
Model checking the convergence property of
BGP networks
Ping Yina, Yinxue Mab, Zhe Chenb

a School of Science, Jiangnan University, Wuxi 214122, China
Email: wanderapple@gmail.com

b College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing
210016, China

Email: nuaacpp@126.com, zhechen@nuaa.edu.cn

Abstract— The Border Gateway Protocol (BGP) is an im-
portant inter-domain routing protocol, which is widely used
in Internet. It allows independent policies to be designed
for each Autonomous System (AS). However, the flexibility
in designing independent policies causes the convergence
problem, i.e., a BGP network may constantly send routing
information between ASes and cannot reach a stable state. In
this paper, we propose an approach for model checking the
convergence property of BGP networks. We firstly establish
a formal model of BGP networks and define its convergence
property. Then we use the Promela language to describe this
model and analyze its convergence. The model is generic
enough, thus different instances of BGP networks can be
simulated and verified by only modifying parameters and
policies. Finally, as examples, we simulate and verify some
typical instances of BGP networks by using the SPIN model
checker.

Index Terms— border gateway protocol, BGP, model check-
ing, verification, formal methods, SPIN

I. INTRODUCTION

THE Border gateway protocol (BGP) [1] is an impor-
tant inter-domain routing protocol. It involves send-

ing routing information between different Autonomous
Systems (ASes). BGP allows policies which are inde-
pendently designed for each AS. Thus, there would exist
conflicts between these policies. For example, whether the
protocol is convergent is an important security problem.
Due to the complexity of Internet, the convergence veri-
fication of BGP networks should be done with the aid of
computers.

Model checking is an important automatic verifica-
tion technique which has been successfully applied to
hardware and software verification. Model checking is
performed automatically to verify its properties. If the
properties are not satisfied, it provides a counter example.
SPIN [2] [3] is an important model checker which has
been widely applied in industrial [4] [5]. It is easy to use
the Promela language and linear temporal logic (LTL)
formulas to describe concurrent systems and properties

Manuscript received August 10, 2011; revised January 2, 2012;
accepted April 16, 2012. c© 2005 IEEE.

This work is supported by the National Nature Science Foundation
of China (Grant Nos. 11226307 and 61100034), the Scientific Research
Foundation for the Returned Overseas Chinese Scholars of State Edu-
cation Ministry, and the Fundamental Research Funds for the Central
Universities (Grant No. JUSRP 11213).

respectively. Therefore, SPIN is a tool suitable for ver-
ifying communication protocols [6]. Other verification
techniques are also studied in the literature [7] [8] [9]
[10].

Model checking has already been used in formal anal-
ysis of network protocols. In [11], the authors used the
theorem-proving tool HOL and the model checker SPIN
to analyze the key properties of Routing Information
Protocol (RIP) and Ad-hoc On-demand Distance Vector
(AODV) routing protocol. In [12], the authors studied
security vulnerabilities of OSPF with the model checker
CBMC. There are also some existing studies on checking
the convergence of protocols in the literature. In [13],
it is proved that independent design of BGP policies
in different ASes causes route oscillations. In [14], the
authors analyzed the convergence of BGP with static
analysis and gave its computational complexity. In [15]
[16], the authors defined a simplified model SPVP to
analyze the convergence. We refer to [17] [18] [19] [20]
for the theoretical and experimental analysis of BGP
convergence in detail.

However, these related works have two drawbacks.
First, the proposed theories are too abstract to be easily
understood and used in practice, although they contribute
to the theoretical aspect. For example, the works [14]–
[16] focused on the theoretical proofs of the complexity
results of verification problems, instead of experimental
results. Some other works [21] [22] focused on the Maude
tool, whose language is hard to be understood by average
engineers. Second, the proposed models are designed for
specific BGP instances with some specified policies. Thus,
it is not easy to adapt the existing work, when people have
another BGP instance to be verified. We believe that our
work can improve these two weaknesses.

