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Abstract— In this paper, the chaotic time series RBF neural 
network model was designed. A prediction method for 
underwater acoustic chaotic signal based on RBF neural 
network is proposed in this paper according to the 
characteristics of chaotic signal with the short-term 
prediction. Typical Henon chaotic signal and the actual 
underwater acoustic chaotic signal are respectively 
predicted by the RBF neural network. Then the prediction 
results are analyzed. The results show that the proposed 
prediction method increases at least two orders of 
magnitude in the mean square error terms compared with 
existing prediction method, and that the RBF neural 
network can be used to predict the chaotic signal effectively. 
 
Index Terms—chaotic signal, phase space reconstruction, 
RBF neural network, prediction 
 

I.  INTRODUCTION 

Chaotic behaviors extensively exist in various natural 
and social systems, such as atmosphere, traffic, acoustics, 
economics, and biomedicine. They are an evolutionary 
pattern standing between randomness and certainty [1]. 
Chaotic signal is generated by deterministic nonlinear 
dynamical system. The prediction of chaotic signal is of 
great significance for the analysis and study of nonlinear 
dynamic system. However, due to the sensitivity of the 
chaotic system to initial conditions, small changes in the 
input may cause big differences in the output. At present, 
the more feasible method is the short-term prediction of 
chaotic time series [2]. The prediction of chaotic signal 
can be regarded as inverse problem in the study of 
dynamics system. Forward problem is to study various 
properties of the phase space orbit for a given nonlinear 
dynamic system. Inverse problem is to construct a 
nonlinear mapping for expressing the original system by 
a given string of iterative sequence or a group of 
observation sequence. This mapping can be used as 
predictive model. Therefore, how to construct predictive 
model is a key problem in chaotic signal prediction. 
Prediction of the chaotic signal has become a research 
focus in the current chaotic signal processing field [3-5]. 

All traditional methods of time series predicting belong 
linear approach. Therefore, people put forward many 
nonlinear prediction methods for chaotic time series 
based on Takens theory. It can be roughly divided into 
the global prediction method, local prediction method and 
adaptive nonlinear filtering prediction method [6-8]. 

However, these methods require highly appropriate 
reconstructed phase space, and are more sensitive to noise. 
In recent years, people put forward the method of 
complex nonlinear system modeling such as fuzzy system 
model, support Vector Machine Model, and so on [9-15]. 
But in order to ensure the prediction accuracy for chaotic 
time series, these methods also have some problems such 
as the difficulty of choosing parameters, the complexity 
of computation time, and so on. 

The neural network [16-19] not only has the self-
adaptive, parallelism, simple structure, fast training speed, 
and fault tolerance characteristics, but also has the ability 
to approximate any nonlinear function. Based on these 
advantages, the neural network model of the nonlinear 
system has a very wide range of applications [20-24]. In 
recent years, particular interest has been put into 
predicting chaotic time series using neural networks 
because of their universal approximation capabilities. It is 
widely used in the prediction of time series [25-27]. 

This paper is organized as follows. Firstly, chaotic 
signal is analyzed based on the phase space 
reconstruction theory. Secondly, Typical Henon chaotic 
signal and the actual underwater acoustic chaotic signal 
are respectively predicted by using the RBF neural 
network. Then the prediction results are analyzed. Finally, 
meaningful conclusions are obtained. 

II. THE PHASE SPACE RECONSTRUCTION OF CHAOTIC 
TIME SERIES 

Phase space reconstruction is the base of chaotic time  
series analysis by using dynamical system method. 
Chaotic systems can be usually described by low-order 
differential equation. Therefore, if all the data of a 
variable is known, then the system is known. It is clear 
that any variable of the system is decided by other 
variables interacting with this variable. The one-
dimensional time series is embedded to multi-
dimensional phase space through reconstruction, and the 
new system with the same dynamic characteristics as 
original system can be obtained by the selection of a 
suitable embedding dimension D  and time delayτ  [28]. 
For the selection ofτ , the most commonly used methods 
are auto-correlation function method, complex auto-
correlation function method, multiple correlation function 
method, average displacement method and mutual 
information method. For the selection of D , the most  

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1581

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.6.1581-1586



commonly used methods are GP algorithm, 
singular value decomposition method, pseudo-nearest-
point method, Cao method and C-C method.   

