
Optimization Algorithm for Divisible Load
Scheduling on Heterogeneous Star Networks

Xiaoli Wang, Yuping Wang* and Kun Meng

School of Computer Science and Technology, Xidian University, Xi’an, China
Email: wangxiaolibox@gmail.com, ywang@xidian.edu.cn

Abstract—Scheduling divisible loads on heterogeneous
distributed computing systems is addressed in this paper.
The platform considered here is more general and realistic,
where processors are connected in star topology with
arbitrary communication and computation speeds and non-
zero start-up overheads. A new optimization algorithm,
called WX-GA, is proposed to tackle the following four
issues: (1) How many processors are needed in computation?
(2) Finding the optimal distribution sequence among
processors. (3) How much the load fraction should be
assigned on each processor? (4) When workload is large
enough, what is the sufficient and necessary condition for
the minimum processing time? Finally, the experimental
results indicate the efficiency and effectiveness of the
proposed algorithm.

Index Terms—divisible loads, distributed computing, start-
up overheads, optimal distribution sequence, weight-based
crossover operator

I. INTRODUCTION

Divisible loads are parallel tasks which can be divided
into arbitrary number of fractions [1]. There are no
precedence relationships among fractions, thus they can
be processed independently on the processors in parallel.
Such workload model is useful in many real world
applications, e.g., signal processing, image processing,
experimental data processing and so on.

Divisible load theory has emerged as a powerful tool
for modeling data-intensive computational problems, and
a great amount of research on divisible load scheduling
has been made in the last decades. Under certain
conditions, closed-form expressions for the processing
time and load fractions for processors involved in
computation have been derived in both homogeneous
systems and heterogeneous systems.

In the earlier studies, relatively simple models without
start-up overheads have been proposed. For homogeneous
networks in blocking mode of communication, a closed-
form expression for the processing time of processors in
linear topology was derived [2], and asymptotic
performance analysis has been made for the cases of bus
and tree topologies [3,4]. However, systems in reality are
usually heterogeneous systems with arbitrary
computation or communication speeds. For
heterogeneous star networks, a closed-form expression
for optimal processing time was derived by Ghose et al.
[5]. It also has been proved that the sequence of load

distribution should follow the order in which the
communication speeds decrease in order to achieve the
minimum processing time. In the case of heterogeneous
tree networks, the effect of load distribution sequences on
the processing time was analyzed by Kim et al. [6], and
an algorithm which optimally determines the order of
load distribution was developed. It was shown that the
distribution order depends only on the communication
speeds between processors but not on the computation
speeds.

All the above models considered the blocking mode of
communication. Kim [7] first introduced the nonblocking
mode of communication in homogeneous systems with
processors connected in star topology, and the results on
the optimal sequencing and arrangement are presented by
Mani et al. [8]. All the above works do not take start-up
overheads into consideration. However, zero start-up
overheads are quite not realistic for most distributed
systems. In the case of constant start-up time on bus
networks with blocking mode of communication, Suresh
et al. [9], Bharadwaj et al. [10], Blazewicz [11] analyzed
the influence of start-up overheads on the optimal
processing time and studied the effect of changing the
distribution sequence on the processing time. In particular,
Bharadwaj et al. [10] gave a necessary and sufficient
condition for the existence of the optimal processing time,
and it was shown that the processing time is minimized
when the load distribution sequence follows the
decreasing order of the computation speeds. For
heterogeneous star systems with non-blocking mode of
communication, closed-form expressions for the
processing time and load fractions have been derived by
Shang [12].

Given that the start-up overheads and computation
speeds of processors are with arbitrary values but that the
communication speeds are all different, Beaumont et al.
[13] proved that if load fractions were sent to processors
according to the decreasing order of communication
speeds, then when the processing time becomes large
enough, the workload finished during time units is
optimal among all possible orderings. For general cases
with workload to be completed in arbitrary time, however,
the optimal distribution sequence has not been addressed.

Based on the above study, many scholars have done a
great deal of extended research [14-24], but the problem
of deriving the optimal distribution sequence has not been
solved.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1757

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1757-1766

In this paper, we propose a new optimization algorithm
for divisible load scheduling on heterogeneous distributed
systems in blocking mode of communication to address
the following four issues:

• whether all processors are needed in computation. If
not, how many and which processors should be selected;

• whether the distribution sequence has an effect on the
processing time. If true, which order the load distribution
should follow to achieve the minimum processing time;

• given a certain distribution sequence, how much the
load fraction should be assigned on each processor;

•when workload is large enough, what is the sufficient
and necessary condition for the minimum processing time.

The reminder of this paper is outlined as follows.
Section II presents the optimization model for divisible
load scheduling. Section III proves that when workload is
large enough, the sufficient and necessary condition for
the minimum processing time is that the distribution
sequence follows the decreasing order of the
communication speeds. A novel genetic algorithm for
divisible load scheduling is proposed in Section IV.

Experiments and their analysis appear in Section V. In
the last section, conclusions are made.

II. OPTIMIZATION MODEL FOR DIVISIBLE LOAD
SCHEDULING

Before we give the scheduling model for divisible load,
some relevant notations and assumptions should first be
introduced. The platform considered in this paper is
heterogeneous distributed systems. Processors are
connected in a star topology, where 0P is the master
processor, while { }1 2, ,..., mP P P are slave processors.

0P connected with others by communication links

{ }1 2, ,..., mL L L . The entire workload, denoted as totalW ,
will be first partitioned into fractions. Then they will be
distributed to slave processors in some order by the
master processor 0P . Processor 0P does not participate in
computation itself but only takes the responsibility of
assigning load to others.