In this paper, we propose a verification approach for
analyzing the convergence property of BGP networks
using model checking. Firstly, we make an abstraction
of BGP networks, build a general model and define
the convergence property of this model. Then, we use
the Promela language to describe this model, whose
convergence property is specified by LTL formulas. As
examples, we apply this model to three typical BGP
instances with different presentations of the convergence
property. Finally, SPIN is successfully used to simulate

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1619

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.6.1619-1625

the model and verify the convergence property.
Comparing with related works, our major contribution

is constructing an intuitive and general enough BGP
model described by the Promela language. First, our
model is easy to be understood by average engineers, thus
can be used to verify their BGP instances at hand. Second,
our model is also general and flexible, thus the model can
be easily adapted to simulate and verify different BGP
instances by modifying node parameters and policies.
Therefore, our model can be used as a powerful tool for
designing correct BGP networks.

The paper is organized as follows. Section II introduces
BGP networks, the Promela modeling language in SPIN,
and LTL formulas which are used to describe properties.
Section III abstracts BGP and builds a formal model
which concerns policies and the convergence property.
Section IV gives a Promela model based on the abstract
model proposed in Section III, as well as an introduction
to its convergence property in SPIN. Section V shows
three experiments on verifying BGP networks which are
proven to be convergent, divergent and partial convergent
respectively. Besides, we briefly explain how to verify
the networks which are topologically instable. Section VI
concludes this paper and proposes future works.

II. PRELIMINARY

A. BGP

BGP is an inter-domain protocol which enables passing
routing information between ASes. A BGP network sends
the whole routing table when the network initializes.
Afterwards, it only sends route changes by route an-
nouncements.

A route announcement consists of network layer reach-
ability information (NLRI) and members describing how
to reach NLRI such as AS path, Next hop, Local pref.
Here, AS path means a list of ASes, i.e., a path to the
destination. If there are two equal AS numbers in the
path, then there is a loop. Next hop means the next hop
in the path AS path, denoted by an AS number. Local pref
means the local priority used in a local AS. The higher
the value for a path is, the more preferable the path is.

While a BGP router receives a route announcement
from a peer neighbor, it firstly uses its import policy to
modify routing information (e.g. set a value to Local pref)
and decides whether the announcement should be added
to the Route Information Base (RIB) Adj-RIBs-In. Then
the router selects the best route by using the local route
strategy and adds the route to Loc-RIB. If the selected best
route is different with the previous one, the new route
will be added to Adj-RIBs-Out. Then the new route is
modified by the export policy, and announced to all peers
of the router.

B. Model checker SPIN

In order to verify BGP networks by using SPIN, we
firstly use the Promela language to build a model de-
scribing their behaviors. Then LTL is applied to describe

the desired properties. Finally SPIN would automatically
verify these properties. If the properties are not satisfied,
SPIN provides counter examples. In this section, we will
give a brief introduction to Promela and LTL. More details
could be found in the literature [4] [3].

1) Promela: A Promela program usually includes data
objects, processes and message channels. Declarations of
data objects are rather similar to the C language. Basic
data types include bool (or bit), byte (integers from 0 to
255) etc. Other data structures include arrays and records
(using the keyword typedef) etc. There are two kinds of
scopes for data objects: global and local. There are also
macro definitions, inline function definitions in Promela.
The body of an inline function is used to replace the call
expressions.

Processes may share information via channels and
global variables. A process type pname could be declared
as follows:

proctype pname(list of parameters)
{ body }

The initial process init is a process without any param-
eters. It instantiates other process types by running the
process. For example,

init
{
run pname(...);
/*pname is ran as a process*/

}

Channel buffers are declared with the keyword chan.
The size of a channel varies from 1 to 255, i.e., a channel
can store 1 to 255 messages. A channel is used to simulate
asynchronous message passing. For example, a channel
which is capable of storing up to five messages consisting
of two date types (byte and bool) can be defined as
follows:

chan ch = [5] of { byte, bool }

The basic forms of sending and receiving messages are
defined as follows:

ch ! 6, true; /* send 6 and true. */
ch ? x, bx; /* receive and assign them

to variables x and bx. */

2) LTL: LTL is obtained by adding temporal operators
to propositional logic. An LTL formula is assigned a
Boolean value based on state sequences (i.e. paths). LTL
is suitable for describing properties of concurrent systems,
such as safety properties and liveness properties. We will
give a part of the grammars and semantics of LTL that
will be used in the sequel.