Based on the Takens' delay-coordinate phase 
reconstruct theory, the chaotic time series can be 
predicted. If the chaotic time series are { ( )x n }, then the 
reconstruct state vector can be represented as follows: 

( ) ( ( ), ( ), , ( ( 1) ))n x n x n x n Dτ τ= + + −x ,         (1) 

where D  ( 2, 3,D = ) and τ  are called the embedding 
dimension ( 2 1,D d= + d  is called the freedom of 
dynamics of the system), and the delay time, respectively. 
The prediction of chaotic signal can be regarded as 
inverse problem in the study of dynamics system. Thus, a 
smooth function defined on the reconstructed manifold in 

mR to interpret the dynamics can be got as follows: 
( ) ( ( ))x n T F x n+ = ,                                     (2) 

where T  ( 0T > ) is forward predictive step length and 
( )F ⋅  is the reconstructed predictive model [28-29]. 
Evolution equation of nonlinear chaotic system can be 

represented by nonlinear difference equation: 

                         ( 1) ( ( ))x n F X n+ = ,                                (3)   

where ( )X n  is d-dimensional state vector at moment n in 
the system. d is the system state space dimension. The 
observing system h is assumed. The observed time series  
is defined as { }( )g n  by ( )x n : 

g( ) ( ( )) ( )n h x n nω= + ,                           (4) 

where ( )h ⋅  is a scalar-valued function, ( )nω  is additive 
observation noise. Equation (3) and Equation (4) describe 
the operating state in the state space. 

According to Takens embedding theorem, when 
( ) 0nω = ,  we select the appropriate delay time τ  and 

dimension D . Then the vector is constructed with the 
system of a single variable at time n observed values  

( )g n . 

( ) ( ) ( ) ( )( ), ,..., 1
r

n g n g n g n Dg τ τ⎡ ⎤= − − −⎣ ⎦ .    (5) 

Geometrical structure of the system dynamics 
characteristics can be expanded in the new state space 
consisting of vector. 

If 2 1D d> + , the d-dimensional reconstruction 

vector ( )
r

ng  has the same dynamic characteristics of 
the original system. The smallest integer dimension D  of 
the original system dynamics characteristics is called the 
embedding dimension, denoted by ED . Embedding 

theorem proves that ( ) ( )1
r r

n ng g→ +  in refactoring 
space evolution is varies with the change of 

( ) ( 1)X n X n→ +  in the original space, and their 
dynamics characteristics are consistent. 

Therefore, ( )F σ ⋅  vector function exit in the 
reconstructed phase space and the trajectory of attractor 
in the reconstruction phase space can be shown as follows: 

( ) ( )( )r r
n ng gF ττ+ = .                        (6) 

Without loss of generality，we let 1τ = . The Equation 
(5) can be rewritten as follows: 

( ) ( ) ( )1 , ,. 2g n g n g n D+ ⋅⋅ ⋅ − + =⎡ ⎤⎣ ⎦

     

( ) ( ) ( )( ), 1 ,..., 1g n g n g n DF τ − − +⎡ ⎤⎣ ⎦
.           (7) 

At this point, ( )F σ ⋅  can be used as a predictive model 
of the original system. It can be proved that ( 1)g n + can 
be got by a step prediction functionψ .  

( ) ( ) ( ) ( )( )g 1 , 1 , 1n g n g n g n Dψ+ = − ⋅⋅⋅ − +⎡ ⎤⎣ ⎦ ,    (8) 

whereψ is a nonlinear function and one step prediction 
function in the chaotic background. 

