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Abstract—There are always more than one shortest paths 
between two components in software architecture, and in 
the application of path selection with additional constraints, 
several optimal or near optimal paths are desired. 
Traditional A* algorithm has been successfully used in 
software testing activities such as finding the shortest path, 
selecting test suites and test suites prioritization. Little work 
has been specifically targeted towards the shortest 
component path of software architecture applications. In 
this paper, we propose an improved A* algorithm, and 
combine with an example to explain the algorithm solving 
process. Finally, we implement the A* algorithm and the 
improved A* algorithm, and the results are compared. It is 
shown that the shortest component path using improved A* 
algorithm is completely feasible and effective. 
 
Index Terms—software architecture; C2-style; component 
interaction graph; shortest component path; improved A* 
algorithm 
 

I.  INTRODUCTION 

Software architecture [1] represents the earliest 
software design decisions. These design decisions are the 
most critical to get right and the most difficult to change 
downstream in the system development cycle. The 
software architecture is the first design artifact addressing 
reliability, modifiability, real-time performance, and 
inter-operability goals and requirements. Software 
architectures are nowadays used for different purposes [2], 
including documenting and communicating design 
decisions and architectural solutions [3], driving analysis 
techniques (like testing, model and consistency checking, 
performance analysis [4,5]), for code generation purposes 
in model-driven engineering, for product line engineering, 
for risks and cost estimation [6], and many more. 

In the above applications, specific to path generation 
method in the software architecture testing [7-9], the 
shortest path problem, which is one of key technologies 
of software architecture system, concerns with finding the 
shortest path from a specific origin component to a 
specified destination component in a given software 
architecture while minimizing the total distance, time or 
cost associated with the path. 

The Dijkstra algorithm [10] is the one of the best 
algorithm to solve source-source shortest path problem. 
This algorithm can be used to directed graph, and can be 
used to solve undirected graph. However, it can be 
obtained from the source point to every other point of the 
shortest path, the result is a shortest path tree. The 
Dijkstra algorithm is blind, it has the advantages of no 
need of relevant information to the specific problems, 
only need to connect the relationship between nodes and 
edges of the search, the solution is global optimal. In fact, 
there are many the shortest paths from one point to other 
point. The Dijkstra algorithm can not give all the shortest 
paths. 

A* algorithm [11] is a heuristic algorithm based on the 
Dijkstra algorithm. In fact, it is a kind of heuristic search. 
It is different from the blind type of Dijkstra algorithm, 
and different from the breadth-first search also. A* 
algorithm adds heuristic factor associated with the 
problem domain to reduce the search range in the search 
process, speed up the search. Specific to the shortest path 
problem, it is in the choice of the next node, in addition to 
consider local information known, also make the estimate 
to the distance from current node to end node, as a 
measure of evaluation of the node in the possibility of the 
optimal path. So, it introduces the global information, the 
search is not blind and the search range is reduced greatly. 
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Therefore, improve the efficiency of the Dijkstra 
algorithm. 

However, these traditional algorithms have major 
shortcomings: firstly, they are not suitable for software 
architecture with components and connectors; secondly, 
the algorithms search only for the shortest path, but they 
cannot determine all the shortest component paths; thirdly, 
they exhibit high computational complexity. Therefore, 
the shortest path algorithms tend to be too 
computationally intensive for real-time one-to-one 
applications in software architecture. 

In this paper, an improved A* algorithm based on the 
C2-style architecture model to search for the shortest 
component path in software architecture is proposed. The 
technique makes full use of their advantages and uses the 
improved A* algorithm to do global search in the 
beginning of stage. It improves greatly the efficiency of 
the convergence of the C2-style architecture, and 
decreases greatly the computation time of the shortest 
component path. 

The paper is organized as follows. In Section 2, C2-
architecture model is introduced and briefly discussed. 
The improved A* algorithm and the particle encoding 
mechanism to solve the shortest component path problem 
in the C2-style architecture is presented in Section 3. The 
results from computer simulation experiments are 
discussed in Section 4. In Section 5, an overview of 
related works on path coverage and software architecture 
testing coverage are given. Section 6 concludes the paper. 

