component, i.e. d is small. Thus, O(d*N) is trivial.

During the extension of common subsequences, there
are N2 = n2*m2 compactions in worst case. In summary,
the time complexity of novel optimized path-based
algorithm can be solved in O(N2) time.

V. EXPERIMENTS

In order to evaluate the performance of OPMCD,
ConQAT is used as a common framework to integrate
OPMCD for simulation. The ConQAT is an integrated
toolkit for creating quality dashboards that allow to
continuously monitor quality characteristics of software
systems. The experiments are performed on personal
computer with a duo Intel core of a 2.4GHz CPU, 3GB of
main memory, and Windows 7 operating system. In these
experiments, the weight of minimum clone instance is set
as 5.

ModelCD developed by Pham et al. [18] operates in
roughly the same way as ConQAT, has little
improvement and is not publicly available, so we
excluded it in our comparison.

A. Analyzed Model
We choose four open source Simulink system models

which are available from MATLAB Center [7]: A
Simulink model for a communications lab (SIM), a
simulation of multiple unmanned air vehicles (MUL), a
video surveillance system (SEM), and an echo canceller
model (ECW). These Simulink model-based systems are
also chosen as experiment objects in [11,19]. Table I
shows the sizes of these models where system denotes
model name, files denotes the number of model file of
system, nodes denotes the total number of blocks, and
edges denotes the total number of lines.

TABLE I.

SIZES OF MODELS

system files nodes edges
SIM 49 452 422
MUL 2 475 576
SEM 16 1558 2029
ECW 31 2312 2274

As above table shown, the models contain hundreds to
thousands of blocks. The largest system has 2312 blocks
distributed over 31 files. What should be noted is that all
blocks of the MUL model contain just in one .mdl file
while another file does not contain any block.
Unfortunately, industrial-scale models are not available.
These analyzed model are typical models. They have
been used to verify the effectiveness of algorithm in
many papers [8,11,19].

Since we are not interested in small clone instances,
graph components which are less than 5 will be removed
in the process of extracting connected components. The
results of extracted connected components are show in
table II. There are 6 columns: model name (system), the
number of graph components which are kept after
extraction processing (#CKeep), the number of graph
components which are skipped after extraction processing
(#CSkip), the total number of nodes in kept components
(#NKeep), the total number of nodes which are skipped
(#NSkip), and the average size of kept components
(#Asize).

TABLE II.

CONNECTED COMPONENT EXTRACTION

system #CKeep #CSkip #NKeep # NSkip # Asize
SIM 42 28 411 41 9.8
MUL 15 14 448 27 29.9
SEM 18 91 1457 101 85.9
ECW 74 192 1957 355 26.4

We can see that almost 83.5% components have been
eliminated in SEM from Table II. For the largest model
ECW, 192 components were removed and just 74
connected components are kept. This shows that the filter
of graph components is effective, especially for large-
scale model.

B. Run-Time Comparison
To compare the run-time between the proposed

OPMCD and CMCD, we performed both of them with the
models in Table I. The results of run-time comparison are
illustrated in figure 5. The initial parsing phase of
OPMCD and CMCD are the same and not taken into
account. Thus, the time shown in vertical direction of
figure 5 which does not involve time for loading and
parsing Simulink files, and displaying clone results.

1814 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Fig

The avera
smallest. The
least time. O
while it only
than SEM.
components
kept compon
OPMCD per
figure 5. Es
detection tim
that of OPM
algorithms
performance

C. Precisio
For clone

precision and
from both OP

The preci
theory. To v
inspect the d
each clone i
clone instanc
another. Afte
all clone ins
algorithm sa
the practical

To valida
analyze the
find that all
independent
clone groups
for models o

Figu

By one to
identify all th
clone groups

370 1

SIM

T(ms)

SIM

30

gure 5. Time used

age size of k
erefore, the de

OPMCD requi
requires 530
This is beca
of SEM is the
nents of ECW
rforms much
specially for

me of CMCD
MCD. The com

shows that
in terms of sp

on and Recall
e detection q
d recall. We in
PMCD and CM
sion of OPM

validated prac
detection resul
instance exist
ce in the sam
er exhausted
stances and c
atisfy above c
precision of d

ate the recall
cover relation
l clone group
of each other.
s identified w
f table I.