III.  A PREDICTION METHOD BASED ON RBF NEURAL 
NETWORK 

Reconstruction phase space problem is transformed 
into approximate one step prediction functionψ problem. 
By using radial basis function (RBF) neural network, the 
global approximation method is used to determine one 
step prediction function ψ . After reconstructing the 
phase space, the RBF neural networks adopt three layers 
networks which are the hidden unit output function, the 
network input and output function shown in Figure 1. It 
consists of an input layer, an output layer and a hidden 
layer which has K RBF neural unit. 

 
Figure 1. RBF neural network model 

Based on Takens embedding theorem on chaotic signal 
modeling, input unit of designing RBF neural network is 
an integer number R . When ED D= , Choosing R  
satisfies the following formula: 

   ER D τ≥ .                                       (9) 

So that formula (6) becomes 

( ) ( ) ( ) ( )( )g 1 , 1 , 1n g n g n g n Rψ+ = − ⋅⋅⋅ − +⎡ ⎤⎣ ⎦ .       (10) 
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Reconstruction vector provide more information to the 
training of prediction model in order to obtain more 
accurate prediction. Gaussian RBF function is selected as 
implied unit nodes. The output ˆ( )y n  of the prediction 
model Kf  is linear combination of K  hidden layer, which 
can be expressed by 

1

ˆ( ) ( ( 1)) ( ( 1) )
K

K r j r j
j

y n f y n w y n aϕ
=

= − = − −∑ ,     (11) 

where ( )
r

ny  is input variable, ˆ( )y n  is the output of the 

neural network, ( )ϕ ⋅  is the radial basis function, ja is 
RBF center, it represents the Euclidean distance,  K  is 
hidden layer unit number. 

RBF neural network is trained with training data 
( ){ }, 1, 2,g n n N= . When K  and ja are certain, 

weight jω  can be chosen in the sense of minimum 
variance, that is  

( )
1

ˆ( ) ( )min
j

N

n R

g n g n
ω = +

−∑  .                            (12) 

Weighting vector matrix solution can be got in the 
sense of minimum variance. 

W Q= Φ + ,                                                (13)  

where the Φ  matrix elements are R-dimensional 
reconstruction vectors of the training data, 

( ) ( )1 ,Q g R g N= + ⋅⋅⋅⎡ ⎤⎣ ⎦ is the goal matrix of training 
data. These matrix elements can be got by the following 
formula: 

( )( )ji
, 1, 1,2,ir

j j R N i Kg aϕϕ = − = ⋅⋅⋅ − = ⋅⋅ ⋅ .   (14)
               

After the training, weights matrix W  for radial basis 
function neural network can be obtained according to 
Equation (13). Then the RBF neural network Kf  can be 
determined.  

RBF neural network is a Gaussian function network. 
Some parameters can be determined, such as RBF center, 
the variance and the weights of the output neurons. For 
the choice of the center, there is no uniform standard. 
Center is chosen by clustering method. The center of the 
class is as RBF center. One of the most common is called 
k-means clustering algorithm. 

The basic steps of this algorithm are as follows: 
(1) R which is the number of the network input is 

determined.   
The dimension D  and the delay time τ  are calculated 

by GP algorithm and the mutual information method, 
respectively. Based on the Takens' delay-coordinate 
phase reconstruct theory, a chaotic series demand D  
variables at least. Thus R  can take D, that is R D= . 

(2) Weight jω  and the learning rate η are respectively 

initialized, where jω and η  take random function 

between 0 and 1. At the same time, let 1k = . 
(3) Randomly selected q samples in a given sample. 

They are different from each other. Select sample kX , 

calculate 1arg min k
i q k iJ X μ≤ ≤= − , that is got the 

subscript of the most close to the center. Update the first 
J  center, 1 ( )k k k

J J k JXμ μ η μ+ = + − , 1k k= + . Repeat 
selecting sample kX and update the first J  center, until 
the center value no longer update. After determining the 
RBF center, the various parameters of the Gaussian 
function should also be determined. The form of 
Gaussian function is as follows. 

