

Design and Implementation of Universal
Web-Tree Service Component for Large-Scale

Data Maintenance

Zhidong Wang*
Computer Academy, Beihang University, Beijing, China

Email: wzd2ff99@126.com

Lichao Ye
Beijing audit firm, Beijing, China

Email: ylc_1989@163.com

Wenfa Li
Beijing Union University, Beijing, China

Email: liwenfa@buu.edu.cn

Abstract—At present the third-part open source web-tree
components and related algorithms have the shortcomings
of poor compatibility, small data-scale and low running
efficiency. The paper aims at design and implementation of
a universal web-tree service component (WTSC) for
larger-scale data maintenance to overcome these deficiencies
mentioned above. By comparing and analyzing the existing
algorithms, an improved algorithm named M-C was put
forward to meet the demands of large-scale web-tree data
loading, adding, removing and dragging. Then pseudo-code
descriptions of M-C algorithm were given in detail. The
paper gave a comprehensive formal description of WTSC to
illustrate its abstract logic model. By using SCA, SOA, SSH,
and UML technologies, software development framework
named SOA-SSH, service access interface model named
SCA and UML diagrams were given to develop and
implement the application prototype of WTSC. To verify its
performance, a comparative analysis was made among three
different schemas. From the data test results, conclusions
can be drawn that WTSC designed by this paper had better
performance at large-scale data loading and maintenance, at
the same time as a result of SCA model and SOA-SSH
framework, it had friendlier UI and better compatibility
and extensibility. Finally, future research work was
prospected.

Index Terms—SCA, SOA-SSH, large-scale, web-tree data

I. INTRODUCTION

During a large number of B/S (Brower/Server) model
MIS (management information system) software design
and development, the problem of web-tree data
maintenance is frequently encountered. Management of
such data had common characteristics of frequently
accessing to large amounts of data, complex maintenance
operation (loading, querying, adding, deleting, modifying,

dragging, dropping, moving, etc.). For example, in the
development of web-based online material cataloging
system, we must describe the classification relationships
of thousands of materials through a directory tree. When
the data-scale increased rapidly, due to the low running
efficiency of data-loading, we had to wait too long for the
directory tree building and displaying. Therefore, it is
particularly critical for us to choose an appropriate data
description method, realization algorithm and
development framework by which we can improve the
running efficiency and enhance the system scalability.

Now the widely used third-part open source web-tree
components include DTree, XTree and ZTree. DTree is
an open source tree component developed by JS (Java
Script).It is particularly simple for the user to use the tree
component according the label of the open new links and
display icons. DTree is simple and practical, but it does
not support the checkbox choosing and dynamic nodes
adding, deleting and dragging. XTree is a menu of
supporting properties and functions API based on Ajax
[1]. It can customize icons and links object-oriented.
Because of being described by XML, its structure is
relatively simple. Compared with DTree, we can add,
delete or drag nodes by calling API directly. ZTree is a
multi-functional "plugging and playing" component
based on jQuery. ZTree can supply the functions of
selecting check-box, changing icon dynamically and
providing a wide range of incident response calling back,
but also can synchronize JSON[2] format data.

The technology system architecture, data format (JS,
JSON, XML), and running environment were
significantly different among these components
mentioned above. It is difficult for us to exchange and
share data received from these web-tree components.

In terms of data management, the main class web-tree
data structure can be divided into two types, the static and
dynamic. The former is applicable for the small scale and
content-fixed tree-level data management. The advantage

This work was supported by the High Technology Research and
Development Program of China (2007AA01Z416).Corresponding
Author, Zhidong Wang.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1781

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1781-1789

of the static is that it is simple for us to program and
disadvantage is difficult to reflect data changes rapidly.
The latter can dynamically maintain the web-tree data
and realize the real-time operation and centralized storage
by the method of a certain database [3]. In terms of data
loading, the static adopted "one-loading and
many-running" policy. Its performance and efficiency
completely depends on the data scale. When the scale
reached a certain size (104 above), the time consuming for
web-page loading became long. The dynamic commonly
uses depth-first recursive algorithm. This algorithm is
suitable for the small-scale web-tree data management.
When the data size reached up to 105, the loading time is
relatively long too. Jian Wang, Hongying Fang and
Changchun Chen put up binary tree-based prefix code
conversion algorithm [4]. Dejun Chen, Yingzhe Ma and
Zhude Zhou put forward breadth-first traversal
code-based algorithm [5]. The two algorithms had
relatively good efficiency in data loading, but when it
comes to data maintenance such as changing hierarchy, a
large number of nodes involved being moved and running
efficiency is low. When the data size of 106 or more,
data-loading efficiency is extremely low.

To cope with these issues, we designed a universal
platform-independent WTSC to realize the large-scale
data loading and maintenance by an improved algorithm
named M-C, SOA-SSH software development framework
and its related technologies.

II. ALGORITHM ANALYSIS AND DESIGN

A. Analysis of Existing Algorithms
The existing tree traversal algorithm mainly includes

pre-order, in-order and post-order. We usually use
pre-order. Common tree node coding algorithm include
Inheritance-Coding (referred I-C), Relationship-Coding
(referred R-C), and Left and Right Coding (referred
L&R-C). A case study in cataloging materials tree shown
as Fig.1, we can design database tables as TABLE I,
TABLE II and TABLE III respectively.