An LTL formula is
• an atomic proposition denoted by letters, e.g., p, q,

and
• if p and q are LTL formulas, then p ∧ q, p ∨ q, ¬p,

p → q, pUq (until), ¤p (always), ♦q (eventually)
are also LTL formulas.

1620 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

The semantics of these temporal operators are as follows.
¤p denotes that the proposition p is always satisfied
through all states in an execution sequence. ♦p means
that p is eventually satisfied in a state in an execution
sequence. For example, the formula ¤♦p represents that,
for all the states in an execution sequence, there will be
eventually a succeeding state satisfying p. The formula
♦¤p represents that, there is eventually a state whose
succeeding states always satisfy p.

III. AN ABSTRACT MODEL OF BGP
In this section, we will build an abstract BGP model

and describe its convergence property.

A. Simplification and assumption of BGP networks

In order to focus on the convergence property, we
would like to simplify BGP networks as follows:
• Network topology is represented by an undirected

graph. A node in the graph, representing an AS, is
denoted by a natural number.

• There is only one destination node in a network
topology, denoted by 0. This abstraction is sound,
thanks to the symmetry of network topologies.

• The communication between ASes is bidirectional.
• A route message consists of AS path, Next hop,

and Local pref. The route announcement transferred
between ASes only contains AS path.

• Each AS maintains a routing table RIB storing
available routes.

• There is one and only one best route in RIB, denoted
by current best route.

B. Definition of BGP networks

An undirected graph G = (V, E) represents a network
topology, where a vertex v ∈ V (0 ≤ v < n) is an integer
denoting a node in the network, e = (v, w) = (w, v) ∈ E
is an edge between neighbor vertices v and w, and d = 0
is the unique destination node which only sends route
information to neighbor nodes at the initial stage.

A BGP network is represented by a quadruple S =
(G,P, Λ,M), where G is an undirected graph describing
a network topology, P = ∪{Pv|v ∈ V } is a set of
permitted paths, Λ = {λv|v ∈ V \ {0}} is a set of local
preference assignment functions where λv is a function
for assigning priorities, and M is a channel buffer which
is used to store route announcements. A router can send a
route message to the buffer, and receive a message from
the buffer.

C. Operations on nodes

Node v receives a route announcement from a message
channel, modifies the message by using the import policy
and updates RIBv . Then the best route is selected from
RIBv by calling the route selection process. If the new
best route is not the same as the old one, node v will
send the route announcement to all its neighbor nodes.
The details are explained as follows.

1) Import policies: Node v receives a route message
r with r.AS path = w, · · · , d from its neighbor
w. Then it updates r.AS path = v, w, · · · , d, and
checks whether path r.AS path belongs to Pv . If
true, then let r.Next hop = w, r.Local pref =
λv(r).

2) Updating RIBv: If the updated path r.AS path
does not belong to Pv (e.g. there is a cycle in
r.AS path), v will discard the path from w and
check RIBv . If there is a path r′ which is an old
path from w to d, then r′ will be discarded as well,
that is, RIBv = RIBv \ r′. Otherwise, v accepts
r and checks RIBv . Similarly, if there is a path
r′ = w, · · · , d, which is different from r, then r′

will be discarded from RIBv , and r will be added
to RIBv .

3) Local route selection policies: We select the best
route from the updated route table RIBv of node
v. Two different routes are compared in each round
until the comparison of all routes in RIBv finishes.
Therefore the new best route is selected. There are
three rules for route comparison as follows. Assume
two arbitrary route information r1 and r2 in RIBv .
• If r1.Local pref 6= r2.Local pref , choose

the one with the higher value of Local pref .
• Otherwise, if the lengths of path r1 and r2 are

different, choose the one with the shorter path
length.