2

2

( )( ) exp( )
2

x cxϕ
σ
−

= − , 0; , Rx cσ > ∈ . General c  value 

is zero. Variance / 2qσ α= , where 

1 ,
max ( )i ji j q

α μ μ
≤ ≤

= −  is the maximum distance between 

any two centers. 
(4) The first training network can be done by using the 

above initialization network and the chaotic signal. 
(5) The error is calculated. If the error is in the 

permitted range, weights matrix W are stored. Otherwise, 
the second training network will go on. 

 (6) The prediction error curve, the actual data curve , 
the predicted data curve and each stored network 
parameters are output. 

IV.  NUMERICAL SIMULATIONS 

A.  Henon Chaotic Signal Prediction 
Henon chaotic system is as follows: 

2
1 21 1.4 0.3n n nx x x− −= − +  .                       (15) 

Prediction error function is defined as follows: 

[ ]2

1

1( ) ( ) ( )
N

n
error n t n y n

N =

= −∑ .              (16) 

where ( )y n  is predictive value for the first n points, ( )t n  
is actual value for the first n points, N is the number of 
predicting points. 

We reconstruct time series and take the first 500 
samples to train the network. Then we take any sample 
outside of the training sample as input and predict 100 
points. The actual data and predicted data are shown in 
Figure 2(a). The prediction error is shown in Figure 2(b). 
It can be seen from Figure 2 that the long-term prediction 
of chaotic time series is difficult, and it can only predict 
20-30 points. 
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(b) Prediction error 

Figure 2.  Prediction of Henon chaotic systems by RBF neural 
network 

B. The Actual Underwater Acoustic Chaotic Signal 
Prediction 

It has proved that underwater acoustic signal has chaos 
characteristics. Therefore, it is predictable in the short 
term. However, the actual ship noise is always mixed 
with other noise interference. This interference increase 
the randomness of underwater acoustic signals and make 
the certainty of underwater acoustic signal become 
relatively weak. This leads to reduce accuracy of the 
prediction. Therefore, before predictive model is 
established, underwater acoustic signal noise reduction 
processing by local projection filtering algorithm is 
necessary. 

Considering the complexity of underwater acoustic 
signal, we use 500 data points. The former 400 points are 
the training sample. The last 100 points are the prediction 
sample. The actual data and predicted data, the prediction 
error for underwater acoustic signal 1 are shown in Figure 
3(a) and Figure 3(b), respectively. The actual data and 
predicted data, the prediction error for underwater 
acoustic signal 2 are shown in Figure 4(a) and Figure 4(b), 
respectively. The actual data and predicted data, the 
prediction error for underwater acoustic signal 3 are 
shown in Figure 5(a) and Figure 5(b), respectively. It is 
clear from Figure 3, Figure 4 and Figure 5 that predictive 
model can more accurately predict for the acoustic signal 
which predictive mean squared error is ten to the negative 
seven. However, Ref. [3] proposes a prediction method 
for chaotic signal based on BF neural, and its predictive 
mean squared error is ten to the negative five. 
Comparison results show that this proposed prediction 

method increases at least two orders of magnitude in the 
mean square error terms. 
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(a) Predicted results 
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(b) Prediction error 

Figure 3. Prediction of the first category of underwater acoustic 
signal by RBF neural network 
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(a) Predicted results 
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(b) Prediction error 

Figure 4. Prediction of the second category of underwater acoustic 
signal by RBF neural network 
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(a) Predicted results 
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(b) Prediction error 

Figure 5. Prediction of the third category of underwater acoustic 
signal by RBF neural network 

V.  CONCLUSIONS 

In this paper, the chaotic time series RBF neural 
network model was designed. A prediction method for 
underwater acoustic chaotic signal based on RBF neural 
network is proposed. Typical Henon chaotic signal and 
the actual underwater acoustic chaotic signal are 
respectively predicted by the RBF neural network 
prediction model. The results show that the method can 
reduce mean squared error, and improve the prediction 
accuracy, and show better predictive effectiveness and 
reliability, and prove that it is a more effective method. 
However, the strength of the underwater acoustic signal 
randomness directly affects the prediction accuracy. 
Prediction accuracy rate of randomness strong signal 
prediction is low.  
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