
Shortest Component Path Generation of C2-Style
Architecture Using Improved A* Algorithm

Lijun Lun

College of Computer Science and Information Engineering, Harbin Normal University, Harbin, China
Email: lunlijun@yeah.net

Lin Zhang

College of Computer Science and Information Engineering, Harbin Normal University, Harbin, China
Email: 1029372257@qq.com

Xin Chi

College of Computer Science and Information Engineering, Harbin Normal University, Harbin, China
Email: xinc1990@163.com

Hui Xu

Heilongjiang University of Chinese Medicine Library, Harbin, China
Email: xuhui8413@163.com

Abstract—There are always more than one shortest paths
between two components in software architecture, and in
the application of path selection with additional constraints,
several optimal or near optimal paths are desired.
Traditional A* algorithm has been successfully used in
software testing activities such as finding the shortest path,
selecting test suites and test suites prioritization. Little work
has been specifically targeted towards the shortest
component path of software architecture applications. In
this paper, we propose an improved A* algorithm, and
combine with an example to explain the algorithm solving
process. Finally, we implement the A* algorithm and the
improved A* algorithm, and the results are compared. It is
shown that the shortest component path using improved A*
algorithm is completely feasible and effective.

Index Terms—software architecture; C2-style; component
interaction graph; shortest component path; improved A*
algorithm

I. INTRODUCTION

Software architecture [1] represents the earliest
software design decisions. These design decisions are the
most critical to get right and the most difficult to change
downstream in the system development cycle. The
software architecture is the first design artifact addressing
reliability, modifiability, real-time performance, and
inter-operability goals and requirements. Software
architectures are nowadays used for different purposes [2],
including documenting and communicating design
decisions and architectural solutions [3], driving analysis
techniques (like testing, model and consistency checking,
performance analysis [4,5]), for code generation purposes
in model-driven engineering, for product line engineering,
for risks and cost estimation [6], and many more.

In the above applications, specific to path generation
method in the software architecture testing [7-9], the
shortest path problem, which is one of key technologies
of software architecture system, concerns with finding the
shortest path from a specific origin component to a
specified destination component in a given software
architecture while minimizing the total distance, time or
cost associated with the path.

The Dijkstra algorithm [10] is the one of the best
algorithm to solve source-source shortest path problem.
This algorithm can be used to directed graph, and can be
used to solve undirected graph. However, it can be
obtained from the source point to every other point of the
shortest path, the result is a shortest path tree. The
Dijkstra algorithm is blind, it has the advantages of no
need of relevant information to the specific problems,
only need to connect the relationship between nodes and
edges of the search, the solution is global optimal. In fact,
there are many the shortest paths from one point to other
point. The Dijkstra algorithm can not give all the shortest
paths.

A* algorithm [11] is a heuristic algorithm based on the
Dijkstra algorithm. In fact, it is a kind of heuristic search.
It is different from the blind type of Dijkstra algorithm,
and different from the breadth-first search also. A*
algorithm adds heuristic factor associated with the
problem domain to reduce the search range in the search
process, speed up the search. Specific to the shortest path
problem, it is in the choice of the next node, in addition to
consider local information known, also make the estimate
to the distance from current node to end node, as a
measure of evaluation of the node in the possibility of the
optimal path. So, it introduces the global information, the
search is not blind and the search range is reduced greatly.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1471

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.6.1471-1478

Therefore, improve the efficiency of the Dijkstra
algorithm.

However, these traditional algorithms have major
shortcomings: firstly, they are not suitable for software
architecture with components and connectors; secondly,
the algorithms search only for the shortest path, but they
cannot determine all the shortest component paths; thirdly,
they exhibit high computational complexity. Therefore,
the shortest path algorithms tend to be too
computationally intensive for real-time one-to-one
applications in software architecture.

In this paper, an improved A* algorithm based on the
C2-style architecture model to search for the shortest
component path in software architecture is proposed. The
technique makes full use of their advantages and uses the
improved A* algorithm to do global search in the
beginning of stage. It improves greatly the efficiency of
the convergence of the C2-style architecture, and
decreases greatly the computation time of the shortest
component path.

The paper is organized as follows. In Section 2, C2-
architecture model is introduced and briefly discussed.
The improved A* algorithm and the particle encoding
mechanism to solve the shortest component path problem
in the C2-style architecture is presented in Section 3. The
results from computer simulation experiments are
discussed in Section 4. In Section 5, an overview of
related works on path coverage and software architecture
testing coverage are given. Section 6 concludes the paper.