1 1
gσ σα

1
sσ1

oσ

1 1i i
gσ σα

− −1i
oσ −

1 1
wσ σα

1i
sσ −

1 1i i
wσ σα

+ +

i
oσ i i

gσ σα
i i

wσ σα
i

sσ

1 1i i
gσ σα

+ +1i
oσ + 1i

sσ +

1 1i i
wσ σα

− −

n
oσ n n

gσ σα
n

sσ n n
wσ σα

1
Pσ

1i
Pσ −

i
Pσ

1i
Pσ +

n
Pσ

Figure 1. The time diagram of divisible load scheduling on heterogeneous distributed systems in blocking mode of communication.

When distributing workload fractions, 0P sends data to

only one processor at a time and slave processors start
computing when they have finished receiving their load
fractions, that is, slave processors are in blocking mode of
communication and cannot communicate and compute
simultaneously.

Since we focus on heterogeneous systems, slave
processors are assumed with arbitrary computation and
communication speeds. Communication and computation
time is proportional to the amount of workload assigned
to each processor. Let iw be the time of processor iP
computing a unit workload, while ig be the time of link

iL communicating a unit workload. In this paper, we
assume communication speeds are much faster than
computation speeds; otherwise, only one or two
processors should be enough to involve in computation
[7].

Besides arbitrary communication speeds and
computation speeds, there exists a start-up overhead
during each communication from 0P to iP , denoted as io .
Similarly, a start-up overhead is exists during each
computation of processor iP .

1
, 0, 1, 2,..., , .

i i

n
totali

W i n n mσ σα α
=

= > = ≤∑ (1)
Bharadwaj, V., et al proved that for various network

models the optimality criterion of scheduling divisible
loads is that all processors have to finish computing at the
same time. If all processors do not stop computing at the
same time, certainly the load can be transferred from
busy processors to idle processors to minimize the
processing time [25]. Therefore, the following equation
can be obtained intuitively.

1 1 1
, 1, 2,..., ,

i i i i i i i i i
s w o g s w i nσ σ σ σ σ σ σ σ σα α α

+ + +
+ = + + + =

which can be rewritten as

()1 1

1

1 1 1 1

.i i i i

i i

i i i i

s o s w
g w g w

σ σ σ σ
σ σ

σ σ σ σ

α α+ +

+

+ + + +

− +
= +

+ +
 (2)

Let

()1 1

1 1

1 1 1 1

, .i i i i

i i

i i i i

s o s w
g w g w

σ σ σ σ
σ σ

σ σ σ σ

ϕ δ+ +

+ +

+ + + +

− +
= =

+ +
 (3)

Equation (2) can be written as
1 1 1

, 1, 2,..., 1
i i i i

i nσ σ σ σα ϕ δ α
+ + +

= + = − (4)

Expressing workload fraction
iσα in terms of

1σα as

1758 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

1
, 2,3,..., ,

i i i
i nσ σ σ σα α= Γ + Φ = (5)

where

22 1

, (), 2,3,..., .
i k i k j

i ii

kk j k

i nσ σ σ σ σδ ϕ δ
== = +

Γ = Φ = =∑∏ ∏

Combing Eq. (1) and Eq. (5), one can get
1σα by

()2 3

1

2 3

...
.

1 ...
n

n

totalW σ σ σ
σ

σ σ σ

α
− Φ + Φ + + Φ

=
+ Γ + Γ + + Γ

 (6)

Thus, the closed-form expression of the processing
time is given by

()

()
1 1 1 1 1

1 1 1 1

2

2

.
1

k

k

n
total k

n

k

T o s g w

W
o s g w

σ σ σ σ σ

σ
σ σ σ σ

σ

α

=

=

= + + +

− Φ
= + + +

+ Γ
∑
∑

 (7)

The main objective of scheduling divisible load on
heterogeneous distributed systems is to minimize the
processing time T . It can be seen from Eq. (7) that
processing time T depends on parameters Φ and Γ ,
which are directly decided by the distribution sequence

()1 2
, ,...,

n
P P Pσ σ σ of the processors participating in

computation. Thus the divisible load scheduling problem
on heterogeneous distributed systems can be modeled as
determining the number n of processors required in
computation and the optimal distribution sequence so that
the processing time is minimized, that is, an optimization
model for scheduling divisible load on heterogeneous
distributed systems in blocking mode of communication
can be set up as follows.

()1 1 1 1

2

2

min min .
1

k

k

n
total k

n

k

W
T o s g w σ

σ σ σ σ
σ

=

=

⎡ ⎤− Φ
⎢ ⎥= + + +
⎢ ⎥+ Γ⎣ ⎦

∑
∑

Subject to:
(1) ;n m≤
(2) ()1 2, ,..., nvector σ σ σ is a sequence of n different

numbers from 1 to m;
(3) ()12

/ , 2,3,..., ;
i k k k

i

k
w g w i nσ σ σ σ−=
⎡ ⎤Γ = + =⎣ ⎦∏

(4) 11

2 1

()
jk k k

i

k k j j

in

k j k

ws o s
g w g w

σσ σ σ
σ

σ σ σ σ

−−

= = +

⎡ ⎤− +
Φ = ⎢ ⎥

+ +⎢ ⎥⎣ ⎦
∑ ∏ ，

where 2,3,...,i n=

(5)
1

2

2

;
1

k

k

n
total k

n

k

W σ
σ

σ

α =

=

− Φ
=

+ Γ
∑
∑

(6)
1

, 2,3,..., ;
i i i

i nσ σ σ σα α= Γ + Φ =

(7) 0, 1,2,..., .
i

i nσα > =
The key issue of solving the above model is to find the

optimal distribution sequence. Considering the practical
needs, the easier to obtain the optimal distribution
sequence, the better. Fortunately, when workload is large
enough, such optimal distribution sequence can be
obtained directly by theoretical analysis, which is
presented in the following section. For other workload
cases, the optimal distribution sequence can be derived

efficiently by the proposed genetic algorithm introduced
in Section IV.