TABLE I.
I-C

ID(PK) TITLE
10 Commodity
1010 Food
101010 Meat
10101010 Pork
101011 Vegetable
10111110 Cabbage
1011 Electric
101110 Television
101111 Refrigerator
... ...

TABLE II.
R-C

ID(PK) PID LID OID TITLE
0 NULL 0 1 Root
1 0 1 1 Commodity
2 1 2 1 Food

3 2 3 1 Meat
4 3 4 1 Pork
5 2 3 2 Vegetable
6 5 4 1 Cabbage
7 1 2 2 Electric
8 7 3 1 Television
9 7 3 2 Refrigerator
...

TABLE III.
L&R-C

ID(PK) LC RC TITLE
1 1 18 Commodity
2 2 11 Food
3 3 6 Meat
4 4 5 Pork
5 7 10 Vegetable
6 8 9 Cabbage
7 12 17 Electric
8 13 14 Television
9 15 16 Refrigerator
...

I-C: For using hierarchical coding values to indicate

the parent-child relationships between tree nodes, child
node code-value can be inherited from the parent.
Advantages are as follows: the parent-child relationship
expressed visually, with only one query we can get
preorder a root node and all its descendants. By
eliminating the recursion, when loading large-scale data,
we can get high ruining efficiency. Furthermore, the layer
number can be directly obtained from the operation of
code value, using less storage fields, if the coding-bit is b
and coding-value length is w, and then the layer number
equals w/d. Disadvantages are as follows: the same layer
node capacity is limited to the coding-digit, up to a
maximum number of nodes in the same layer is 10b-1.
Poor reliability of the algorithm, when a node coding
error prone fault. When the parent-child relationship was
changed due to data dragging or moving, the associated
child nodes should be re-encoded. As the number of
nodes increases, computational complexity increases
suddenly. Therefore, I-C algorithm can not be adapted to
large-scale of web-tree data management.

R-C: The algorithm expressed parent-child relationship
through a unique identifier. A node recorded itself ID, the
parent node PID, the number of levels LID as well as its
sibling node order OID at the same time. Advantages are
as follows: for doing not have to follow the encoding
rules, code values can be set to self-growth and
parent-child relationships changes are simple, we just
only change the node's PID, LID and SID value. Because
of the smaller impact on other nodes, we can get the
higher running efficiency. Disadvantages are as follows:
when the data needed to be loaded or removed, recursive
algorithm had to be involved. When the data-scale
increased, the efficiency became lower especially the data
size reached 104 or more.

L&R-C: We can set the left and right encoding-value
for each node by a specific rule, which can show the
parent-child relationship among tree nodes. By using the

1782 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

preorder algorithm to traversal the tree nodes, the parent
is visited firstly, then the child. Each node can be visited
at twice. We can use increment marks (such as 1, 2, 3 and
n) to tag the first traveling by left-value and the second
right-value (shown in Fig.5). Advantages are as follows:
we can achieve the unlimited classification by eliminating
recursive. Adding, modifying, deleting, changing and
other conventional operation had high efficiency.
Because the query is based on the plastic figures, the
large-scale data loading efficiency is high. Disadvantages
are as follows: due to L&R-C is different from H-C or
R-C, the parent-child relationship is not intuitive. The left
and right code values of one node must be calculated by
the preorder operation, the parent-child relationship is not
obvious.

Considering the advantages and disadvantages of the
three coding algorithms, the paper adopts a mixed coding
algorithm (referred M-C) to implement the creating,
loading and maintenance of large-scale web-tree data. We
can create the data table as TABLE IV.

Figure 1. The left and right coding tree

TABLE IV.
MIXED-CODING

ID(PK) PID LID LC RC TITLE
1 NULL 0 1 18 Commodity
2 0 1 2 11 Food
3 1 2 3 6 Meat
4 2 3 4 5 Pork
5 3 4 7 10 Vegetable
6 2 3 8 9 Cabbage
7 5 4 12 17 Electric
8 1 2 13 14 Television
9 7 3 15 16 Refrigerator
...

We can be seen from the TABLE IV: ID and PID, for
building intuitive parent-child relationship, to make up
for the shortcomings of L&R-C algorithm. We can set
left and right code-value by pre-order traversal algorithm.
The left-value of all child nodes of a specific parent node
must be between its left-value and right-value. The
number of all child nodes is equal to (rvalue-lvalue+1)/2.
According to this law, we can query large-scale data,
display or remove the unlimited hierarchical tree nodes
quickly, eliminating the traditional recursive algorithm to
make up the low operating efficiency of R-C.

B. Related Definitions and Terminologies
a) Definition 1: Tree Data Structure

Tree is a very important non-linear data structure, and
it is generally suitable for describing the hierarchical
structure, which can be defined as follows formula (1):

Tree includes n (n≥0) data elements (for each data
element in the tree named a node) of a finite set. When
n=0, we call it an empty tree; otherwise non-empty tree.