II. BACKGROUND

We introduce here some basic concepts that will be
used through this work.

A. A* Algorithm
A* algorithm is a heuristic algorithm proposed by Hart

et al. to find optimum path from starting position to
destination. A* algorithm’s main idea is to treat the
testing area as a grid collection and generate the
optimized path. In the standard A* algorithm each
movement along the optimized path is evaluated by the
formula:

f(i) = g(i) + h*(i)
Where, f(i) represents the total moving cost from

source to target, while g(i) represents the moving cost
from the source to current position, and h*(i) refers to the
estimated moving cost from the current grid to target. The
open list keeps grids which are still in the evaluating
process by the path finding algorithm, and closed list
keeps grids which have already been evaluated by the
path finding solution. A* algorithm searches the whole
area by maintaining an open list and a closed list to find
an optimized path.

B. C2-Style Architecture Representation
We have selected the C2-style architecture as a vehicle

for exploring our ideas because it provides a number of
useful rules for high-level system composition,
demonstrated in numerous applications across several

domains [12]; at the same time, the rules of the C2-style
are broad enough to render it widely applicable [13].

The C2-style architecture [14] consists of components,
connectors, and their constraints. Each component has
two connection points, a “top” and a “bottom”. The top
(bottom) of a component can only be attached to the
bottom (top) of one connector. It is not possible for
components to be attached directly to each other. Each
connector always has to act as intermediaries between
them. Furthermore, a component cannot be attached to
itself. However, connector can be attached together. In
this case, each connector considers the other as a
component with regard to the publication and forwarding
of events. Component communicates by exchanging two
types of events: service requests to components above
and notifications of completed services to components
below.

The C2-style architecture control flow is usually
represented by a direct graph. We use the Component
Interaction Graph (CIG) model [8] to represent
interaction relationships between components and
connectors.

The following is a formal definition of CIG.
Definition 2.1 Given a C2-style architecture,

component interaction graph can be defined as direct
graph CIG = (V, E, Vstart, Vend), where:

• V = Comp ∪ Conn is the set of nodes. Where,
Comp = {Compi.top_in, Compi.top_out, Compi.
bottom_in, Compi.bottom_out} is a finite the set
of components. Conn = {Conni.top_in, Conni.
top_out, Conni.bottom_in, Conni.bottom_out} is
a finite the set of connectors. Nodes represent the
interface of component and connector, and
component interface with a hollow circle,
connector interface with a solid circle represents.

• E ⊆ V × V is a finite set of edges.
• Vstart ∈ {Compi.top_out | Compi.bottom_in = ∅ ∧

Compi.bottom_out = ∅, Compi ∈ Comp} is the
initial node, this node transmit messages only.

• Vend ∈ {Compi.bottom_in | Compi.top_out = ∅ ∧
Compi.top_in = ∅, Compi ∈ Comp} is the
terminal node, this node receive messages only.

There are three types of edge in the CIG of a C2-style
architecture specification, namely, edge from component
to connector, edge from connector to component, and
edge from connector to connector, which represents
information flows between component and connector.

Definition 2.2 Given a component interaction graph
CIG = (V, E, Vstart, Vend). The element of E is divided into
three edges.

• eComp-Conn = {e | e ∈ (Compi.top_out, Connj.
bottom_in) ∨ (Compi.bottom_out, Connj.top_in)}
represents edge from component Compi to
connector Connj.

• eConn-Comp = {e | e ∈ (Conni.bottom_out, Compj.
top_in) ∨ (Conni.top_out, Compj.bottom_in)}
represents edge from connector Conni to
component Compj.

• eConn-Conn = {e | e ∈ (Conni.top_out, Connj.
bottom_in) ∨ (Conni.bottom_out, Connj.top_in)}

1472 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

represents edge from connector Conni to
connector Connj.

According to the definition 2.1 and 2.2, it is easy to
find that CIG can be constructed in the following four
steps.

• The C2-style architecture of each component
interface and connector interface, an increase in
the corresponding node.

• Add the edge from component to connector to
attach the CIG. Obviously, this type of edge
belongs to the set of eComp-Conn.

• Add the edge from connector to component to
attach the CIG. Obviously, this type of edge
belongs to the set of eConn-Comp.