ure 6. The numbe

o one compari
he 30 clone g

s with MUL th

234124 18

M MUL
CMCD

M MUL

15
34

18

CMCD

d in model clone

ept componen
etection phase
ires 984ms fo
for ECW who

ause the aver
e 85.9 while t

W is 26.4. Fo
faster than CM
the largest

 is almost 5
mparison of th
t the OPM
peed.

quality, it m
nspect each cl
MCD manual

MCD is 100%
ctical precision
lts from follo
s in original

me clone group
manual check

clone groups
conditions, wh
detection resul
l of our algo
nship among
ps identified
. Figure 6 sho

with both OPM

er of identified cl

ison, we find
groups with S
hat CMCD ide

1584

87
984

SEM
OPM

SEM

71

8

68

OPM

detection.

nts of SIM i
e for SIM req
or model of S
ose model is la
rage size of
the average si
or all the mo
MCD as show
model ECW
times longer
e run-time of

MCD has b

must consider
one group res
ly.
from the poi
n of OPMCD

owing two asp
models, and

p are clone of
king, we find
reported with
hich confirms
lts is also 100
orithm, we fi
clone groups
with OPMC

ws the numbe
MCD and CM

lone groups

that OPMCD
IM and all th

entifies. More

2683

4
530

ECW
MCD

ECW

95 96

MCD

s the
quires
SEM,
arger
kept

ize of
odels,
wn in
, the
than

f both
better

r the
sulted

int of
D, we
pects:

each
f one

d that
h our
s that
%.

firstly
s and

CD is
ers of
MCD

D can
he 15
eover,

extra
extra
MU
CMC

F
OPM
foun
isom
thos
CMC
there
insta
grou
reca

E
grou
are 6
in C
are a
grou
CMC
fact.

F
whic
cons
diffe

Fig

T
III
adva
OPM
large
the
CMC

T
in m
dete
dom

In
dete
This
the
com
extra
obta

a clone group
a clone group
L. It means
CD to SIM an
or SEM, CMC

MCD in total
nd that there
morphic clone
se 8 clone grou
CD actually
e are 2 clon
ances in resul
ups. Therefor
all than CMCD
ECW is simila
ups, and OPM
6 clone group

CMCD, which
also 4 groups
ups. That is to
CD and 94 clo
.
igure 7 is a
ch OPMCD
sists of 17 blo
erent colors re

ure 7. Clone inst

To sum up, the
demonstrate

antage in ti
MCD has bette
e-scale MATL
precision and
CD.

There are lots o
model-based
ection plays an
main.
n this paper, a
ection algorith
s method initia

model clone
mmon subsequ

acted from m
ained by exten

ps are identif
ps with SIM

that OPMC
nd MUL.
CD identified
l as shown i
are 8 differe
instances in r

ups should be
identified 64
ne groups e
lts from OPM
e, for SEM,

D.
ar to SEM. C

MCD identifie
ps containing i

can be merge
in OPMCD w

o say, 92 clon
one groups ar

clone instan
can detect b

ocks with thre
epresent differ

tance that OPMC

e experiment r
that our a

me performa
er scalability a
LAB/Simulink
d recall of O

VI. CONCL

of reasons lead
development.

n important ro

novel optimiz
hm named OP
ally introduced
e detection.
uences from
model graphs.
nding common

fied with OP
and 3 clone

CD has better

d 3 more clon
in figure 6. H
rent clone gro
results from C
e taken as one
4 clone grou
existing isom
MCD, it still

OPMCD als

CMCD identi
es 96 clone g
isomorphic cl
ed into 3 grou
which can be m
ne groups are
re identified b

nce originated
but CMCD c
ee layers. Here
rent layers.