{ }⎩
⎨
⎧

>
=

=
0...,,,
0

21 nTTTR
n

T
m

φ
 (1)

R is a special node. We call the node as a root with no
precursor. Other nodes (T1, T2…Tn) as disjoint subsets,
each subset is also a tree called a sub-tree. Fig.1. shows
the tree of goods. Each data element of the tree is called a
child node and the number of nodes of a sub-tree is called
degree, terminal node called leaf. Detail content about
tree structure can be found in [6].

b) Definition 2: Node of WTSC
According to Table IV, A node of WTSC can be

defined by a six-tuple:
>=< TITLELIDRGTLFTPIDIDode ,,,,,N (2)

According to definition 1, the node i can be denoted as
>=< iiiiiii TITLELIDRGTLFTPIDIDode ,,,,,N .

Its parent can be expressed as:
>=< ppppppi TITLELIDRGTLFTPIDIDode

p
,,,,,N

(PIDIDp = ,),(, ppii RGTLEFRGTLEF ∈). (3)
c) Definition 3: Value of Tuple
We can get the value of the tuple by the index. The

formula is as following:
><= iii IndexgetNodeID . (4)

d) Definition 4: Child Nodes of WTSC
We can denote a collection of a certain node and all its

child nodes as following:
nkRGTLFTLFTNodeC iikki ...2,1],,[|{ =∈= ,

}2/)1(+−= ii LFTRGTn . (5)
e) Terminology 1: HQL
HQL (Hibernate Query Language) is Hibernate

database query language based on the object-oriented
database, which can package an object as a physical table
[19].

f) Terminology 2: DAO
DAO (Data Access Object) can do a variety of

operations such as adding, deleting, changing, checking
by object-oriented design ideas package to access the
physical database tables.

C. M-C Algorithm Design of WTSC
API functions involved in M-C algorithm are listed in

TABLE V.
TABLE V.

M-C API

API Name Function Description
1.batchUpdate_Nodes(String hql) Batch updates data by hql.
2.get_Nodes (String hql) Get nodes list by hql
3.get_Node (Integer i) Get node by ID.
4.load_AllNodes (Integer i) Load its all Childs.
5.show_Node(Integer i) Output the Node
6.add_Node(Node node) Add new node.
7.remove_Node (Integer i) Remove all Childs.
8.drag_Node(Integer f, Integer t) Drag one node to another.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1783

© 2014 ACADEMY PUBLISHER

Due to the limited length of the article, we only gave
java pseudo-code descriptions of the node loading,
adding, removing, and dragging operations.

a) Node-Loading Algorithm
We can load a commodity tree by the order numbers

marked by blue arrows shown in Fig.1. By definitions of
section B, the node-loading algorithm is summarized as
algorithm I.

b) Node-Adding Algorithm
For example, we add a child node beef to meat. Since a

node occupies two values(the left and right), so by
definitions, we can find rules as following:

1+=
pii LFTLFT (6)

1+=
pii LFTRGT (7)

In Formula (6) and formula (7),
iLFT is the left value

of the added node,
iRGT is the right value and

pi
LFT is

the left value of its parent. After the adding operation the
result is shown as Fig.2. The data-adding algorithm is
summarized as algorithm II.

Figure 2. adding tree node result

Algorithm II: add_Node(Node node)
1: Integer pidi= Nodei.get<1>;(Get PID value of Nodei)
2: Node nodeip= get_Node(pidi);(Get Parent Nodeip)
3: Integer lftp= nodeip.get<2>;(Get Left value of Nodeip)
4: Integer rgtp=nodeip.get<3>(Get Right value of Nodeip)
5: Integer lidp= nodeip.get<4>(Get Level value of
Nodeip)
6: Integer lfti= lftp +1;(Formula (6))
7: Integer rgti=rgtp +2; (Formula (7))
8: Integer lidi= lidp +1;
9: save(nodei); (Save node value to database)
10: String hql="update WebTree wt set wt.lft =wt.lft+2
where wt.lft >="+ rgtp; (Create HQL to update left value
of the affected nodes blue arrows marked)
11: batchUpdate_Nodes(hql);(Batch update nodes by hql)

c) Node-Removing Algorithm

When deleting a node we will also delete its all
descendants. By definition 3, the number of iNode to be
deleted is equal to 2/)1(+− ii LFTRGT .Any node has a
pair of unique left and right values, so after deleting one
node other appropriated nodes should be adjusted. The
changing amplitude should be 1+− ii LFTRGT .

For example, after deleting the node Vegetable the
changed result marked in blue is shown in Fig.3. The
node-removing algorithm is summarized as algorithm III.

Figure 3. Removing tree node result

d) Node-Dragging Algorithm
The node-dragging operation follows the following

rules as shown in formula (8):
1+−= ii LFTRGTN (8)

N is the digit number occupied by the tree node. RGTi
is the right value of the node. LFTi is the left value of the
node. For example, when we move up Cabbage to Meat,
the result is shown in Fig.4.