• Add the edge from connector to connector to
attach the CIG. Obviously, this type of edge
belongs to the set of eConn-Conn.

Consider an example KLAX system [12], it is a video
game of the C2-style architectural. The C2-style
architecture designed for the KLAX system is shown in
Fig. 1.

According to the construction method of CIG, Fig. 2

shows the corresponding CIG for the example KLAX
system of Fig. 1 according to C2-style architecture
specification [13].

C. Shortest Component Path
We model component interactions using CIG which

depicts interaction scenarios among components.
Coverage criteria require that a set of entities of the CIG
is covered when the test cases are executed.

Definition 2.3 Given a component interaction graph
CIG = (V, E, Vstart, Vend) for C2-style architecture, C1,
C2, …, Ck ∈ Comp ∪ Conn. A path from node C1 to Ck
is a sequence of nodes C1 → C2 → … → Ck, such that for
i = 1, 2, …, k-1, each (Ci, Ci+1) ∈ eConn-Comp ∨ eComp-Conn
∨ eConn-Conn. If C1 ∈ Comp ∧ Ck ∈Comp, then the path
is a component path for the CIG, called CP for short. The

length of CP is the number of edges from C1 to Ck, called
ω(C1, Ck) for short.

CP describes the messages transfer between
components in C2-style architecture. In fact, a CP is just
a series of pairs of components and its response
component and connector sequences. It starts from a
message that activates a corresponding component to
execute, and ends on a component that does not issue any
messages from its own.

From Fig. 2, there are two component paths from
LayoutManager to StatusArtist given below.

(1) LayoutManager → LTConn → TAConn →
StatusArtist → ALAConn → LAConn → WellADT

(2) LayoutManager → LTConn → TileArtist →
TAConn → StatusArtist → ALAConn → LAConn →
WellADT

Definition 2.4 Given a component interaction graph
CIG = (V, E, Vstart, Vend) for C2-style architecture, Ci, Cj.
∈Comp. The shortest component path SCP(Ci, Cj) from
Ci to Cj is defined as follow:

min{ (,)}
(,)

i j i j

i j

if CP exists from to
SCP

otherwise
C C C C

C C
ω=

∞

From Fig. 2, there is a shortest component path from
LayoutManager to StatusArtist given below.

(1) LayoutManager → LTConn → TAConn →
StatusArtist → ALAConn → LAConn → WellADT

The shortest component path have properties as follow:
(1) Subpaths of the shortest component path are

shortest component path: If SCP = C1 → C2 → … → Ck
is the shortest component path from C1 to Ck, then for all
1 ≤ i ≤ j ≤ k, SCP′ = Ci → Ci+1 → … → Cj is the shortest
component path from Ci to Cj.

(2) For any the shortest component path SCP = Ci →
Ci+1 → … → Ck, for all i ≤ j ≤ k, SCP(Ci, Ck) ≤ SCP(Ci,
Cj) + ω(Cj, Ck).

III. AN ALGORITHM FOR SHORTEST COMPONENT PATH

We present our improved A* algorithm for automatic
generation of the shortest component paths for the C2-
style architecture, which uses a new evaluation function
to evaluate the generated the shortest component path.

A. SCPA Generation Algorithm
To generate SCP, we propose an algorithm called the

shortest component path algorithm (SCPA). The input to
the SCPA algorithm is the CIG and the output is the
corresponding the shortest component path set.

The SCPA algorithm requires two tables, respectively,
to save for the lattice to be detected and has been detected.
One array saves the nodes of the shortest component path.

• OpenTable — The OpenTable is used to save
nodes which have not been searched.

• CloseTable — The CloseTable is used to save
nodes which have been searched.

• Array — The Array is used to save nodes in the
shortest component path.

The improved A* algorithm use the idea that evaluate
the current node in A* algorithm, increase the parent node
of the current node in the shortest component path and

Fig. 1. KLAX architecture in the C2-style

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1473

© 2014 ACADEMY PUBLISHER

evaluate the distance from the node to destination node.
The core of the algorithm is: use the sum of the shortest
distance from current node to start node, the value from
current node to destination node and the value from the
parent node of current node to destination node as the

possible measure that evaluate the node in the shortest
component path. This optimization method is called
improved A* algorithm. Assume the current node is i,
then its evaluation function can be defined as:

f(i) = g(i) + h*(i) + h*(j)

Where, the g(i) and h*(i) is same as the A* algorithm,

g(i) is the shortest distance from current node to start
node, h*(i) is the value of shortest distance from current
node to destination node, h*(j) is the value of shortest
distance from the parent node j of current node to the
destination node.