• Otherwise, choose the one with the lower value
of Next hop.

4) Updating and sending current best route: If the
selected best route is different from the old one,
the new one is assigned to current best route.
Meanwhile, the node v sends a route announcement
including current best route to all its neighbors.
If the selected best route is the same as the old
one, the node v does no operation, waiting for the
messages from its neighbors.

D. Formalizing Convergence Property

If all the nodes keep unchanged in an execution, we
assume that the system model reaches a stable state.
Formally, if a stable state satisfies the following two
conditions, we assume the system model is convergent
in an execution:
• M = ∅,
• For any two nodes v and w, if the current best route

of node v is v, w, vi1, · · · , vik, d, the current best
route of w is definitely w, vi1, · · · , vik, d.

The convergence of a system model is determined by
the stability in all runs. To describe the system conver-
gence, we consider three cases as follows:
• Convergent: if the system model is stable in all runs.
• Divergent: if the system model is unstable in all

runs.
• Partially convergent: if the system model is stable

in some runs and unstable in others.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1621

© 2014 ACADEMY PUBLISHER

IV. MODELING BGP IN PROMELA

In this section, we propose a BGP model in Promela
based on the abstract model in Section III. In this Promela
model, every node is a process consisting of a number of
inline functions. The parameter N denotes the number
of nodes. To simulate different BGP networks, we only
need to change the value of N and the statements of some
functions related to local preference assignment.

A. Data structures

We firstly give the data structures described using
Promela as follows,

1 # d e f i n e N 4
2 Typedef EDGE {
3 b i t b [N] ;
4 }
5 EDGE a [N] ;
6
7 t y p e d e f ROUTE {
8 b y t e p a t h [N] ;
9 b y t e c o u n t ;

10 b y t e L o c a l p r e f ;
11 }
12 chan ch = [N∗ (N−1)−2] o f
13 { byte , by te , ROUTE. p a t h [N] , ROUTE. c o u n t } ;
14 /∗ The f i r s t b y t e i s t h e i d e n t i t y o f s e n d e r
15 t h e second b y t e i s t h e i d e n t i t y o f r e c e i v e r . ∗ /

In the model, N denotes the number of nodes. For
example, if there is a BGP model of four nodes, we write
#define N 4. The two-dimensional array a[0,...,N-
1].b[0,...,N-1] represents the link state between two nodes.
If nodes i and j are linked, then we set a[i].b[j] = a[j].b[i]
= 1. Otherwise, a[i].b[j] = a[j].b[i] = 0. ROUTE is a
structure containing AS path, Next hop and Local pref,
where count is the number of nodes in the AS path,
and path[0,...,N-1] is an array storing node numbers.
The combination of count and path represents AS path
and Next hop. For example, the expressions path[0] = 0,
path[1] = 2, path[2] = 3, path[3] = 2, count = 3 denote
a path 320 from node 3 to destination node 0, Next hop
in this path is path[count-2] = 2. Finally, the variable ch
is a channel with the buffer of the size N*(N-1)-2. The
route messages sent between ASes are stored in ch, and
the intended receivers take their messages from ch.

B. Node processes and the initial process

Based on the data structures, we give the pseudo code
of node processes and the initial process in Promela. Each
node is an instantiated process, as shown in following
program.