Figure 4. Move up tree node result

The coding values of sub-tree cabbage were changed
based on the original right value of the new parent node

Algorithm I: load_AllNodes (Integer i)
1: Node nodei= get_Node(i);(Get Nodei by M-C API 3)
2: Integer lfti= nodei.get<2>;(Get left value of Nodei)
3: Integer rgti=nodei.get<3>;(Get right value of Nodei)
4: String hql=”from WebTree A where A.lft>=”+ lfti+”
and A.rgt<=”+ rgti;(By Terminology I, create HQL)
5: List<Node> Ci=get_Nodes(hql);(Call M-C API 2)
6: for(Integer k=0;k< Ci.size();k++){
7: show_Node(k); (Call M-C API 5 to show node data)
}

Algorithm III: remove_Node (Integer i)
1: Node nodei= get_Node(i);(Get Nodei by M-C API 3)
2: Integer lfti= nodei.get<2>;(Get Left value of Nodeip)
3: Integer rgtp=nodei.get<3>(Get Right value of Nodeip)
4: Integer span= rgti - lfti +1(Get adjustment margin)
5: String hql="delete from WebTree wt where wt.lft>="
+lfti+" and wt.rgt<=" +rgti;//(lft,rgt)∈[lfti，rgti]
6:batchUpdate_Nodes(hql);(Batch update nodes by hql)
7:hql="update WebTree wt set wt.lft = wt.lft –"+ span
+"where wt.lft >"+ rgti;(Create HQL to update Left value
of the affected nodes(Blue arrows mark)
8:batchUpdate_Nodes(hql);(Batch update nodes by hql)
9:hql = "update WebTree wt set wt.rgt = wt.rgt –"+ span
+"where wt.grt >" + rgti;(Create HQL to update Left
value of the affected nodes(Blue arrows mark)
10:batchUpdate_Nodes(hql);(Batch update nodes by hql)

1784 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

meat. As shown in Fig.1, the former right value of meat is
6 and the new left value of cabbage is 6.

Re-iterating sub-tree cabbage is equivalent to the each
node updated by formula (9)-(10):

)()()(newrootoldrootoldnew LFTLFTLFTLFT −−= (9)

)()()(newrootoldrootoldnew LFTLFTRGTRGT −−= (10)

newLFT and oldLFT are the new and old left values of
the node to be moved.

)(oldrootLFT is the left value of the
old root node to be moved.

)(newrootLFT is the left value of
new target root node. For example, the node cabbage left
value equals 8-(8 - 6) and right value equals 9 - (8 - 6).

In addition to cabbage, the other nodes changes in a
certain range between

)(newrootRGT and oldLFT . Because
cabbage is to be moved forward, the involved nodes need
to be moved back and need to be added the digit number
(cabbage occupied). Therefore, we can summarize a law:

movemovemovenewroot LFTLFTRGTRGTLFTRGT <+−+=))1(],([)(
(11)

 In cabbage moving backward case, it is similar to the
forward, the laws is as following:

)())1(],([newrootmovemovemove LFTLFTRGTRGTLFTRGT <+−−<= (12)

The node-dragging algorithm is summarized as
algorithm IV.

Figure 5. Move down tree node result

III. ARCHITECTURE DESCRIPTION AND DESIGN

A. Formal Description of WSTC
In the field of computer science and software

engineering, the formal method is a special technique that
is suitable for description, development and validation of
the software systems. Different mathematical foundations
of the formal methods are different. In this section, we
used the appropriate mathematical logic analysis to
design the abstract model for improving the design
reliability and robustness.

WTSC is a common SOA-based user interface
component. We can access the function services through
the service interface supplied by WTSC. WTSC had the
ability of enabling platform-independent deployment for
heterogeneous data management. We can donate WTSC
as a seven-tuples WTSC=<ID, TE, TIR, TU, TP, TS,
TNS>. Among them, ID represents a unique identifier of
WTSC and others elements descriptions are as follows:

a) TE(Tree node Elements,TE)
TE= {E0, E1, E2, ...En}, (n>0), Ei is a node or element

of the tree. Ei’s data structure is satisfied with formula (1)
and formula (2).

b) TIR(Tree node Information Resource)
TIR can be represented as five-tuples, TIR=<RI, RN,

RD, RW, RS>.
RI (Resource Identification) represents a global

information resource node identifier. RN (Resource
Name) indicates the name of the resource.