II.  BACKGROUND 

We introduce here some basic concepts that will be 
used through this work. 

A.  A* Algorithm 
A* algorithm is a heuristic algorithm proposed by Hart 

et al. to find optimum path from starting position to 
destination. A* algorithm’s main idea is to treat the 
testing area as a grid collection and generate the 
optimized path. In the standard A* algorithm each 
movement along the optimized path is evaluated by the 
formula: 

f(i) = g(i) + h*(i) 
Where, f(i) represents the total moving cost from 

source to target, while g(i) represents the moving cost 
from the source to current position, and h*(i) refers to the 
estimated moving cost from the current grid to target. The 
open list keeps grids which are still in the evaluating 
process by the path finding algorithm, and closed list 
keeps grids which have already been evaluated by the 
path finding solution. A* algorithm searches the whole 
area by maintaining an open list and a closed list to find 
an optimized path. 

B.  C2-Style Architecture Representation 
We have selected the C2-style architecture as a vehicle 

for exploring our ideas because it provides a number of 
useful rules for high-level system composition, 
demonstrated in numerous applications across several 

domains [12]; at the same time, the rules of the C2-style 
are broad enough to render it widely applicable [13]. 

The C2-style architecture [14] consists of components, 
connectors, and their constraints. Each component has 
two connection points, a “top” and a “bottom”. The top 
(bottom) of a component can only be attached to the 
bottom (top) of one connector. It is not possible for 
components to be attached directly to each other. Each 
connector always has to act as intermediaries between 
them. Furthermore, a component cannot be attached to 
itself. However, connector can be attached together. In 
this case, each connector considers the other as a 
component with regard to the publication and forwarding 
of events. Component communicates by exchanging two 
types of events: service requests to components above 
and notifications of completed services to components 
below. 

The C2-style architecture control flow is usually 
represented by a direct graph. We use the Component 
Interaction Graph (CIG) model [8] to represent 
interaction relationships between components and 
connectors. 

The following is a formal definition of CIG. 
Definition 2.1 Given a C2-style architecture, 

component interaction graph can be defined as direct 
graph CIG = (V, E, Vstart, Vend), where: 

• V = Comp ∪ Conn is the set of nodes. Where, 
Comp = {Compi.top_in, Compi.top_out, Compi. 
bottom_in, Compi.bottom_out} is a finite the set 
of components. Conn = {Conni.top_in, Conni. 
top_out, Conni.bottom_in, Conni.bottom_out} is 
a finite the set of connectors. Nodes represent the 
interface of component and connector, and 
component interface with a hollow circle, 
connector interface with a solid circle represents. 

• E ⊆ V × V is a finite set of edges. 
• Vstart ∈ {Compi.top_out | Compi.bottom_in = ∅ ∧ 

Compi.bottom_out = ∅, Compi ∈ Comp} is the 
initial node, this node transmit messages only. 

• Vend ∈ {Compi.bottom_in | Compi.top_out = ∅ ∧ 
Compi.top_in = ∅, Compi ∈ Comp} is the 
terminal node, this node receive messages only. 

There are three types of edge in the CIG of a C2-style 
architecture specification, namely, edge from component 
to connector, edge from connector to component, and 
edge from connector to connector, which represents 
information flows between component and connector. 

Definition 2.2 Given a component interaction graph 
CIG = (V, E, Vstart, Vend). The element of E is divided into 
three edges. 

• eComp-Conn = {e | e ∈ (Compi.top_out, Connj. 
bottom_in) ∨ (Compi.bottom_out, Connj.top_in)} 
represents edge from component Compi to 
connector Connj. 

• eConn-Comp = {e | e ∈ (Conni.bottom_out, Compj. 
top_in) ∨ (Conni.top_out, Compj.bottom_in)} 
represents edge from connector Conni to 
component Compj. 