1 p r o c t y p e NODE(b y t e v)
2 {
3 ROUTE c b r ; /∗ c u r r e n t b e s t r o u t e ∗ /
4 ROUTE nbr ; /∗ n e w b e s t r o u t e ∗ /
5 i f
6 : : v == 0 −> /∗ The on ly d e s t i n a t i o n node . ∗ /
7 a to mi c {
8 c b r . c o u n t = 1 ;
9 send (v , c b r) ;}

10 : : e l s e −>

11 /∗ I f t h e node i s n o t d e s t i n a t i o n one . ∗ /
12 do
13 : : msgReceive −>
14 r e c e i v e (msg) ;
15 i m p o r t (v , msg) ;
16 r o u t e S e l e c t R I B (v , nbr) ;
17 compareRoute (nbr , c b r) ;
18 i f
19 : : routeNotSame −>
20 c b r = nbr ;
21 send (v , c b r)
22 : : e l s e −> s k i p ;
23 f i ;
24 : : e l s e −> s k i p ;
25 od ;
26 f i ;
27 }

We fix the destination node to be node 0. It only sends
messages to all its neighbors at the beginning. Because all
default values of variables in Promela programs are equal
to 0, we firstly assign the count of current best route to 1.
Thus we get the best route of node 0, i.e., AS path is 0.
Then this route information will be sent to the neighbors
of node 0 by calling send(v, cbr).

When a node except the destination node receives
a message from its neighbors by calling receive(msg),
it firstly determines whether the path included in this
message msg is permitted to receive, updates RIB, then
selects the new best route from RIB and assign it to
nbr by calling routeSelectRIB(v, nbr), finally compares
the new best route and the current best route by calling
compareRoute(nbr, cbr). If they are not the same, the
current best route is updated by executing cbr = nbr, and
the new best route is sent to all neighbors of node v by
calling send(v, cbr). Otherwise, nothing is done.

In the initial process, the network topology is generated.
Then node processes are instantiated. An example of
initial processes which can generate a network topology
as a complete graph is shown as follows.

1 i n i t {
2 b y t e i = 0 ;
3 b y t e j = 1 ;
4 do
5 /∗ G e n e r a t e a co m p l e t e g raph wi th N nodes . ∗ /
6 : : i < N −>
7 do
8 : : j < N −>
9 a [i] . b [j] = 1 ;

10 a [j] . b [i] = 1 ;
11 j ++;
12 : : e l s e −> b r e a k ;
13 od ;
14 i ++;
15 j = i +1;
16 : : e l s e −> b r e a k ;
17 od ;
18 a to mi c {
19 /∗ I n s t a n t i a t e p r o c e s s o f nodes ∗ /
20 i = N;
21 do
22 : : i > 0 −>
23 run NODE(i −1) ;
24 i−−;
25 : : i == 0 −>
26 b r e a k ;
27 od ;
28 }

1622 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

29 }

C. Formalizing Convergence in LTL

Now we can describe the convergence property in LTL.
Based on the defined and constructed Promela model, the
convergence is determined by only checking the state of
channel buffers. Two LTL formulas P1 and P2 will be
used as follows.
• P1: <>[] len(channel) == 0
• P2: []<> len(channel) != 0

Note that, in SPIN/Promela, temporal operators ¤ and
♦ are denoted by [] and <> respectively. The function
len(chan channel name) is used for calculating the num-
ber of messages in a channel buffer.

P1 means that there eventually exists a state in a run
such that the channel buffers of all its succeeding states
are empty. P2 means that, for all states in a run, there
always exists a succeeding states with nonempty channel
buffer in the run.

We perform the convergence analysis of a BGP network
by verifying whether counter examples exist for P1 and P2
and combining the verification results in the way shown
in Table I. Note that it is impossible that P1 and P2 have
no counter examples simultaneously.

TABLE I.
CONVERGENCE CONCLUSION

P1 P2 convergence
no counter example counter example convergent

counter example no counter example divergent
counter example counter example partially convergent

no counter example no counter example -

V. VERIFYING THE CONVERGENCE PROPERTY OF
BGP NETWORKS USING SPIN

In this section we give examples of BGP networks
which are convergent, divergent or partially convergent
[15]. They are simulated and verified with SPIN/Promela
by changing node parameters and priority functions. We
also specify unstable networks.