In our approach, the basic procedure to perform the
shortest component path consists of the following steps:

• Traverse the OpenTable, get the node has
minimum value f from OpenTable. If current
node is the destination node, save the nodes in
Array, output the shortest component path in
reverse chronological order, output current
shortest component path. If a node and the node
in current shortest component path at the same
level, replace the node, output the shortest
component path.

• If next node of current node to other nodes has
way, extend node. If the node is not in
OpenTable and CloseTable, update g, h, f, set the
parent node to the current node and insert the
node into OpenTable. After extend, delete current
node in OpenTable, insert CloseTable.

The pseudo code for SCPA is shown as follow.
Algorithm SCPA(CIG, SCPS)

Input: CIG is component interaction graph
Output: SCPS is the shortest component path set
begin
for each Ci in Comp do

for each Cj in Comp do
SCP(Ci, Cj);

end
Procedure SCP(Ci, Cj)
begin
Ci save to CloseTable;
for (; ;)
{ search next node of Ci, and insert into OpenTable;}
while (openTable ! = NULL) // traverse the OpenTable
{ getTableNode(); // get the minimum value f of the

node in OpenTable
if (current.index == end.index) // if current node is

the destination node
{ // output current SCP

i = 0;
while (current != NULL)
{ Array[i++] = p - > node.index;

current = current - > parent;} // save the nodes
in Array, output SCP in reverse chronological order

// if a node and the node in current SCP at the
same level of node, replace the node, out SCP

Fig. 2. CIG of KLAX system

1474 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

return;
}
else
{ for (n = 0; n < countOfNodes; n + +)
{ if (current - > next.index == 1) // if there is a path

from current node to other nodes
{ // extend node

if (!isInOpenTable(current - > next.index, n)
&&!isInCloseTable(current - > next.index, n))

{ // calculate g, if greater than the original, do
nothing, or set the parent node to the current point, update
g, f

if (current - > next.index == end.index)h = 1;
else
{ if (current - > next.index < end.index)

h = abs(end_node_id - node_id + 7);
else h = abs(8 + end_node_id - node_id);

}
g = p - > g + 1;
f = g + h + p - > h;
node - > node_index = current - > next.index;
node - > g = g;
node - > h = h;
node - > f = f;
node - > parent = current; // set the parent

node to the current node
addToTable(&OpenTable, node);

}
}
delete current node in OpenTable, insert

CloseTable;
addToTable(&CloseTable, current); // insert

current node into CloseTable;
}

}
end Algorithm SCPA

B. Illustration of Working of SCPA
We explain the working of SCPA algorithm by using

the example form WellADT to GraphicsBinding. First,
number the component and connector in the CIG is
shown as Tab. I, and assume i = 0, 1, …, 21.

After the SCPA algorithm execution, CloseTable is the

node set of the shortest component path start from 3. f(i)
is the value of current node, it is the sum of g(i) of the
shortest distance from current node i to start node. h*(i) is
the value from i to destination node. h*(j) is the value

from the parent node j of i to the destination node. F(i) is
the parrent node of current node.

Step 1: Insert 3 into CloseTable, insert 16 which is the
next node of 3 into OpenTable, then OpenTable = {16}.
Because there is only one node in OpenTable, then insert
16 into CloseTable. At this time, CloseTable = {3, 16},
OpenTable = ∅, F(16) = 3.

Step 2: Insert 5,6,7,17,18 which are the next node of
16 into OpenTable, then OpenTable = {5,6,7,17,18}.
h*(16) = 7, g(5) = 2, h*(5) = 17, f(5) = 2+17+7 = 26, g(6)
= 2, h*(6) = 16, f(6) = 2+16+7 = 25; g(7) = 2, h*(7) = 15,
f(7) = 2+15+7 = 24; g(17) = 2, h*(17) = 6, f(17) = 2+6+7
= 15; g(18) = 2, h*(18) = 5, f(18) = 2+5+7 = 14. We see
18 has the minimum value f, then insert 18 into
CloseTable. At this time, CloseTable = {3,16,18},
OpenTable = {5,6,7,17}, F(18)=16.