Algorithm IV: drag_Node(Integer f, Integer t)
1: Node nodef=get_Node(f);(Get moved from Nodef)
2: Node nodet=get_Node(t);(Get moved to Nodef)
3: Integer lftf= nodef.get<2>;(Get Left value of Nodef)
4: Integer rgtf=nodef.get<3>(Get Right value of Nodef)
5: Integer lftt= nodet.get<2>;(Get Left value of Nodet)
6: Integer rgtt=nodet.get<3>(Get Right value of Nodet)
7: Integer lidf= nodef.get<4>;(Get Level value of Nodef)
8: Integer lidt=nodet.get<4>(Get Right value of Nodet)
9:Integer span=rgtf-lftf+1;(Get adjustment margin)
10: String hql="update WebTree b set b.pid ="+ t +"
where b.id =" + f;
11:batchUpdate_Nodes(hql);(Batch update nodes by hql)
12: if(lftf >lftt){(When Move up)
13: Integer offset= lftf-rgtt;
14:hql="update WebTree b set b.lft = b.lft
-"+offset+",b.rgt = b.rgt -"+offset+",b.lid=b.lid-"+(lidf -
lidt -1)+",b.flag=1 where b.lft >=" + lftf +" and
b.rgt<="+ rgtf; (Create HQL to update left and right
value of the moved nodes)
15:batchUpdate_Nodes(hql);(Batch update nodes by hql)
16: hql = "update WebTree b set b.lft = b.lft + " + span +
" where b.lft >=" + rgtt +" and b.lft<"+ lftf +" and
b.flag=0";(Create HQL to update left value of the affected
nodes blue arrows marked)
17:batchUpdate_Nodes(hql);(Batch update nodes by hql)
18:hql="update WebTree b set b.rgt = b.rgt + " + span +
" where b.rgt >=" + rgtt +" and b.rgt<"+ lftf +" and
b.flag=0";(Create HQL to update right value of the
affected nodes blue arrows marked)
18: batchUpdate_Nodes(hql);(Batch update nodes by hql)
}
19: if(lftf<lftt){(When Move down)
20:Integer offset= rgtt-rgtf-1;
21:hql="update WebTree b set b.lft = b.lft
-"+offset+",b.rgt = b.rgt -"+offset+",b.lid=b.lid-"+(lidf -
lidt -1)+",b.flag=1 where b.lft >=" + lftf +" and
b.rgt<="+ rgtf; (Create HQL to update left and right
value of the moved nodes)
22:batchUpdate_Nodes(hql);(Batch update nodes by hql)
23: hql = "update WebTree b set b.lft = b.lft - " + span
+ " where b.lft >" + rgtf +" and b.lft<"+ rgtt +" and
b.flag=0";(Create HQL to update left value of the affected
nodes blue arrows marked)
24: batchUpdate_Nodes(hql);(Batch update nodes by hql)
25: hql = "update WebTree b set b.rgt = b.rgt - " + span
+ " where b.rgt >" + rgtf +" and b.rgt<"+ rgtt +" and
b.flag=0";(Create HQL to update right value of the
affected nodes blue arrows marked)
26: batchUpdate_Nodes(hql);(Batch update nodes by hql)
27: hql = "update WebTree b set b.flag =0 where b.flag
=1";
28: batchUpdate_Nodes(hql);(Batch update nodes by hql)

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1785

© 2014 ACADEMY PUBLISHER

RD (Resource Description) expresses the description
information of the node. RD can be represented by five
tuple <Rd,Rm,Rl,Rw,Rs>, Rd= {d1, d2, d3,…,di} statements
the node descriptor collections. Rm= {Et, Ea, El}
represents the information of the metadata. Tree node
data type is a mapping:

 Rd → {simpleType, complexType}.Ea is the identifier
of attribute information. El describes the hierarchy of
identifiers. Rl said for the position information of the
resource nodes.RW represents the resource weights, w =
{0,1,2,...,100}, which is based on the importance of
requirements determined by the priority level of the
processing of information. For example, we assume that 0
is the lowest level and 100 is the highest priority level,
the other and so on. RS denotes the level of resource
sharing. RS→ {Rs1, Rs2,…,Rsn}.

According to information resources confidentiality
requirements, for any Rsi = <LID, LN> (i =1,2,...,n), LID
represent the sharing level, LN indicates the sharing level
name.

c) TU(Web-Tree Service Component User,TU)
The person who accesses the tree node information can

be regarded as a web-tree service component user and can
be represented as TU=<UID, UN, UT, UL>. UID is a
global identifier. UN is the user name. UT is the type set
UserType={user,group,…}, user refers to a single entity,
group refs a complex one. It also includes other types. UT
∈UserType. UL is for the user location. According the
movement state, UL can be divided into two types: the
static and dynamic.

d) TP(Web-Tree Service Component Private,TP)
According to the different user of WSTC, TP can be

divided into browsing, adding, modifying, deleting. TP
can be represented as four-tuples TP=<ID,N,T,O> ID is
the global identifier of the privilege. N is the name of the
permission, including a simple type and complex. T can
be represented as T= {loading, adding, updating,
removing,dragging,moving...}.O is an operating type. It is
a mapping: O =TU×TIR→T.

e) TS(Web-Tree Service Component State,TS)
Component state can be defined as two-tuples TS =

<TID,HS>.TID indicates the component global identity.
HS is the hardware utilization status such as CPU usage,
memory usage, etc. It is a mapping of the hardware set
{HS1,HS2, ..., HSx} → [0,1].

f) TNS(Web-Tree Service Component Net State,TNS)
Network environment state is represented as a

four-tuples TNS = <PID,NT,ND,NB>.NT stands for the
network type. ND is network latency.NB is the network
bandwidth.