• eConn-Conn = {e | e ∈ (Conni.top_out, Connj. 
bottom_in) ∨ (Conni.bottom_out, Connj.top_in)} 
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represents edge from connector Conni to 
connector Connj. 

According to the definition 2.1 and 2.2, it is easy to 
find that CIG can be constructed in the following four 
steps. 

• The C2-style architecture of each component 
interface and connector interface, an increase in 
the corresponding node. 

• Add the edge from component to connector to 
attach the CIG. Obviously, this type of edge 
belongs to the set of eComp-Conn. 

• Add the edge from connector to component to 
attach the CIG. Obviously, this type of edge 
belongs to the set of eConn-Comp. 

• Add the edge from connector to connector to 
attach the CIG. Obviously, this type of edge 
belongs to the set of eConn-Conn. 

Consider an example KLAX system [12], it is a video 
game of the C2-style architectural. The C2-style 
architecture designed for the KLAX system is shown in 
Fig. 1. 

 

 
According to the construction method of CIG, Fig. 2 

shows the corresponding CIG for the example KLAX 
system of Fig. 1 according to C2-style architecture 
specification [13]. 

C.  Shortest Component Path 
We model component interactions using CIG which 

depicts interaction scenarios among components. 
Coverage criteria require that a set of entities of the CIG 
is covered when the test cases are executed. 

Definition 2.3 Given a component interaction graph 
CIG = (V, E, Vstart, Vend) for C2-style architecture, C1, 
C2, …, Ck ∈ Comp ∪ Conn. A path from node C1 to Ck 
is a sequence of nodes C1 → C2 → … → Ck, such that for 
i = 1, 2, …, k-1, each (Ci, Ci+1) ∈ eConn-Comp ∨ eComp-Conn 
∨ eConn-Conn. If C1 ∈ Comp ∧ Ck ∈Comp, then the path 
is a component path for the CIG, called CP for short. The 

length of CP is the number of edges from C1 to Ck, called 
ω(C1, Ck) for short. 

CP describes the messages transfer between 
components in C2-style architecture. In fact, a CP is just 
a series of pairs of components and its response 
component and connector sequences. It starts from a 
message that activates a corresponding component to 
execute, and ends on a component that does not issue any 
messages from its own. 

From Fig. 2, there are two component paths from 
LayoutManager to StatusArtist given below. 

(1) LayoutManager → LTConn → TAConn → 
StatusArtist → ALAConn → LAConn → WellADT 

(2) LayoutManager → LTConn → TileArtist → 
TAConn → StatusArtist → ALAConn → LAConn → 
WellADT 

Definition 2.4 Given a component interaction graph 
CIG = (V, E, Vstart, Vend) for C2-style architecture, Ci, Cj. 
∈Comp. The shortest component path SCP(Ci, Cj) from 
Ci to Cj is defined as follow: 

min{ ( , )}
( , )

i j i j

i j

if CP exists from to
SCP

otherwise
C C C C

C C
ω= 

∞
 

From Fig. 2, there is a shortest component path from 
LayoutManager to StatusArtist given below. 

(1) LayoutManager → LTConn → TAConn → 
StatusArtist → ALAConn → LAConn → WellADT 

The shortest component path have properties as follow: 
(1) Subpaths of the shortest component path are 

shortest component path: If SCP = C1 → C2 → … → Ck 
is the shortest component path from C1 to Ck, then for all 
1 ≤ i ≤ j ≤ k, SCP′ = Ci → Ci+1 → … → Cj is the shortest 
component path from Ci to Cj. 

(2) For any the shortest component path SCP = Ci → 
Ci+1 → … → Ck, for all i ≤ j ≤ k, SCP(Ci, Ck) ≤ SCP(Ci, 
Cj) + ω(Cj, Ck). 

III.  AN ALGORITHM FOR SHORTEST COMPONENT PATH 

We present our improved A* algorithm for automatic 
generation of the shortest component paths for the C2-
style architecture, which uses a new evaluation function 
to evaluate the generated the shortest component path. 