III. SCHEDULING LARGE ENOUGH WORKLOAD

In this section we will prove that when workload is
large enough, the sufficient and necessary condition for
the minimum processing time is that the distribution
sequence follows the decreasing order of the
communication speeds. Before we prove this conclusion,
the following lemmas are first introduced.

Lemma 3.1 ([13]) For heterogeneous systems in the
blocking mode of communication with zero start-up
overheads ()0i io s= = and arbitrary communication
and computation speeds, the distribution sequence should
follow the decreasing order of communication speeds in
order to achieve the minimum processing time.

Lemma 3.2 ([13]) For heterogeneous systems in the
blocking mode of communication with start-up overheads,
arbitrary computation speeds and all different
communication speeds, if the distribution sequence
follows the decreasing order of communication speeds,
when the processing time T is large enough, the amount
of processed workload during the time T is optimal
among all possible orderings.

Theorem 3.3 For heterogeneous systems in the
blocking mode of communication with startup overheads
and arbitrary communication and computation speeds,
when workload is large enough, the sufficient and
necessary condition for the minimum processing time is
that the distribution sequence follows the decreasing
order of the communication speeds.

Proof:
 (1) Now we prove that when distribution sequence

follows the decreasing order of the communication
speeds, the corresponding processing time is minimized.

Since the workload is large enough, then all processors
should take participate in computation. Assume that there
are n processors in the system, and sort them in the
decreasing order of their communication speeds, that is,
the increasing order of ig , where { }1,2,...,i n∈ . Assume

the distribution sequence is denoted as ()1 2
, ,...,

n
P P Pσ σ σ

where
1 2

...
n

g g gσ σ σ≤ ≤ ≤ . Let optT be the processing
time for the entire workload in that sequence. Since all
processors stop processing at the same time, optT is also
the finish time

i
Tσ of each processor, where 1, 2,...,i n= .

According to the model shown in Fig.1, we have

()1

1, 2,.., .
i i i i k k k

i
opt k

T T s w o g

i n
σ σ σ σ σ σ σα α

=
= = + + +

=
∑ (8)

Now let 0
i i

o sσ σ= = with 1, 2,...,i n= , which means
that the start-up overheads are ignored, thus the finish
time

i
Tσ of processor

i
Pσ will be advanced by

1i i

i

j
s oσ σ=

+∑ , namely

1
, 1, 2,.., .

i i k

i
opt k

T T s o i nσ σ σ=
= − + =∑ (9)

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1759

© 2014 ACADEMY PUBLISHER

When i n= , ()1n n k

n
opt k

T T s oσ σ σ=
= − +∑ . That is to

say, at the time
n

Tσ , processor
n

Pσ just finished its
workload fraction, while the other processors are still in
computation because

i n
T Tσ σ> according to Eq.(8). As is

proved in Lemma 3.1, in the case of zero start-up
overheads, when the distribution sequence follows the
decreasing order of communication speeds, the
processing time is the minimum. Let '

optT be the optimal
processing time in this case, thus

()1
.

n n k

n
opt optk

T T s o Tσ σ σ=
′= − + ≤∑ (10)

Meanwhile, since start-up overheads are ignored, so
.opt optT T′ ≤ (11)

From Eq. (10) and Eq. (11), one can get

1
.

n k

n

opt opt opt
k

T T T s oσ σ
=

⎛ ⎞′ ′≤ ≤ + +⎜ ⎟
⎝ ⎠

∑ (12)

Since the workload is large enough, optT ′ → ∞ . Thus

()11 1 , .n k

n

kopt
opt

opt opt

s oT
T

T T
σ σ=

+
′≤ ≤ + → ∞

′ ′
∑

Thus (1) is proved.
(2) Next we prove that when the processing time is

optimal, the distribution sequence must follow the
decreasing order of the communication speeds.

This will be proved by contradiction.
If the workload is large enough, then all processors

should take part in computation. Without loss of
generality, the optimal distribution sequence is denoted as

()1 2
, ,...,

nseqp P P Pσ σ σ= . We will prove that
1i i

g gσ σ +
≤

holds. If it is not true, one can interchange the sequences
of

i
Pσ and

1i
Pσ +

. Since workload size is large enough,
and then the processing time T becomes large enough.
According to Lemma 3.2, the amount of processed
workload in the new order of workload distribution is
larger than that of the former sequence, which contradicts
the assumption that seqp is the optimal sequence.

Thus (2) is proved.

IV. A NEW GENETIC ALGORITHM FOR DIVISIBLE LOAD
SCHEDULING: WX-GA

Task scheduling problems are among the well-known
hardest combinatorial optimization problems. Here we
choose genetic algorithms(GAs), invented by Holland
[26], to solve the above model for the simple reason that
genetic algorithms have been proven to be a promising
technique for many application problems, for example,
optimal design, control, and machine learning, etc. [27,28]
and they are suitable to solve scheduling optimization
problems [29].