B. Related Design and Develop Technologies of WTSC
a) Java EE and SSH
Java EE, Java Platform Enterprise Edition, is Sun's

standard platform for enterprise applications launched
[10]. The platform is divided into three main editions
Java EE, Java SE and Java ME. SSH (Struts, Spring,
Hibernate) is the most popular open source lightweight
development framework of Java EE platform. It includes
Struts, Spring and Hibernate which are integrated in

accordance with their respective characteristic. Spring is
regarded as a core role of which is responsible for
integrating Struts and Hibernate. SSH architecture is
shown as Fig.6. Struts are highly configurable framework
based on the MVC [15] design model. Spring provides a
lightweight business logic solution of a "quick
assembly-business components" and supplies declarative
transaction managements, including RMI or web services.
Hibernate is an excellent lightweight open source
middleware of data persistence [16].

Figure 6. SSH Chart

Service Register

Service Consumer Service Provider

Service
Description

Service

Service
Description

Search
WSDL,UDDI

Publication

WSDL,UDDI

Binding/Calling

Figure 7. Cooperation diagram of SOA

b) SOA , Web Service and SCA
SOA (Service-Oriented Architecture) aims at

maximizing the reuse of application services to enhance
IT flexibility and efficiency [8]. SOA as a component
model can associate with different functional units (we
called them services) through well-defined interfaces and
contracts. Interfaces are used to achieve services
independent of the hardware platform, operating system
and programming language. The independence makes
various services can be unified and interacted with each
other [10][12].Any service-oriented architecture contains
three roles: service requester, provider and registry.
Collaborative relationship between them is shown as
Fig.7.

Web Service is one of SOA implementations
(including Web Service, Session Bean, EJB, JINI, etc.),
XML is used to describe and exchange data, SOAP as a
protocol service is responsible for providers and
consumers communicating each other. WSDL is used to
define service interface descriptions. UDDI is used to
web service registration and finding [8].

SCA is a component-based and service-oriented
programming model proposed by the Open Service
Oriented Architecture collaboration and formally donated
to the OASIS organization in 2007. SCA provides a
service component model for assembling a variety of

1786 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

packaging and integration of heterogeneous applications.
Its goal is to enable the service component binding a
variety of transport protocols freedom [17].

C. SOA-SSH Software Development Framework of WTSC
Based on related technical standards introduced above,

we build a general service component architecture named
SOA-SSH and the overall hierarchical structure is shown
in Fig.8.

View Layer: The UI (User Interface) implementation
technologies such as JSP, Freemark, and Java Applet are
used to generate web blower pages.

Service Agent Layer: Service request processing is
used to interact with the user requests of database access
such as loading, saving, removing and etc. Service calls
are required to be obtained by WSDL description from
the ESB, and then the developers should rewrite service
agent codes.

ESB Layer: ESB is the middle layer between service
requesters and providers. At the client, when a request
message is sent to the XML Data-Bus, the proxy service
firstly caught it and after a series of processing, the
request message is sent to the business service layer. At
last it will be further put back forward the request to the
external service providers [22].

Service Layer: Service layer is a service provider,
generated by a stateless session bean. Usually it is
coarse-grained and encapsulated by enterprise business
logic.

Business Component Layer: This layer is responsible
for implementation of the Java EE business logic
components and usually can be completed by the Spring
or EJB.

Persistent Component Layer: The layer is a
middleware between enterprise applications and database.
Business logic data existed as objects in memory, while
in relation database as physical table. Communication
between them can be carried out by ORM (Object
Relation Mapping) component.

Database Layer: A relational database (Oracle,
MySQL, SQLServer, etc.), is responsible for enterprise
data storage.

Figure 8. SOA-SSH Software Architecture of WTSC

D. SCA Description of WTSC
Following the standard SCA and SOA, we can design

the internal function interfaces of web-tree service
component and describe them by XML files. As we all
know that the web-tree service component API includes
loading, adding, removing, dragging and other operations.
These operations will be packaged as a functional

component for users to directly calling by URI (Uniform
resource identifier) [24]. We can reduce duplication of
development and enhance software scalability by SCA.
The internal structure of the WTSC is shown in Fig.10.

Java Impl

Java
Impl

Java
Impl

Java
Impl

Java
Impl

Java
Impl

Figure 9. WTSC SCA model

IV. IMPLEMENTATION AND VALIDATION

A. Prototype System Implementation
In order to verify the flexibility, efficiency,

compatibility and scalability of WSTC, we choose a
catalog system as an application prototype. Base on
SOA-SSH development framework and SCA stander, we
designed and drew class and component diagrams of the
prototype system as Fig.10 and Fig.11.

B. Prototype System Peformance Test
To validate performance, we design and realization a

prototype system. User interface page is shown as
Fig.12.We chose three different tree components dtree,
xtree and WTSC implemented by three different
algorithms (I-C, R-C and M-C). We named them as
schema-1, schema-2 and schema-3 respectively. We
change data-scale from 500 to 500000.The test
performances of different operations are shown as Fig.13,
Fig.14, Fig.15 and Fig.16.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions
From the performance test results of the prototype

system, we can draw at least three conclusions:
1) In terms of functionality
Three schemas all can support web-tree data online

loading and display. Only the latter two can support
asynchronous data adding, deleting and dragging
operation.