A.  SCPA Generation Algorithm 
To generate SCP, we propose an algorithm called the 

shortest component path algorithm (SCPA). The input to 
the SCPA algorithm is the CIG and the output is the 
corresponding the shortest component path set. 

The SCPA algorithm requires two tables, respectively, 
to save for the lattice to be detected and has been detected. 
One array saves the nodes of the shortest component path. 

• OpenTable —  The OpenTable is used to save 
nodes which have not been searched. 

• CloseTable — The CloseTable is used to save 
nodes which have been searched. 

• Array — The Array is used to save nodes in the 
shortest component path. 

The improved A* algorithm use the idea that evaluate 
the current node in A* algorithm, increase the parent node 
of the current node in the shortest component path and 

 
Fig. 1. KLAX architecture in the C2-style 
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evaluate the distance from the node to destination node. 
The core of the algorithm is: use the sum of the shortest 
distance from current node to start node, the value from 
current node to destination node and the value from the 
parent node of current node to destination node as the 

possible measure that evaluate the node in the shortest 
component path. This optimization method is called 
improved A* algorithm. Assume the current node is i, 
then its evaluation function can be defined as: 

f(i) = g(i) + h*(i) + h*(j) 

 
Where, the g(i) and h*(i) is same as the A* algorithm, 

g(i) is the shortest distance from current node to start 
node, h*(i) is the value of shortest distance from current 
node to destination node, h*(j) is the value of shortest 
distance from the parent node j of current node to the 
destination node. 

In our approach, the basic procedure to perform the 
shortest component path consists of the following steps: 

• Traverse the OpenTable, get the node has 
minimum value f from OpenTable. If current 
node is the destination node, save the nodes in 
Array, output the shortest component path in 
reverse chronological order, output current 
shortest component path. If a node and the node 
in current shortest component path at the same 
level, replace the node, output the shortest 
component path. 

• If next node of current node to other nodes has 
way, extend node. If the node is not in 
OpenTable and CloseTable, update g, h, f, set the 
parent node to the current node and insert the 
node into OpenTable. After extend, delete current 
node in OpenTable, insert CloseTable. 

The pseudo code for  SCPA is shown as follow. 
Algorithm SCPA(CIG, SCPS) 

Input: CIG is component interaction graph 
Output: SCPS is the shortest component path set 
begin 
for each Ci in Comp do 

for each Cj in Comp do 
SCP(Ci, Cj); 

end 
Procedure SCP(Ci, Cj) 
begin 
Ci save to CloseTable; 
for (; ;) 
{ search next node of Ci, and insert into OpenTable;} 
while (openTable ! = NULL) // traverse the OpenTable 
{ getTableNode(); // get the minimum value f of the 

node in OpenTable 
if (current.index == end.index) // if current node is 

the destination node 
{  // output current SCP 

i = 0; 
while (current != NULL) 
{  Array[i++] = p - > node.index; 

current = current - > parent;} // save the nodes 
in Array, output SCP in reverse chronological order 

// if a node and the node in current SCP at the 
same level of node, replace the node, out SCP 

 
Fig. 2. CIG of KLAX system 
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return; 
} 
else 
{ for (n = 0; n < countOfNodes; n + +)  
{ if (current - > next.index == 1) // if there is a path 

from current node to other nodes 
{  // extend node 

if (!isInOpenTable(current - > next.index, n) 
&&!isInCloseTable(current - > next.index, n)) 

{ // calculate g, if greater than the original, do 
nothing, or set the parent node to the current point, update 
g, f 

if (current - > next.index == end.index)h = 1; 
else 
{ if (current - > next.index < end.index) 

h = abs(end_node_id - node_id + 7); 
else h = abs(8 + end_node_id - node_id); 

} 
g = p - > g + 1;  
f = g + h + p - > h; 
node - > node_index = current - > next.index;  
node - > g = g; 
node - > h = h; 
node - > f = f; 
node - > parent = current; // set the parent 

node to the current node 
addToTable(&OpenTable, node); 

} 
} 
delete current node in OpenTable, insert 

CloseTable; 
addToTable(&CloseTable, current); // insert 

current node into CloseTable; 
} 

} 
end Algorithm SCPA 

B.  Illustration of Working of SCPA 
We explain the working of SCPA algorithm by using 

the example form WellADT to GraphicsBinding. First, 
number the component and connector in the CIG is 
shown as Tab. I, and assume i = 0, 1, …, 21. 