A. Examples of BGP

Fig 1 and Fig 2 are network topologies which we use in
this section. Assume that these topologies are unchanged
in a run and node 0 is the only destination node. We
give the local priority functions of the three examples as
follows. The permitted paths Pv is a set of paths which
are loop free from node v to node 0.
• e1: λv(p) = 0, p ∈ Pv .
• e2: If p ∈ {120, 230, 310}, λv(p) = 1. Otherwise,

λv(p) = 0.
• e3: If p ∈ {120, 210}, λv(p) = 1. Otherwise,

λv(p) = 0.
We expect that e1 is convergent, e2 is divergent, and e3 is
partially convergent. The experimental results in the next
subsection are consistent with the expected results.

Figure 1. Network topology for examples e1 and e2.

Figure 2. Network topology for example e3.

B. Experimental results

In this section we give the experimental results, mem-
ory and time consumptions in Table II. The results are
consistent with the expected ones, i.e., e1 is convergent,
e2 is divergent and e3 is partially convergent.

The experiments were conducted on a dual-cored laptop
with 2GB memory and 2.00GHz CPU. We verified these
examples with or without memory compression technolo-
gies. Memory compression includes lossless compression
(e.g., collapse compression, minimized automaton repre-
sentation) and lossy compression (e.g., bitstate hashing
method, hash compact method).

We found that the verifications with counter examples
were finished within one second without using any mem-
ory compression technology. If lossless compression was
applied, the increment of memory and time consumptions
was not obvious. If lossy compression was applied, the
memory consumption significantly decreased, whereas
the time consumption greatly increased. Moreover, lossy
compression cannot be used in e3, because it affects
the correctness of verification since counter examples
could not be found due to the decreased coverage of the
state space. In the case of verifications without counter
examples, we find that it is difficult to verify the model
without using any memory compression technology, even
for a network consisting of 4 nodes, as shown in Table II.
Thus, we must complete the verifications using memory
compression technologies.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1623

© 2014 ACADEMY PUBLISHER

examples properties counter no memory compression lossless compression lossy compression
examples states memory time states memory time states memory time

(MB) (S) (MB) (S) (MB) (S)
e1 P1 no - - - 85794462 259.168 5290 25344184 17.515 618

P2 yes 4335 65.808 0.15 4335 64.636 0.14 6108344 18.101 54.5
e2 P1 no 8759 66.980 0.39 8759 64.832 0.36 24613703 17.808 648

P2 no - - - 333921150 1678.894 19800 42583137 18.004 350
e3 P1 yes 1392 64.734 0.05 1392 64.539 0.05 no counter example

P2 yes 281 64.539 0.01 281 64.539 0.01 no counter example

TABLE II.
RESULTS OF EXPERIMENTS

The state space is huge even for a 4 nodes network. For
example, there are 333921150 states in the verification
of property P2 in e2, using lossless compression. And
the memory and time consumptions are 1678.894MB and
19800s respectively. It is caused by the state explosion
problem which is a bottleneck of model checking.

C. Verification on unstable networks

The above network examples are stable in their topo-
logical structures. It means that the failures of nodes and
links do not appear in runs. However, the instability of
nodes and links can happen in reality. We regard the
failures of nodes as the failures of links, since when the
node v fails, all links between v and its neighbor nodes
fail as well.

When a link failure happens, the nodes connecting
to this link would send link failure messages to their
neighbors. The system begins a new converging procedure
from unstable states to stable states.

Link failures mean that the old topology has changed
and a new topology arises. Therefore, we consider link
failures as dynamics of topologies. Given N nodes, the
dynamics of topologies can be simulated by the automatic
generation of a random topology at the beginning.

VI. CONCLUSIONS

In this paper, we proposed a formal model of abstract
BGP and its corresponding model in Promela. All BGP
networks can be simulated by changing the parameters of
nodes and priority functions. To analyze the convergence
of BGP networks, we consider three types, i.e., conver-
gent, divergent and partially convergent. We verified the
examples of BGP networks of these three types using
SPIN, and gave the convergence conclusion.