A. Population Initialization
The key point of finding the optimal distribution

sequence by using genetic algorithms is to develop an
encoding scheme that allows genetic operators to

generate “legitimate children” without any constraint
violation. Applying GA to the scheduling model
proposed in this paper has an intrinsic issue: each
sequence must contain exactly one instance of a
processor and any omission or duplication of a processor
or processors leads to an illegal distribution sequence.

In this paper, a sequence with m processors is directly
represented as a permutation pmS of m elements from 1

to m . Thus an individual I is denoted by (), pmI n S= ,
where n represents the number of processors taking part
in computation.

After determining the encoding scheme, one can
generate an initial population of N individuals by
Algorithm 1.

Note that the first gene in each individual, which
denotes the number of processors used in computation,
will be initialized to m, the total number of processors. It
will be modified during the calculation of its cost value.

Algorithm 1 Generate initial population
Ensure: N initialized individuals ()1 2, ,..., NI I I
1: for 1, 2,...,i N= do
2: generate individual ()0 1, ,...,i i i i

mI c c c= as follows;

3: let 0
ic m= ;

4: given an ordered list 1,2,...,L m= ;
5: for 1, 2,...,j m= do
6: randomly take an element from L , assign it to

i
jc and then delete this element from L .

7: end for
8: end for

B. Cost Function
The cost function, also called fitness function, is

defined over the genetic representation and measures the
quality of the represented solution [30]. In general, a cost
function is derived from the main objective of the
problem and used in successive genetic operations. The
main objective of scheduling divisible load on
heterogeneous distributed systems is minimizing the
processing time. How to map this objective to cost
function is presented in Algorithm 2.
Algorithm 2 Cost function
Require: An individual ()0 1 2, , ,..., mI c c c c= and a

workload totalW
Ensure: The cost function value ()f I of individual I ,

the processing time T , the number 0c of
processors required in computation and the
workload fraction iα for each processor with

01,2,...,i c= .
1: for 1,2,..., 1i m= − do
2: calculate 1iϕ + and 1iδ + by Eq. (3);
3: end for
4: for 2,...,i m= do
5: calculate iΓ and 1i+Φ by Eq. (5);

1760 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

6: end for
7: compute 1α and the processing time T by Eq. (6)

and Eq. (7) respectively;
8: for 0 0, 1,...,1i c c= − do
9: compute iα according to Eq. (5);
10: if 0iα ≤ then
11: let 0 0 1c c= − and go to step7;
12 endif
13: end for

C. Weight-based Crossover Operator
Depending on how the chromosome represents the

solution, a direct swap such as N-point crossover may not
be possible since the recombination of chromosome may
violate the constraint of ordering and thus need to be
repaired. In this paper, a novel crossover operator called
weight-based crossover is designed to generate offspring.

The easiest way to explain the weight-based crossover
is by giving an example. Assume that there exists an
ordered list L = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1), which serves
as a reference sequence, and that the two parents are
represented by

 ()1 8, 3, 1, 2, 5, 7, 8, 9, 6, 4, 10parent = and

()2 7, 3, 1, 8, 6, 5, 2, 7, 10, 9, 4parent = ,
where the number of processors used in 1parent is 8

and that in 2parent is 7.
The weight-based crossover operator should be

executed on 1parent and 2parent as follows.
(1) First according to the number of processors used in

computation, assign weight values to each gene in
1parent and 2parent as follows. As is shown in Table I ,

for individual ()1 0 1, ,..., mparent c c c= , since the number
of processors needed in computation is 0 8c = , then for
the former 8 genes, from left to right, each of them takes
the element of L at the same position as their weight
values. That is to say, the weight value of ic for 1parent
is assigned to iL , where 01,2,...,i c= . For the remaining
genes, which represent the processors that do not take
part in computation, let their weight values be zeros.
Finally, we have the weight list for 1parent : (10, 9, 8, 7,
6, 5, 4, 3, 0, 0). Similarly, the weight list (10, 9, 8, 7, 6, 5,
4, 0, 0, 0, 0) for 2parent can be obtained.

TABLE I.

AN EXAMPLE OF CROSSOVER OPERATOR.

List 10 9 8 7 6 5 4 3 2 1
parent1 8 3 1 2 5 7 8 9 6 4 10
weight1 10 9 8 7 6 5 4 3 0 0
parent2 7 3 1 8 6 5 2 7 10 9 4
weight2 10 9 8 7 6 5 4 0 0 0

offspring 10 3 1 8 2 5 6 7 4 9 10
sumweight 20 18 13 13 13 10 10 4 0 0

(2) Based on the weight lists of 1parent and 2parent ,
the weight value of each processor is calculated in the

following way. For each processor, say 1P , since its
weight in 1parent is 9 and in 2parent is also 9, take the
sum of them 9 + 9 = 18 as the final weight of processor

1P . Repeat the above process until the weights of all
processors are calculated. Finally, for processors
()1 2 3 4 5 6 7 8 9 10, , , , , , , , ,P P P P P P P P P P , the weight list (18, 13,
20, 4, 13, 10, 10, 13, 0, 0) can be obtained.

 (3) Sort the processors in the descending order of their
weights. Thus we have the sorted processor list
()3 1 2 5 8 7 6 4 9 10, , , , , , , , ,P P P P P P P P P P and its corresponding
weight list (20, 18, 13, 13, 13, 10, 10, 4, 0, 0).