Step 3: Insert 9,10,11,12 which are the next node of 18
into OpenTable, then OpenTable = {5,6,7,17,9,10,11,12}.
f(5) = 26, f(6) = 25, f(7) = 24, f(17) = 15; g(9) = 3, h*(9)
=13, f(9) = 3+13+5 = 21; g(10) = 3, h*(10) = 12, f(10) =
3+12+5 = 20; g(11) = 3, h*(11) = 11, f(11) = 3+11+5 =
19; g(12) = 3, h*(12) = 10, f(12) = 3+10+5 = 18. We see
17 has the minimum value f, then insert 17 into
CloseTable. At this time, CloseTable = {3,16,18,17},
OpenTable = {5,6,7,9,10,11,12}, F(17) = 16.

Step 4: Insert 8 which is the next node of 17 into
OpenTable, then OpenTable = {5,6,7,9,10,11,12,8}. f(5)
= 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) = 19,
f(12) = 18; g(8) = 3, h*(8) = 14, f(8) = 3+14+6 = 23. We
see 12 has the minimum value f, then insert 12 into
CloseTable. At this time, CloseTable = {3,16,18,17,12},
OpenTable = {5,6,7,9,10,11,8}, F(12)=18.

Step 5: Insert 19 which is the next node of 12 into
OpenTable, then OpenTable = {5,6,7,9,10,11,8,19}. f(5)
= 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) = 19,
f(8) = 23; g(19) = 4, h*(19) = 4, f(19) = 4+4+10 = 18. We
see 19 has the minimum value f, then insert 19 into
CloseTable. At this time, CloseTable = {3,16,18,17,12,
19}, OpenTable = {5,6,7,9,10,11,8}, F(19)=12.

Step 6: Insert 13,20 which are the next node of 19 into
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,20}.
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11)
= 19, f(8) = 23; g(13) = 5, h*(13) = 9, f(13) = 5+9+4 = 18;
g(20) = 5, h*(20) = 3, f(20) = 5+3+4 = 12. We see 20 has
the minimum value f, then insert 20 into CloseTable. At
this time, CloseTable = {3,16,18,17,12,19,20},
OpenTable = {5,6,7,9,10,11,8,13}, F(20) = 19.

Step 7: Insert 14 which is the next node of 20 into
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,14}.
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11)
= 19, f(8) = 23, f(13) = 18; g(14) = 6, h*(14) = 8, f(14) =
6+8+3 = 17. We see 14 has the minimum value f, then
insert 14 into CloseTable. At this time, CloseTable =
{3,16,18,17,12,19,20,14}, OpenTable = {5,6,7,9,10,11,8,
13}, F(14)=20.

Step 8: Insert 21 which is the next node of 14 into
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,21}.
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11)
= 19, f(8) = 23, f(13) = 18; g(21) = 7, h*(21) = 2, f(21) =
7+2+8 = 17. We see 21 has the minimum value f, then

TABLE I.
NUMBER OF COMPONENT AND CONNECTOR

Number Node Number Node
0
1
2
3
4
5
6
7
8
9

10

ClockLogic
StatusADT
ChuteADT
WellADT

PaletteADT
NextTilePlacingLogic

TileMatchLogic
RelativePosLogic

StatusLogic
StatusArtist
ChuteArtist

11
12
13
14
15
16
17
18
19
20
21

WellArtist
PaletteArtist

TileArtist
LayoutManager
GraphicsBinding

LAConn
LLConn

ALAConn
TAConn
LTConn
GLConn

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1475

© 2014 ACADEMY PUBLISHER

insert 21 into CloseTable. At this time, CloseTable =
{3,16,18,17,12,19,20,14,21}, OpenTable = {5,6,7,9,10,11,
8,13}, F(21) = 14.

Step 9: Insert 15 which is the next node of 21 into
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,15}.
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11)
= 19, f(8) = 23, f(13) = 18; g(15) = 8, h*(15) = 1, f(15) =
8+1+2 = 11. We see 15 has the minimum value f, then
insert 15 into CloseTable. At this time, CloseTable =
{3,16,18,17,12,19,20,14,21,15}, OpenTable = {5,6,7,9,10,
11,8,13}, F(15) = 21.

Because the 15 is the destination node, then use the
backtracking method to find its parent node 21 and so on.
In the end, find the start node 3, then get the shortest
component path from the start node to the destination
node {3,16,18,12,19,20,14,21,15}.