2) In terms of performance
In small-scale data (5000), three scenarios in data

loading and displaying, the difference is not obvious.
When the data size grew rapidly, the third had very
obvious advantages. When it came to data adding,
dragging and dropping, there had no significant
difference between the latter two. Because of the third
using combination associated encoding method of
parent-son relationship and left-right coding, in the
realization of large-scale web-tree data (106 or more)
deleting, its performance is significantly superior.

3) In terms of others

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1787

© 2014 ACADEMY PUBLISHER

The third used the SOA-SSH and SCA architecture to
design of a universal service component for large-scale
web-tree data management. The component can provide
direct service interfaces for the user accessing by URI,
reducing the duplication of development, reducing the
coupling platform, enhancing the versatility and
scalability. Meanwhile, it can provide a good reference to
user-oriented design, development and management of
the web client service component.

B. Feture Work
Authors suggest that, at least three aspects will be

further studied in the future [22] [23] [24]:
1) About friendliness
A common service components can be generally

accepted by users and promoted for using, to a large
extent depends on the user interface of the software is
friendly or not, and the operation is convenient or not.
Future we will use Ajax asynchronous transfer and rich
client technologies to enhance friendliness.

2) About performance
We should continue to optimize the algorithm, such as

nodes dragging operation. When loading large-scale data,
in addition to using asynchronous loading techniques, we
can optimize the design of the database such as building
indexes of fields. Meanwhile, in the realization of
software development, we can use new concepts such as
SaaS to optimize software architecture and improve data
exchange and sharing ways.

3) About security
In the future, we should focus on solving the

technical difficulties of how to building a reasonable
access control model and using client-side encryption
technologies to increase security of WTSC.

ITreeNode

getNodeName()
getNodeID()

getNodeCode()
<<TreeNode[]>> getSubTree()

getNodeLevel()
getNavigateURL()

getImgSrc()
loadTreebyXML()

ActionSupport

Tree

id : Integer
parent : Tree
child : HashMap
tid : Integer
code : String
level : Integer
url : String
icon : String

loadTreebyXML()
getNodeName()
getNodeID()
getSubTree()
getNodeCode()
getNodeLevel()
getNavigateURL()
getImgSrc()

(from pojo)

TreeAction

tree : Tree

getTree()
setTree()
addTreeNode()
removeTreeNode()
modfiyTreeNode()
moveTreeNode()
dragTreeNode()

(from action)

ITreeService

addTreeNode()
removeTreeNode()
modifyTreeNode()
moveTreeNode()
dragTreeNode()

(from service)

<<Calling>>

TreeServiceImpl

treeDAO : ITreeDAO

setTreeDAO()
getTreeDAO()
addTreeNode()
removeTreeNode()
modifyTreeNode()
moveTreeNode()
dragTreeNode()

(from service)

ITreeDAO

addTreeNode()
removeTreeNode()
modifyTreeNode()
moveTreeNode()
dragTreeNode()

(from dao)

TreeDAOImpl

addTreeNode()
removeTreeNode()
modifyTreeNode()
moveTreeNode()
dragTreeNode()

(from dao)

<<Implementation>>

HibernateDAOSupport

<<Extention>>

BasicAction

treeService : ITreeService

getTreeService()
setTreeService()

(from action)

<<Extention>>

<<Extention>>

<<Spring Injection>>

Tree.hbm.xml
(from pojo)

<<ORM Mapping>>

DBMS

JDBC

<<encapsulation>>

<<Implementation>>

<<Implementation>>

<<Spring Injection>>

Figure 10. Class Diagram of WSTC

ActionSupport

BasicAction

TreeAction ServiceProxy

ESB

TreeService TreeDAO

HibernateDAOSupport

SessionFactoryDataSouce

ApplicationContext.xml

TreeServiee.wsdl

JDBC

DBMS

TreePojo TreeHibernate.hbm.xml

Figure 11. Component Diagram of WSTC

Figure 12. WSTC Performance Compared Test Prototype

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 5000 10000 20000 40000 80000 160000

Data-Scale

Ti
m

e
co

ns
um

e(
S)

Dtree(I-C Algorithm)

Web-Tree Service Component(M-C Algorithm)

XTree(R-C Algorithm)

Figure 13. Data-Loading operation performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

500 1000 1500 2000 2500 5000 10000 20000 40000 80000 160000
Data-Scale

Ti
m

e
co

ns
um

e(
S)

Web-Tree Service Component(M-C Algorithm)

XTree(R-C Algorithm)

Figure 14. Data-Adding operation performance

1788 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

0

2000

4000

6000

8000

10000

12000

500 1000 1500 2000 2500 5000 10000 20000 40000 80000 160000

Data-Scale

Ti
m

e
co

ns
um

e(
S)

Web-Tree Service Component(M-C Algorithm)

XTree(R-C Algorithm)

Figure 15. Data-Removing operation performance

0

0.2

0.4

0.6

0.8

1

1.2

500 1000 1500 2000 2500 5000 10000 20000 40000 80000 160000

Data-Scale

Ti
m

e
co

ns
um

e(
S

Web-Tree Service Component(M-C Algorithm)

XTree(R-C Algorithm)

Figure 16. Data-Dragging operation performance

REFERENCES
[1] Compuware AJAX Edition [EB/OL]

http://www.compuware.com/en_us/application-performanc
e-management/products/ajax-free-edition/overview.html.