CD finds, but CM

results on mo
algorithm ha
ance, which
and practical
k models. At t

OPMCD is no

LUSION

ding to numer
. Therefore,

ole in software

zed path based
PMCD has be
d path-based a
The OPMC

the long path
 Then clone
n subsequence

PMCD, i.e., 4
e groups with
r recall than

e groups than
However, we
oups existing
CMCD. Since
e clone group,
ups. Although
morphic clone

has 67 clone
so has better

fies 95 clone
groups. There
lone instances

ups. And there
merged into 2
identified by

by OPMCD in

d from MUL
can’t find. It
e, blocks with

CD cannot find

odels of Table
as prominent

means that
suitability for
the same time

ot worse than

rous of clones
model clone

e maintenance

d model clone
een presented.
algorithm into

CD identifies
hs which are
instances are

es. During the

4
h
n

n
e
g
e
,

h
e
e
r

e
e
s
e
2
y
n

L
t
h

e
t
t
r
e,
n

s
e
e

e
.

o
s
e
e
e

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1815

© 2014 ACADEMY PUBLISHER

process of paths building and common subsequences
finding, those nodes without incoming edge are chosen as
starting point to build path instead of an exhaustive
search, and only the longest path is considered. The
experimental evaluation demonstrates that OPMCD can
significantly speed up detection time. At the same time, it
can preserve high quality in precision and recall which has
advantage in clone detection for large-scale model
systems. Future works include further improvement in
detection time and applying our algorithm to industrial
model systems. Moreover, according to specific
objectives and scenarios of model clone detection, it is
interesting to study on clone groups filter and cluster to
improve performance of OPMCD.

ACKNOWLEDGMENT

This work was supported by the Science &Technology
Fund of Shenzhen under Grant JCYJ20120613114918935,
JCYJ20120616135936123and JCYJ20130326112033984,
National High-Technology Research and Development
Program (“863” Program) of China under Grand
2013AA01A212, Ministry of Education in the New
Century Excellent Talents Support Program of China
under Grand NCET-12-0649, and National Nature Science
Foundation of China under Grant 61170283.

REFERENCES

[1]. D. Yael, R. Julia, B. Thorsten, et al. “An Exploratory
Study of Cloning in Industrial Software Product Lines”,
Proceedings of the 17th European Conference on Software
Maintenance and Reengineering, pp. 25-34, 2013.

[2]. D. Rattan, R. Bhatia, M. Singh. “Software Clone Detection:
a Systematic Review”, Information and Software
Technology, volume 55, issue 7, pp. 1165-1199, 2013.

[3]. C. Debarshi, C. Jeffrey, K. Nicholas, “Cloning: The Need
to Understand Developer Intent”, Proceedings of the 7th
International Workshop on Software Clones, pp. 14-15,
2013.

[4]. S. A. Mohammad, M. Yasuhiko, A. S. Mohammad.
“Baenpd: a Bilingual Plagiarism Detector”, Journal of
Computers, volume 8, issue 5, pp. 1145-1156, 2013.

[5]. J. Elmar, D. Florian, H. Benjamin, W. Stefan, “Do Code
Clones Matter?”, Proceedings of the 31st International
Conference on Software Engineering, pp. 485-495, 2009.

[6]. K. Rajeev. “Business Rules Modeling for Business Process
Events: An Oracle Prototype”, Journal of Computers,
volume 7, issue 9, pp. 2099-2106, 2012.

[7]. http://www.mathworks.com/, Accessed May 10, 2013.
[8]. F. Deissenboeck, B. Hummel, E. Jurgens, B. Schätz ,

S.Wagner, J.-F. Girard, and S. Teuchert. “Clone Detection
in Automotive Model-Based Development”, Proceedings
of the 30th International Conference on Software
Engineering, pp. 603-612, 2008.

[9]. M. Broy, S. Kirstan, H. Krcmar, and B. Schätz. "What is
the Benefit of a Model-Based Design of Embedded
Software Systems in the Car Industry?", Emerging
Technologies for the Evolution and Maintenance of
Software Models, pp. 343-369, 2012. DOI:
10.4018/978-1-61350-438-3.ch013

[10]. E. Juergens. “Research in Cloning Beyond Code: a First
Roadmap”, Proceedings of the 5th International Workshop
on Software Clones, pp. 67-68, 2011.

[11]. F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler,
and B. Schaetz. “Model Clone Detection in Practice”,
Proceedings of the 32th ACM/IEEE International
Conference on Software Engineering, pp. 499-500, 2010.