Because 12 and 9,10,11 are at the same level, so use
them replace 12, we obtain other shortest component
paths {3,16,18,11,19,20,14,21,15}, {3,16,18,10,19,20,14,
21,15}, and {3,16,18,9,19,20,14,21,15}. Replace the
number with the component name and the connection
name. We obtain the shortest component path set from
WellADT to GraphicsBinding is as follow:

(1) WellADT→LAConn→ALAConn→PaletteArtist→
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding

(2) WellADT→LAConn→ALAConn→WellArtist→
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding

(3) WellADT→LAConn→ALAConn→ChuteArtist→
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding

(4) WellADT→LAConn→ALAConn→StatusArtist→
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding

Ⅳ. EXPERIMENTAL RESULTS AND ANALYSIS
To better understand our approach, we have performed

an experimental study by applying the shortest
component path for KLAX system.

A. Experimental Results
We have implemented a prototype tool that generates

the shortest component path generation automatically by
our approach. We have implemented our tool using Java.
The tool uses C2-ADL specification as input. Then it
analyzes the names of all components, connectors and
interfaces, interfaces types, the connection relationship
between components and connectors and so on. These are
stored in corresponding data structure respectively. Then
according to the shortest component path generation
method, it can generate the shortest component path set.
In addition, the tool also provides the help documents
about the details of the system functions, the operation
and some open source code in an html format and so on

Table II gives percentage improvement of every
component for the A* algorithm and the improved A*
algorithm.

B. Experimental Results Analysis

• From Table II, we have: For component
ClockLogic, StatusADT, ChuteADT, WellADT,
and PaletteADT, the improved A* algorithm is
more efficient than A* algorithm for improving
6.67%. For component StatusArtist, ChuteArtist,
WellArtist, and PaletteArtist, the improved A*
algorithm is more efficient than A* algorithm for
improving 2.94%. Compared with improved A*
algorithm and A* algorithm, the extend node
reduced, search efficiency improved.

• The efficiency of some components increase,
some doesn’t. Through the experiment, we can
draw the conclusion: If the current node to
destination node has multiple shortest component
paths, the efficiency will increase. If the current
node to destination node has only one, the
efficiency will not increase.

• When search in the algorithm, the improved
evaluation function made the search direction in
the A* algorithm faster towards the destination
node, greatly reduce the number of traversal node
in the algorithm, and improved the search speed.
Of course, if need, we can increase the parent
node of the parent node of the parent node of
current node. In the same way, evaluate the
distance from the node to destination node.

• Not increasing more evaluation node, the
efficiency of the algorithm is higher. Though
increasing more evaluation node, the traversal
node in the algorithm will be less, but first, it will
increase the storage capacity, second it will
increase the evaluation number, thus increase the
burden of algorithm.

Ⅵ. RELATED WORK

Path coverage is a kind of important standard that
investigates the sufficiency of software testing [15,16].
The goal of software architecture testing is to choose a
certain effect and low cost of coverage criteria, or

TABLE II.
A* ALGORITHM VS IMPROVED A* ALGORITHM FOR KLAX SYSTEM

Component
A*

Algorithm
Our

Algorithm
Percentage

Improvement
ClockLogic
StatusADT
ChuteADT
WellADT

PaletteADT
NextTilePlacingLogic

TileMatchLogic
RelativePosLogic

StatusLogic
StatusArtist
ChuteArtist
WellArtist

PaletteArtist
TileArtist

LayoutManager
GraphicsBinding

60
60
60
60
60
15
18
18
26
34
34
34
34
50
57
77

56
56
56
56
56
15
18
18
26
33
33
33
33
50
57
77

6.67%
6.67%
6.67%
6.67%
6.67%

0
0
0
0

2.94%
2.94%
2.94%
2.94%

0
0
0

1476 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

according to certain criteria, selection of a finite subset of
all logical path to test, using the minimum test case,
finding the error of software architecture. There are a few
path generation method of the software architecture.

Zhenyi and Offutt proposed a technology of generating
test cases [17] in view of architecture description
language Wright, according to Interface Connectivity
Graph (ICG) and Behavior Graph (BP), and developed
testing criteria for generating software architecture level
tests from software architecture descriptions.

Stafford et al. introduced software architecture
dependence analysis technique [18,19], called chaining,
to support software architecture development such as
debugging and testing. In chaining, links represent the
dependence relationships that exist in an architectural
specification. Links connect elements of the specification
that are directly related, producing chain of dependencies
that can be followed during analysis.