[2] Introducing JSON.[EB/OL]http://www.json.org/.
[3] Wang Suo,You Feng and Zhao Hengyong,Implementation

of mass datas fast loading of Web-based tree
structure[J],Computer Engineering and
Applications,2008,44(27):165-167.

[4] Jian Wang, Hongying Fang and Chuangchuan Chen,An
advanced Storage of Tree Based on RDMS[J],Journal of
Chongqing Nomal University(Natural Science
Edition),Vol.24 No.4,Oct. 2007,pp.2-4.

[5] Dejun Chen, Yingzhe Ma and Zhude Zhou,Celerity
Algorithm of Building Dynamic Catalogue Tree[J],Journal
of Wuhan University of Technology(Transportation
Science&Engineering),Vol.32,No.1,Feb 2088,pp.41.

[6] Renkun Ying,Data Structure based on OO method and
C++ Describtion[M], Beijing,TsingHua University
Press,2007,pp.186-199.

[7] Huang Liuqing and Wang Manhong, New Software
Engineering: A Component-Oriented Approach [M],
TsingHua University Press,2006, pp.18-20.

[8] Yang Fuqing and Mei Hong,Design and Implementation of
Component-Based Software[M], Beijing,TsingHua
University Press,2008,pp.10.

[9] Business motivation model (BMM), version 1.0. Object
Management Group, OMG Document formal/08-08-02
(2008)

[10] Business process modeling notation (BPMN) 1.2. Object
Management Group, document formal/2009-01-03 (2009)

[11] Hongjun Sun, Shuangxi Huang and Yushun Fan,
SOA-based Collaborative Modeling Method for
Cross-Organizational Business Process
Integration[J],http://www.paper.edu.cn.

[12] Gengli Fu and Baoxiang CAO,Design and Application of
SOA-SSH Layered Architecture[J],COMPUTER
TECHNOLOGY AND DEVELOPMENT,V01 ． 20
No．1,Jan．2010,pp.75-77.

[13] Thomas ErI Service-Oriented Architecture Concepts,
Technology, and Design, Printed in the United States of
America, Prentice Hail Professional Technical
Refrence,2005,pp.39-41.

[14] Aihu Liang, Skilled in SOA: Struts+EJB+Web Service
Integrated application development Service Bus-based [M],
Eletronics Industry Press, 2007, pp.326-327.

[15] Paul C.Brown,Implementing SOA:Total Architecture in
practice[M]，China Machine Press,2009,pp.35-39.

[16] SCA is a global hygiene and forest products company.
[EB/OL] http://www.sca.com/

[17] Donald Brown, Chad Michael Davis and Scott Stanlic,
Struts2 in Action [M], Amecican, Manning Publications
Co. 2008, pp.309-313.

[18] Christian Bauer, Gavin King, Java Persistence with
Hibernate[M], Amecican,Manning Publications Co. 2005,
pp.54

[19] Gary Mark, Spring Recipes A Problem-Solution Approach
[M], Appress, 2006, pp.21, 93,135.

[20] Newcomer Eric, Lomow Greg. Uderstanding SOA with
Web services[M].Trenton:Addison Wesley,2004,pp.56-58.

[21] Fielding R T. Architecture styles and the desing of
network-based software architecture [D]. Irvine:Univ. of
California,2000.

[22] Tao Tan, Hongjun Chen, A Personalization
Recommendation Method Based on Deep Web Data Query,
Journal of Computers, Vol 7, No 7,
JULY,2012,pp1601-1602.

[23] Xanjun Li, Gang Ye, Zhongwen Li, Shilong Ma, Study and
Implementation of Spacecraft Integration Test Platform
Based on Component Technology, Vol 6, No 5, MAY,
2011,pp965-967.

[24] Minghui Wu, Xianghui Xiong, Jing Ying, Canghong Jin,
Chunyan Yu，QoS-driven Global Optimization Approach
for Large-scale Web Services Composition, Journal of
Computers, Vol 6, No 7, 2011,pp1452-1453.

Zhidong Wang received his B.S. degree in computer science
from Nanjing Information Engineering University, China in
June 2002 and his M.S. degree in military operations research
from Nanjing PLA University, China in March 2005. He is
currently working towards his Ph.D. degree in computer
application technology at Beihang University, China. His
current research interest includes service-oriented software
architecture and service component design.

Lichao Ye received his B.S. degree in chemical defense
engineering command from Beijing Engineering Institute of
Chemical Defense, China in June 1998 and his M.S. degree in
command automation from Beijing Engineering Institute of
Chemical Defense, China in June 2001. His current research
interest lies in audit information.

Wenfa Li received his B.S. degree in computer applications
from Xi'an University of Posts and Telecommunications, China
in June 1994 and his Ph.D. degree in network and information
security from Chinese Academy of Sciences, China in June
2010. His current research interest lies in network security and
intrusion detection.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1789

© 2014 ACADEMY PUBLISHER