In the future, we would like to extend this work in
the following aspects. First, we will try to improve the
efficiency of our model. As we know, the state space
explosion problem is a critical bottleneck of applying
model checking to large systems [23]. Thus, we may try
to use reduction methods and compression methods in
our experiments to increase its ability of checking larger
networks. Second, we will try to increase the size of our
model. As we know, although SPIN is a powerful model
checker, it has the limitation on the size of channel buffers
(up to 255). As a result, we can only verify the networks
with the number of nodes up to 16. We would like to

solve this restriction by using more advanced theories
about data structures in modeling and their algorithms,
such as automata and ω-automata [24]. Third, we may
study the equivalent reduction of a large network to a
small one, conversion of an unstable network to a special
stable network. Besides, we can combine theorem proving
with model checking to analyze BGP networks. Fourth,
we may investigate other possible methods for verifying
the correctness of protocols, e.g., the runtime monitoring
approach [25], which is based on the formalism of control
systems on automata [26] [27].

ACKNOWLEDGMENT

This work is supported by the National Nature Sci-
ence Foundation of China (Grant Nos. 11226307 and
61100034), the Scientific Research Foundation for the
Returned Overseas Chinese Scholars of State Education
Ministry, and the Fundamental Research Funds for the
Central Universities (Grant No. JUSRP 11213). The au-
thors gratefully acknowledge the helpful comments and
suggestions of the anonymous reviewers, which have
greatly improved the presentation of this paper.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, A border gateway protocol
4 (BGP-4), http://tools.ietf.org/html/rfc4271, 2006.

[2] B.-A. Mordechai, Principles of the SPIN model checker.
Springer, 2008.

[3] G. J. Holzmann, The SPIN model checker: primer and
reference manual. Addison-Wesley, 2003.

[4] Z. Chen, Y. Gu, Z. Huang, J. Zheng, C. Liu, and Z. Liu,
“Model checking aircraft controller software: A case
study,” Software-Practice & Experience, 2014. Available
at http://dx.doi.org/10.1002/spe.2242.

[5] Z. Chen and G. Motet, “Methodology and experience for
designing safety-related systems in iec 61508,” in Proceed-
ings of the 4th International Conference on Dependability
(DEPEND 2011). IARIA, 2011, pp. 57–64.

[6] Z. Chen, D. Zhang, R. Zhu, and et al., “A review of
automated formal verification of ad hoc routing protocols
for wireless sensor networks,” Sensor Letters, vol. 11,
no. 5, pp. 752–764, 2013.

[7] H. Shi, W. Ma, M. Yang, and X. Zhang, “A case study of
model checking retail banking system with spin,” Journal
of Computers, vol. 7, no. 10, pp. 2503–2510, 2012.

[8] B. Meng, W. Huang, and Z. Li, “Automated proof of
resistance of denial of service attacks using event with
theorem prover,” Journal of Computers, vol. 8, no. 7, pp.
1728–1741, 2013.

1624 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

[9] Z. Wei, C. Xia, Y. Luo, X. Liu, and W. Wu, “An approach
for description of computer network defense scheme and
its simulation verification,” Journal of Computers, vol. 9,
no. 2, pp. 388–395, 2014.

[10] G. Zhao and X. Li, “Identity authentication scheme expan-
sion based on speaker verification,” Journal of Computers,
vol. 8, no. 8, pp. 2027–2033, 2013.

[11] K. Bhargavan, D. Obradovic, and C. A. Gunter, “Formal
verification of standards for distance vector routing proto-
cols,” Journal of the ACM, vol. 49, no. 4, pp. 538–576,
2002.

[12] A. Sosnovich, O. Grumberg, and G. Nakibly, “Finding
security vulnerabilities in a network protocol using param-
eterized systems,” in Proceedings of the 25th International
conference on Computer Aided Verification, 2013, pp. 724–
739.

[13] R. G. K. Varadhan and D. Estrin, “Persistent route os-
cillations in inter-domain routing,” Computer Networks,
vol. 32, no. 2, pp. 1–16, 2000.