Gao et al. focused on component test coverage issues,
and proposed test models (CFAGs and D-CFAGs) [20] to
represent a component's API-based function access
patterns in static and dynamic views. A set of component
API-based test criteria is defined based on the test models,
and a dynamic test coverage analysis approach is
provided.

Hashim et al. presented Connector-based Integration
Testing for Component-based Systems (CITECB) with an
architectural test coverage criteria [21], and describe the
test models used that are based on probabilistic
deterministic finite automata which are used to represent
gate usage profiles at run-time and test execution. It also
provides a measuring mechanism of how well the
existing test suite are covering the component interactions
and provides a test suite coverage monitoring mechanism
to reveal the test elements that are not yet covered by the
test suites. The model extraction technique used to
generate the CITECB test models is a simple and less
time consuming process. In addition to that, these test
models are able to closely represent the component
interactions as they are extracted directly from the system.

The shortest path problem [22] is one of the most
important optimization problems in such fields as
computer sciences and artificial intelligence.

Valverde and Solé [23] stated that the software
architecture references as software graph. Consider the
measurement experiment in a software graph: choose a
pair of nodes (vi, vj) and then trace a path from vi to vj
while traversing the minimum number of edges. Count
how many edges have traversed in such path and will
obtain the length of the shortest path between the two
end-nodes: dmin(i, j). According to the shortest path
between the two end-nodes, we get is the mean average
path length (or characteristic path length) for the software
graph.

Ⅶ. CONCLUSIONS AND FUTURE WORK

This paper presents an approach of the shortest
component path for C2-style architecture. First, it
describes software architecture through C2-style, then
represents software architecture through CIG, and

abstracted the behavior of interactive between
components and connectors. Formalized the shortest
component path, generated the shortest component path
set that covered the architecture according to improved
A* algorithm. This technology could establish an abstract
model to describe the characteristics of dynamic
architecture, it covered all the testing component nodes
and reduced scale of testing coverage set, so that test the
architecture effectively.

As for the future work, the application of the approach
needs to study at the implementation level. It is also
planned to investigate other testing criteria and testing
criteria adequacy and the approach to generate test cases
which satisfy the testing criteria without necessarily
simulating the execution process of all possible test paths.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for
their detailed comments and insightful suggestions, which
helped in refining and improving the presentation of the
paper. Part of this work is supported by the Scientific
Research Foundation of Heilongjiang Provincial
Education Department of China under Grant No.
12541250.

REFERENCES

[1] D. E. Perry, A. L. Wolf, “Foundations for the Study of
Software Architecture”, ACM SIGSOFT Softw.Eng. Notes,
vol. 17, pp. 40-52, October 1992.

[2] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang.
“What Industry Needs from Architectural Languages: A
Survey”, IEEE Trans. on Software Engi., vol. 39, pp. 869-
891, June 2013.

[3] H. Muccini, A. Bertolino, P. Inverardi, “Using Software
Architecture for Code Testing”, IEEE Trans. Software
Engi., vol. 29, pp. 160-171, March 2003.

[4] P. Zhang, H. Muccini, B. Li, “A Classification and
Comparison of Model Checking Software Architecture
Techniques”, J. Systems and Software, vol. 83, pp. 723-744,
May 2010.

[5] P. Pelliccione, P. Inverardi, H. Muccini, “Charmy: A
Framework for Designing and Verifying Architectural
Specifications”, IEEE Trans. Software Engi., vol. 35, pp.
325-346, May-June 2009.

[6] E. R. Poort, H. Vliet, “Architecting as a Risk- and Cost
Management Discipline”, in: Proc. of IEEE/IFIP Ninth
Working Conference Software Architecture (WICSA2011),
Boulder, Colorado, USA, pp. 2-11, June 2011.

[7] L. J. Lun, H. Xu, “An Approach to Software Architecture
Testing”, in: Proc. of 9th International Conference for
Young Computer Scientists (ICYCS2008), Zhangjiajie,
China, pp. 1070-1075, November 2008.

[8] L. J. Lun, X. Chi, X. M. Ding, “Edge Coverage Analysis
for Software Architecture”, Journal of Software, vol. 7, pp.
1121-1128, May 2012.

[9] L. J. Lun, X. Chi, X. M. Ding, “C2-Style Architecture
Testing and Metrics Using Dependency Analysis”, Journal
of Software, vol. 8, pp. 276-285, February 2012.