 (4) Adjust the order of the processors with the same
weight values. For the processors with the same non-zero
weight, such as ()6 7,P P , compare the positions of them
in their parents. In 1parent , 7P is at position 5 and
appears in front of 6P , while in 2parent , 6P is at
position 4 and appears in front of 7P . Thus we put 6P
with the smaller position indicator in front of 7P in the
final processor list. If processors are at the same position
in their parents, such as ()2 8,P P , then we can randomly
select one of them in front of the other. For the processors
with zero weight values, since they do not take part in
computation, their orders do not matter.

(5) Generate an offspring ()0 1 2, , ,..., mO c c c c′ ′ ′ ′=
according to the sorted processor list
()3 1 8 2 5 6 7 4 9 10, , , , , , , , ,P P P P P P P P P P , where 0c′ is initialized
to m . Finally we can get O = (10, 3, 1, 8, 2, 5, 6, 7, 4, 9,
10).

The proposed weight-based crossover operator has two
advantages: first, it keeps the optimal subsequence of the
parents into offspring, such as ()3 1,P P ; second, it takes
the order of processors in the distribution sequence into
consideration because the more front the position of a
processor is in the distribution sequence, the much load
fraction it will be assigned, and thus the more important
the processor is.

D. Mutation Operator
If we randomly change one number in a chromosome,

we are left with one integer duplicated and another
missing. The simplest solution is to randomly choose a
chromosome to mutate, and then randomly choose two
positions within that chromosome to exchange until a
local optimal is found. The process of the mutation
operator is shown in Algorithm 3 by the pseudo-code.
Algorithm 3 Mutation operator
Require: An individual ()0 1 2, , ,..., mI c c c c= and

mutation probability mutp .
Ensure: An offspring 0 1(, ,...,)mh h h h= generated by

mutation.
1. Randomly generate a real number []0,1r ∈ ;
2: if mutr p≤ then
3: let h I= ;

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1761

© 2014 ACADEMY PUBLISHER

4: evaluate the cost value ()f h of individual h by
Algorithm 2;

5: let 0count = and ()*f f h= ;

6: randomly generate two integers [], 1,a b m∈ ;
7: swap ah and bh ;
8: evaluate the cost value ()f h of individual h by

Algorithm 2;
9: if () *f h f≥ then
10: swap back ah and bh and let 1count count= + ;
11: if count m> stop; otherwise go to step 6;
12: else
13: go to step 5;
14: endif
15: endif

E. A new GA for scheduling divisible loads: WX-GA
Once the encoding scheme and the cost function are

defined, a GA proceeds to initialize a population of
solutions and then to improve it through repetitive
application of the mutation, crossover and selection
operators. Algorithm 4 presents the process of the
proposed genetic algorithm: WX-GA.
Algorithm 4 A new genetic algorithm for scheduling
divisible load on heterogeneous systems
1: (Initialization) Choose population size N , proper

crossover probability crosp and mutation probability

mutp etc. Randomly generate initial population ()0P
by Algorithm 1. Let the generation number 0t = .

2: (Crossover) Choose the parents for crossover in ()P t
with probability crosp . If the number of parents
chosen is odd, then randomly choose an additional
one from ()P t . Afterwards, randomly match every
two parents as a pair and the specific-designed weight
based crossover operator is used on each pair to
generate one offspring. All the new offspring
constitute a set denoted by 1O .

3: (Mutation) Select the parents for mutation from set 1O
with probability mutp . For each chosen parent, the
proposed mutation operator is used to generate a new
offspring. These new offspring constitute a set by 2O .

4: (Selection) The best E solutions from the set
() 1 2P t O O∪ ∪ are maintained in the next generation

so that the convergence is faster. The roulette-wheel
selection is used to select N E− individuals among
the set () 1 2P t O O∪ ∪ as the next generation

population ()1P t + .
5: Stopping Criteria: If termination conditions hold,

then stop, and keep the best solution obtained as the
global optimal solution of the problem; otherwise, go
to step 2.

V. EXPERIMENTS AND ANALYSIS

Several experiments are presented in this section to
show the effectiveness and efficiency of the proposed
algorithm. The parameters of the heterogeneous
distributed system are shown in Table II [12]. In the
proposed genetic algorithm, the following parameters are
adopted: population size 100N = , crossover probability

0.6crosp = , mutation probability 0.02mutp = , elitist
number 5E = and stop criterion 2000t = .

TABLE II.

PARAMETERS OF THE HETEROGENEOUS DISTRIBUTED SYSTEM

P o s g w
p1 70.554750 57.951860 0.533424 2.895625
p2 30.194800 1.4017640 0.774740 7.607236
p3 81.449010 4.535275 0.709038 4.140327
p4 86.261930 37.353620 0.790480 9.619532
p5 87.144580 94.955670 0.056237 3.640187
p6 52.486840 5.350452 0.767112 5.924582
p7 46.870010 62.269670 0. 298165 6.478212
p8 26.379290 82.980160 0. 279342 8. 246021
p9 58.916300 91.096430 0. 986093 2.268660
p10 69.511550 24.393140 0. 980003 5.338731
p11 10.636970 67.617590 0. 999415 1.570390
p12 57.518380 10.302260 0. 100052 7.988844
p13 28.448030 29.577290 0. 045649 3.820107
p14 30.090500 97.982940 0. 948571 4.013743
p15 27.828000 16.282160 0. 160442 6.465871

In the first experiment, the workload size ranges from
100 to 10000. For convenience, let GA represents the
algorithm WX-GA proposed in this paper, IG indicates
the algorithms given by Beaumont et al. [13] and Shang
[12], which schedules divisible load in the sequence of
increasing value of ig , while IW given by Bharadwaj et
al. [10], which schedules workload in the sequence of
increasing value of iw . The processing time and used
machine numbers for different workload by these three
scheduling algorithms are recorded in Table III.