[14] T. G. Griffin and G. Wilfong, “An analysis of bgp conver-
gence properties,” in Proceedings of the ACM International
conference on the applications, technologies, architectures,
an-d protocols for computer communication, 1999, pp.
277–288.

[15] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy
disputes in path-vector protocols,” in Proceedings of the
seventh international conference on network protocols,
1999, pp. 21–30.

[16] ——, “The stable paths problem and interdomain routing,”
in IEEE/ACM transactions on networking, vol. 10, no. 2,
2002, pp. 232–243.

[17] J. L. Sobrinho, “Network routing with path vector proto-
cols: theory and applications,” in Proceedings of the ACM
international conference on the applications, technologies,
architectures, and protocols for computer communication,
2003, pp. 49–60.

[18] N. Feamster and H. Balakrishnan, “Detecting bgp configu-
ration faults with static analysis,” in Proceedings of the 2nd
conference on Symposium on Networked Systems Design
& Implementation, 2005, pp. 43–56.

[19] L. J. Wang, J. P. Wu, and K. Xu, “Analysis of bgp con-
vergence using shlpn model,” in Proceedings of the third
advanced international conference on telecommunications,
2007.

[20] F. Le, S. Lee, and T. Wong, “Detecting network-wide and
router-specific misconfigurations through data mining,” in
IEEE/ACM Transactions on Networking, vol. 17, no. 1,
2009, pp. 66–79.

[21] A. Wang, C. L. Talcott, and L. M. Jia, “Analyzing bgp
instances in maude,” Dingel R B J. Formal Techniques for
Distributed Systems, pp. 334–348, 2011.

[22] A. Wang, C. Talcott, and A. J. Gurney, “Reduction based
formal analysis of bgp instances,” Tools and Algorithms
for the Construction and Analysis of Systems, vol. 7214,
pp. 283–298, 2012.

[23] Z. Chen and G. Motet, “Nevertrace claims for model
checking,” in Proceedings of the 17th International SPIN
Workshop on Model Checking of Software (SPIN 2010),
ser. Lecture Notes in Computer Science, vol. 6349.
Springer, 2010, pp. 162–179.

[24] Z. Chen, “On the generative power of ω-grammars and ω-
automata,” Fundamenta Informaticae,, vol. 111, no. 2, pp.
119–145, 2011.

[25] Z. Chen and G. Motet, “System safety requirements as
control structures,” in Proceedings of the 33rd Annual
IEEE International Computer Software and Applications
Conference (COMPSAC 2009). IEEE Computer Society,
2009, pp. 324–331.

[26] Z. Chen, “Control systems on automata and gram-

mars,” The Computer Journal, 2014. Available at
http://dx.doi.org/10.1093/comjnl/bxt125.

[27] Z. Chen and G. Motet, “Towards better support for the
evolution of safety requirements via the model monitoring
approach,” in Proceedings of the 32nd International Con-
ference on Software Engineering (ICSE 2010). ACM,
2010, pp. 219–222.

Ping Yin is an assistant professor in school of science at Jiang-
nan University. Her main research interests include numerical
computing, mathematical software, and system and software
verification. She got the Ph.D. degree in applied mathematics
from Aix-Marseille University (AMU), France in 2011.

Yinxue Ma is a master student of computer science at Nan-
jing University of Aeronautics and Astronautics. Her research
interests include formal methods, software verification and their
applications to the design of network protocols.

Zhe Chen is an associate professor of computer science at Nan-
jing University of Aeronautics and Astronautics. He received
his Ph.D. degree in Computer Science from Institut National
des Sciences Appliquees (INSA) de Toulouse, Universite de
Toulouse, France in 2010. His research interests include formal
methods, software verification, programming and modeling lan-
guages, and their applications to the design of network protocols
and industrial systems. He has published over 20 peer-reviewed
research papers in major journals and conferences such as SPE,
COMPJ, FI, ICSE, SPIN and COMPSAC. He is the author of
three books on programming. He is a member of CCF, ACM
and IEEE.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1625

© 2014 ACADEMY PUBLISHER