[10] E. W. Dijkstra, “A Note on Two Problems in Connexion
with Graphs”, Numer. Math., vol. 1, pp. 269-271,
December 1959.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1477

© 2014 ACADEMY PUBLISHER

[11] C. Zeng, Q. Zhang, X. P. Wei, “GA-based Global Path
Planning for Mobile Robot Employing A* Algorithm”,
Journal of Computers, vol. 7, pp. 470-474, February 2012.

[12] N. T. Richard, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, J. E. Robbins, “A Component- and Message-
Based Architecture Style for GUI Software”, IEEE Trans.
on Software Engi., vol. 22, pp. 390-406, June 1996.

[13] H. Muccini, M. Dias, D. J. Richardson, “Systematic
Testing of Software Architectures in the C2 style”, in:
Proc. Conference Fundamental Approaches to Software
Engineering (FASE2004), Barcelona, Spain, LNCS 2984,
pp. 295-309, March 2004.

[14] The C2 Architectural Style, http://www.ics.uci.edu/pub/
arch/c2.html.

[15] M. Marré, A. Bertolino, “Automatic Generation of Path
Covers based on the Control Flow Analysis of Computer
Programs”, IEEE Trans. on Software Engi., vol. 20, pp.
885-899, December 1994.

[16] G. Ye, X. J. Li, D. Yu, Z. W. Li, J. Yin, “The Design and
Implementation of Workflow Engine for Spacecraft
Automatic Testing”, Journal of Computers, vol. 6, pp.
1145-1151, June 2011.

[17] J. Zhenyi, J. Offutt, “Deriving Tests from Software
Architectures”, in: Proc. of 12th IEEE International
Symposium on Software Reliability Engineering,
Washington, DC, USA, pp. 308-313, November 2001.

[18] J. A. Stafford, D. J. Richardson, A. L. Wolf, “Architecture-
Level Dependence Analysis for Software Systems”, Int. J.
Softw. Eng. Know., vol. 11, pp. 431-451, April 2001.

[19] J. A. Stafford, A. L. Wolf, M. Caporuscio, “The
Application of Dependence Analysis to Software
Architecture Descriptions”, LNCS, vol. 2804, pp. 52-62,
September 2003.

[20] J. Gao, R. Espinoza, J. He, “Testing Coverage Analysis for
Software Component Validation”, in: Proc. Annual
International Computer Software and Applications
Conference (COMPSAC2005), Edinburgh, Scotland, UK,
pp. 463-470, July 2005.

[21] N. L. Hashim, S. Ramakrishnan, H. W. Schmidt,
“Architectural Test Coverage for Component-based
Integration Testing”, in: Proc. International Conference on
Quality Software (QSIC2007), Portland, Oregon, USA, pp.
262-267, October 2007.

[22] Y. Gu, “Research on Optimization of Relief Supplies
Distribution Aimed to Minimize Disaster Losses”, Journal
of Computers, vol. 6, pp. 603-609, March 2011.

[23] S. Valverde, R. V. Solé, “Hierarchical Small Worlds in
Software Architecture”, Dynamics of Continuous Discrete
and Impulsive Systems: Series B; Applications and
Algorithms, 2007.

Lijun Lun was born in Harbin,
Heilongjiang Province, China, in 1963.
He received his B.S. degree and Master
degree in Computer Science and
Technology from Harbin Institute
Technology of Computer Science and
Technology, China, in 1986 and 2000
respectively.

Currently, he is a professor, and

teaches and conducts research in the areas of software
architecture, software testing, and software metrics, etc.

Lin Zhang was born in Mudanjiang,
Heilongjiang Province, China, in 1989.
She received her B.S. degree in
Computer Science and Technology from
Harbin Normal University of Computer
Science and Technology, China, in 2012.
Her research topics are mainly in
software architecture and path planning.

Xin Chi was born in Harbin,
Heilongjiang Province, China, in 1990.
She received her B.S. degree in Computer
Science and Technology from Harbin
Normal University, China, in 2013. Her
research topics are mainly in software
architecture testing and software metrics.

Hui Xu was born in Harbin,
Heilongjiang Province, China, in 1984.
She received her Master degree in
Computer Science and Technology from
Harbin Normal University, China, in
2009. Now she is studying her PhD
degree in Harbin Engineering University
of Computer Science and Technology,
China. Her research topics are mainly in

social network and social computing.

1478 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