It can be seen from Table III that the processing time
used by the proposed algorithm is much less than that
used by other two compared algorithms for all test cases.

Fig. 2(a) intuitively shows the processing time
difference between algorithm IW and WX-GA, while Fig.
2(b) shows the time difference between IG and WX-GA.
As is shown in Fig. 2(a), with the increasing size of
workload, the difference of processing time is found in
linear growth between the proposed algorithm IW and
WX-GA. In other words, the proposed algorithm is much
more effective in finding the optimal distribution
sequence. Similarly, it can be seen from Fig. 2(b) that
when workload size ranges from 100 to 9900, the
processing time obtained by IG is larger than that by
WX-GA. What’s more, we show the numbers of
processors that are selected to participate in computation
obtained by algorithm WX-GA and IG in Fig. 3.

1762 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

TABLE III.

PROCESSING TIME FOR DIFFERENT WORKLOAD FROM 100 TO 9900.

Alg Size No Time Size No Time Size No Time Size No Time
GA

100
5 209.255

300
7 411.123

500
9 572.316

700
10 700.423

IG 4 285.379 8 475.671 10 609.918 10 735.025
IW 2 295.481 3 581.707 5 809.344 7 1004.95
GA

900
11 818.945

1100
12 930.701

1300
12 1041.08

1500
13 1149.98

IG 11 859.494 11 980.935 13 1096.19 13 1207.3
IW 8 1199.39 9 1386.48 10 1569.33 10 1748.7
GA

1700
13 1256.35

1900
13 1362.33

2100
13 1468.04

2300
14 1573.51

IG 15 1318.42 15 1426.03 15 1526.87 15 1627.71
IW 10 1928.07 12 2102.19 12 2274.43 13 2444.43
GA

2500
14 1677.21

2700
14 1779.98

2900
14 1882.75

3100
14 1985.41

IG 15 1728.54 15 1829.38 15 1930.22 15 2031.06
IW 13 2613.90 13 2783.37 13 2952.85 14 3119.95
GA

3300
15 2087.43

3500
15 2189.35

3700
15 2291.26

3900
15 2393.17

IG 15 2131.89 15 2232.73 15 2333.57 15 2434.4
IW 15 3286.37 15 3451.4 15 3616.43 15 3781.46
GA

4100
15 2494.61

4300
15 2595.9

4500
15 2697.19

4700
15 2798.48

IG 15 2535.24 15 2636.08 15 2736.91 15 2837.75
IW 15 3946.49 15 4111.52 15 4276.55 15 4441.58
GA

4900
15 2899.77

5100
15 3001.06

5300
15 3102.35

5500
15 3203.63

IG 15 2938.59 15 3039.43 15 3140.26 15 3241.10
IW 15 4606.61 15 4771.64 15 4936.67 15 5101.70
GA

5700
15 3304.92

5900
15 3406.21

6100
15 3507.5

6300
15 3608.79

IG 15 3341.94 15 3442.77 15 3543.61 15 3644.45
GA 15 5266.73 15 5431.76 15 5596.79 15 5761.82
IG

6500
15 3710.07

6700
15 3811.3

6900
15 3912.54

7100
15 4013.77

IW 15 3745.28 15 3846.12 15 3946.96 15 4047.79
IG 15 5926.85 15 6091.88 15 6256.91 15 6421.94
IW

7300
15 4115.00

7500
15 4216.23

7700
15 4317.47

7900
15 4418.70

IW 15 4148.63 15 4249.47 15 4350.31 15 4451.14
IW 15 6586.97 15 6752.00 15 6917.03 15 7082.06
IW

8100
15 4519.93

8300
15 4621.17

8500
15 4722.4

8700
15 4823.63

IW 15 4551.98 15 4652.82 15 4753.65 15 4854.49
IW 15 7247.09 15 7412.12 15 7577.15 15 7742.17
IW

8900
15 4924.86

9100
15 5026.10

9300
15 5127.33

9500
15 5228.56

IW 15 4955.33 15 5056.16 15 5157.00 15 5257.84
IW 15 7907.2 15 8072.23 15 8237.26 15 8402.29
IW

9700
15 5329.79

9900
15 5431.03

 IW 15 5358.67 15 5459.51
IW 15 8567.32 15 8732.35

From Fig. 2(b) and Fig. 3, we can come to the

following conclusions: (1) For divisible load scheduling
problems on heterogeneous distributed systems in
blocking mode of communication, the proposed
algorithm is much more effective than other compared
algorithms because processors involved in computation
after scheduling by WX-GA is fewer than that by IG and
meanwhile the processing time obtained by WX-GA is
smaller than that by other compared algorithms. (2)
Distribution sequence plays a significant influence on the
processing time, since algorithms with different
distribution schemes lead to distinct experimental results.

In the second experiment, the workload size ranges
from 1 × 104 to 2 × 105. The processing time and used
machine numbers for different workload by Algorithm
WX-GA, IW and IG are recorded in Table IV.

It can be seen from Table IV that the processing time
used by the proposed algorithm is less than or at least
equal to that used by other two compared algorithms for
all test cases. Fig. 4(a) shows the processing time
difference between algorithm IW and WX-GA, while
Fig.4(b) shows the time difference between IG and WX-
GA.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1763

© 2014 ACADEMY PUBLISHER

Figure 2. Comparative experiment 1: (a) the processing time difference between IW and WX-GA. (b) the time difference between IG and WX-GA.