[12]. W. Hu, , J. Wegener, I. Stürmer, R. Reicherdt, E. Salecker,
S. Glesner, “MeMo – Methods of Model Quality”,
Proceedings of Dagstuhl-Workshop: Model-Based
Engineering of Embedded Systems, pp. 127-132, 2011.

[13]. http://www.mathworks.com/help/toolbox/slcontrol/gs/bsp4
o3g.html, Accessed May 10, 2013.

[14]. H. J. Patel, R. Prajapati, M. Panchal, et al. “A Survey of
Graph Pattern Mining Algorithm and Techniques”,
International Journal of Application or Innovation in
Engineering & Management, volume 2, issue 1, pp.
125-129, 2013.

[15]. L. Chen, Y. Chen, L. Tu. “A Fast and Efficient Algorithm
for Finding Frequent Items over Data Stream”, Journal of
Computers, volume 7, issue 7, pp. 1545-1554, 2012.

[16]. K.M. Tang, C. Y. Dai, L. Chen, “A Novel Strategy for
Mining Frequent Closed Itemsets in Data Streams”,
Journal of Computers , volume 7, issue 7, pp. 1564-1573,
2012.

[17]. H. Liu, Z. Ma, L. Zhang, and W. Shao. “Detecting
Duplications in Sequence Diagrams Based on Sufftrees”,
Proceedings of the 13th Asia Pacific Conference on
Software Engineering, pp. 269-276, 2006.

[18]. H. Störrle. “Towards Clone Detection in UML Domain
Models”, Software and Systems Modeling, volume 12,
issue 2, pp. 307-329. 2013.

[19]. N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi,
and T. N. Nguyen. “Complete and Accurate Clone
Detection in Graph-Based Models”, Proceedings of the
31th International Conference on Software Engineering, pp.
276–286, 2009.

[20]. H.A. Nguyen, T.T. Nguyen, N.H. Pham, J.M. Al-Kofahi,
T.N. Nguyen. “Accurate and Efficient Sructural
Characteristic Feature Extraction for Clone Detection”,
Proceedings of the 12th International Conference on
Fundamental Approaches to Software Engineering, pp.
440–455. 2009.

[21]. B. Hummel, E. Juergens, D. Steidl. “Index-Based Model
Clone Detection”, Proceedings of the 5th International
Workshop on Software Clones, 21-27, 2011.

[22]. B. Al-Batran, B. Schatz, and B. Hummel. “Semantic Clone
Detection for Model-Based Development of Embedded
Systems”, Lecture Notes in Computer Science, issue 6981
pp. 258-272, 2011.

[23]. M. Alalfi, J. R. Cordy, T. Dean, M. Stephan, and A.
Stevenson. “Near-miss Model Clone Detection for
Simulink Models”, Proceedings of the 6th International
Workshop on Software Clones, pp. 78-79, 2012.

[24]. M. Stephan, M. Alalfi, A. Stevenson, and J. R. Cordy.
“Towards Qualitative Comparison of Simulink Model
Clone Detection Approaches”, Proceedings of the 6th
International Workshop on Software Clones, pp. 84-85,
2012.

[25]. S. Matthew, H. A. Manar, S. Andrew, R. C. James, “Using
Mutation Analysis for a Model-Clone Detector
Comparison Framework”, Proceedings of the 35th
International Conference on Software Engineering. pp.
1261-1264, 2013.

1816 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Zhengping Liang received his Ph.D.
degree on computer software and theory
from the School of Computer, Wuhan
University, Wuhan, China in 2006. Now
he is an associate professor in the
College of Computer Science &
Software Engineering, Shenzhen
University, Shenzhen, China. His current
research interests include software

analysis, requirements engineering and computational
intelligence, etc.

Yiqun Cheng received his BS.c. from
the Jiangxi Normal University in 2010.
Now he is an MS.c. student at the
College of Computer Science &
Software Engineering, Shenzhen
University, Shenzhen, China. His
research interests include model clone
detection and analysis.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1817

© 2014 ACADEMY PUBLISHER