From Fig. 4(a), one can see that the larger the

workload, the greater the difference of the processing
time between IW and WX-GA. On the contrary, Fig. 4(b)
shows that the larger the workload, the smaller the
difference of the processing time between IG and WX-
GA. Especially, when workload is large enough, the
processing time obtained by WX-GA and IG are the same,
because all processors are needed in computation and the
two scheduling algorithms get the same distribution
sequence, which follows the decreasing order of the
communication speeds. The experimental results are
consistent with the conclusion given by Theorem 3.3 in
Section 3. That is to say, the experimental results
reconfirmed the validity of the conclusion.

Figure 3. Numbers of processors selected to participate in computation
obtained by algorithm WX-GA and IG.

TABLE IV.

PROCESSING TIME FOR DIFFERENT WORKLOAD FROM 41 10× TO 52 10× .

Alg. Size No. Time Size No Time Size No. Time
GA

41 10×
15 5481.64

42 10×
15 10535.0

43 10×
15 15579.5

IG 15 5509.93 15 10551.8 15 15593.6
IW 15 8814.87 15 17066.4 15 25317.8
GA

44 10×
15 20622.8

45 10×
15 25665.7

46 10×
15 30708.6

IG 15 20635.5 15 25677.3 15 30719.2
IW 15 33569.3 15 41820.8 15 50072.3
GA

47 10×
15 35751.5

48 10×
15 40794.5

49 10×
15 45837.4

IG 15 35761 15 40802.9 15 45844.7
IW 15 58323.8 15 66575.3 15 72429.2
GA

51 10×
15 50880.3

51.1 10×
15 55923.2

51.2 10×
15 60966.2

IG 15 50886.6 15 55928.4 15 60970.2
IW 15 83078.3 15 91329.7 15 99581.2
GA

51.3 10×
15 66009.1

51.4 10×
15 71052.0

51.5 10×
15 76094.9

IG 15 66012.1 15 71053.9 15 76095.8
IW 15 107833 15 116084 15 124336
GA

51.6 10×
15 81137.6

51.7 10×
15 86179.5

51.8 10×
15 91221.3

IG 15 81137.6 15 86179.5 15 91221.3
IW 15 132587 15 140839 15 149090
GA

51.9 10×
15 96263.2

52 10×
15 101305

 IG 15 96263.2 15 101305
IW 15 157342 15 165593

1764 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figure 4. Comparative experiment 2: (a) the processing time difference between IW and WX-GA. (b) the time difference between IG and WX-GA.

VI. CONCLUSIONS

The goal of this paper was to find an optimal
scheduling for divisible load on heterogeneous distributed
systems in blocking mode of communication. The goal
was successfully achieved by designing a novel genetic
algorithm WX-GA. In order to examine the performance
of the proposed algorithm, a set of experiments were
carried out. From the experimental results, the following
conclusions can be drawn. First, distribution sequence
plays a significant role in processing time. Second, the
proposed algorithm greatly decreases the processing time.
Third, when workload is large enough, in order to achieve
minimum processing time, the optimal distribution
sequence should follow the decreasing order of the
communication speeds.

ACKNOWLEDGEMENT

This work was supported by National Natural Science
Foundation of China (No.61272119).

REFERENCES
[1] T.G. Robertazzi, “Ten reasons to use divisible load

theory,” Computer, vol. 26, no. 5, pp. 63-68, 2003.
[2] V. Mani, D. Ghose, “Distributed Computation in Linear

Networks: Closed–Form Solutions,” IEEE transactions on
aerospace and electronic systems, vol. 30, no. 2, pp. 471–
483, 1994.

[3] S. Bataineh, T.G. Robertazzi, “Distributed Computation in
Linear Networks: Closed–Form Solutions,” Proc. Conf.
Information Sciences and Systems, Princeton Univ.,
Princeton, vol. 30, no. 2, pp. 794–799., 1992.

[4] D. Ghose, V. Mani, “Distributed Computation with
Communication Delays: Asymptotic Performance
Analysis,” Journal of parallel and distributed computing,
vol. 23, no. 3, pp. 293–305, 1994.

[5] V. Bharadwaj, D. Ghose, and V. Mani, “Optimal
Sequencing and Arrangement in DistributedSingle–Level
Networks with Communication Delays,” IEEE
transactions on parallel and distributed systems, vol. 5, no.
9, pp. 968–976, 1994.

[6] H. J. Kim, G.I. Jee, and J.G. Lee, “Optimal Load
Distribution for Tree Network Processors,” IEEE

transactions on aerospace and electronic systems, vol. 32,
no. 2, pp. 607–612, 1996.

[7] H.J. Kim, “A novel optimal load distribution algorithm for
divisible load,” Cluster computing-the journal of networks
software tools and applications, vol. 6, no. 1, pp. 41–46,
2003.

[8] H.J. Kim, V. Mani, “Divisible load scheduling in single–
level tree networks: optimal sequencing and arrangement
in the nonblocking mode of communication,” Computers
& mathematics with applications, vol. 46, no. (10–11), pp.
1611–1623, 2003.

[9] S. Suresh, V. Mani, and S.N. Omkar, “The effect of start–
up delays in scheduling divisible load on bus networks: an
alternate approach,” Computers & mathematics with
applications, vol. 46, no. (10–11), pp. 1545–1557, 2003.

[10] V. Bharadwaj, Xiaolin Li, and C.C. Ko, “On the influence
of start–up costs in scheduling divisible load on bus
networks,” IEEE transactions on parallel and distributed
systems, vol. 11, no. 12, pp. 1288–1305, 2000.

[11] J. Blazewicz, M. Drozdowski, “Distributed processing of
divisible jobs with communication startup costs,” Discrete
Applied Mathematics,, vol. 76, no. (1-3), pp. 21-41, 1997.

[12] M.S. Shang, “Optimal algorithm for scheduling large
divisible workload on heterogeneous system,” Applied
mathematical modelling,, vol. 32, no.9, pp. 1682–1695,
2008.

[13] O. Beaumont, A. Legrand, and Y. Robert, “Scheduling
divisible workloads on heterogeneous platforms,” Parallel
computing,, vol. 29, no.9, pp. 1121–1152, 2003.

[14] J. Berlinska, M. Drozdowski, M. Lawenda, “Experimental
study of scheduling with memory constraints using hybrid
methods,” Journal of Computational and Applied
Mathematics, vol. 232, no.2, pp. 638–654, 2009.

[15] J. Berlinska, M. Drozdowski, “Heuristics for multi-round
divisible loads scheduling with limited memory,” Parallel
Computing, vol. 36, no.4, pp. 199–211, 2010.

[16] J. Berlinska, M. Drozdowski, “Scheduling Divisible
MapReduce Computations,” Journal of Parallel and
Distributed Computing, vol. 71, no.3, pp. 450–459, 2011.

[17] T.G. Robertazzi, “A Product Form Solution for Tree
Networks with Divisible Loads,” Parallel Processing
Letters, vol. 21, no.1, pp. 13-20, 2011.

[18] K. Li, “New Divisible Load Distribution Methods using
Pipelined Communication Techniques on Tree and
Pyramid Networks,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 47, no.2, pp. 806–819, 2011.

[19] A. Shokripour, M. Othman, H. Ibrahim, and S.
Subramaniam, “A New Method for Scheduling Divisible

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1765

© 2014 ACADEMY PUBLISHER

Data on a Heterogeneous Two-Levels Hierarchical
System,” Procedia Computer Science, vol. 4, pp. 2196–
2205, 2011.

[20] A. Shokripour, M. Othman, H. Ibrahim, and S.
Subramaniam, “A Method for Scheduling Heterogeneous
Multi-Installment Systems,” Lecture Notes in Artificial
Intelligence, Springer, vol. 6592, pp. 221–230, 2011.

[21] A. Shokripour, M. Othman, H. Ibrahim, and S.
Subramaniam, “A New Method for Job Scheduling in a
Non-Dedicated Heterogeneous System,” Procedia
Computer Science, Elsevier, vol. 3, pp. 271–275, 2011.

[22] C.F. Gamboa, T.G. Robertazzi, “Simple Performance
Bounds for Multicore and Parallel Channel Systems,”
Parallel Processing Letters, vol. 21, no. 4, pp. 439–459,
2011.

[23] G. Barlas, “Cluster-Based Optimized Parallel Video
Transcoding,” Parallel Computing, vol. 38, pp. 226–244,
2012.

[24] A. Shokripour, M. Othman, H. Ibrahim, S. Subramaniam,
“New method for scheduling heterogeneous multi-
installment systems,” Future Generation Computer
Systems, vol. 28, no. 8, pp. 1205–1216, 2012.

[25] V. Bharadwaj, D. Ghose, V. Mani, T.G. Robertazzi,
“Scheduling Divisible Loads in Parallel and Distributed
Systems,” IEEE Computer Society Press, Los
Alamitos,CA,1996.

[26] J.H. Holland, “Adaptation in Natural and Artificial
Systems,” University of Michigan Press, Ann Arbor, 1975.

[27] Liu, D. L., Chen, X. H., & Du, J. L. A Hybrid Genetic
Algorithm for Constrained Optimization Problems. Journal
of Computers, 8(2), 272-278, 2013.

[28] Zebin, Tahmina, and M. S. Alam. Modeling and Control of
a Two-link Flexible Manipulator using Fuzzy Logic and
Genetic Optimization Techniques. Journal of Computers
7.3: 578-585. 2012.

[29] ZHAO, Jian-Hua; LI, Wei-Hua. Intrusion Detection Based
on Improved SOM with Optimized GA. Journal of
Computers, 8(6): 1456-1463.2013.

[30] C.R. Reeves, J.E. Rowe, “Genetic algorithms–principles
and perspectives: a guide to GA theory,” Kluwer Academic
Publish, 2012.

Xiaoli Wang and is currently a Ph.D.
candidate at Xidian University, and
major in computer science and
technology.
 She was born in ShanDong Province.
She received her BS degree in software
engineering from Xidian University in
2004. She is a member of the ACM. Her
research interests include parallel and

distributed systems, grid computing and cloud computing.

Yuping Wang is a professor with the
School of Computer Science and
Technology, Xidian University, Xi'an,
China. He got Ph.D from the
Department of Mathematics, Xi'an
Jiaotong University, China in 1993. He
is the Senior member of IEEE, and
visited Chinese University of Hong
Kong, City University of Hong Kong,

and Hong Kong Baptist University as a research fellow many
times from 1997 to 2010. He has authored and co-authored over
100 research papers in journals and conferences. His current
research interests include evolutionary computation, non-bilevel
programming, global optimization, and multi-objective
programming.

Kun Meng is currently a postgraduate
student at Xidian University, and major
in computer science and technology,
Xi'an, China. His current research
interests include task scheduling and
evolutionary algorithms.

1766 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