 
After the SCPA algorithm execution, CloseTable is the 

node set of the shortest component path start from 3. f(i) 
is the value of current node, it is the sum of g(i) of the 
shortest distance from current node i to start node. h*(i) is 
the value from i to destination node. h*(j) is the value 

from the parent node j of i to the destination node. F(i) is 
the parrent node of current node. 

Step 1: Insert 3 into CloseTable, insert 16 which is the 
next node of 3 into OpenTable, then OpenTable = {16}. 
Because there is only one node in OpenTable, then insert 
16 into CloseTable. At this time, CloseTable = {3, 16}, 
OpenTable = ∅, F(16) = 3. 

Step 2: Insert 5,6,7,17,18 which are the next node of 
16 into OpenTable, then OpenTable = {5,6,7,17,18}. 
h*(16) = 7, g(5) = 2, h*(5) = 17, f(5) = 2+17+7 = 26, g(6) 
= 2, h*(6) = 16, f(6) = 2+16+7 = 25; g(7) = 2, h*(7) = 15, 
f(7) = 2+15+7 = 24; g(17) = 2, h*(17) = 6, f(17) = 2+6+7 
= 15; g(18) = 2, h*(18) = 5, f(18) = 2+5+7 = 14. We see 
18 has the minimum value f, then insert 18 into 
CloseTable. At this time, CloseTable = {3,16,18}, 
OpenTable = {5,6,7,17}, F(18)=16. 

Step 3: Insert 9,10,11,12 which are the next node of 18 
into OpenTable, then OpenTable = {5,6,7,17,9,10,11,12}. 
f(5) = 26, f(6) = 25, f(7) = 24, f(17) = 15; g(9) = 3, h*(9) 
=13, f(9) = 3+13+5 = 21; g(10) = 3, h*(10) = 12, f(10) = 
3+12+5 = 20; g(11) = 3, h*(11) = 11, f(11) = 3+11+5 = 
19; g(12) = 3, h*(12) = 10, f(12) = 3+10+5 = 18. We see 
17 has the minimum value f, then insert 17 into 
CloseTable. At this time, CloseTable = {3,16,18,17}, 
OpenTable = {5,6,7,9,10,11,12}, F(17) = 16. 

Step 4: Insert 8 which is the next node of 17 into 
OpenTable, then OpenTable = {5,6,7,9,10,11,12,8}. f(5) 
= 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) = 19, 
f(12) = 18; g(8) = 3, h*(8) = 14, f(8) = 3+14+6 = 23. We 
see 12 has the minimum value f, then insert 12 into 
CloseTable. At this time, CloseTable = {3,16,18,17,12}, 
OpenTable = {5,6,7,9,10,11,8}, F(12)=18. 

Step 5: Insert 19 which is the next node of 12 into 
OpenTable, then OpenTable = {5,6,7,9,10,11,8,19}. f(5) 
= 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) = 19, 
f(8) = 23; g(19) = 4, h*(19) = 4, f(19) = 4+4+10 = 18. We 
see 19 has the minimum value f, then insert 19 into 
CloseTable. At this time, CloseTable = {3,16,18,17,12, 
19}, OpenTable = {5,6,7,9,10,11,8}, F(19)=12. 

Step 6: Insert 13,20 which are the next node of 19 into 
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,20}. 
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) 
= 19, f(8) = 23; g(13) = 5, h*(13) = 9, f(13) = 5+9+4 = 18; 
g(20) = 5, h*(20) = 3, f(20) = 5+3+4 = 12. We see 20 has 
the minimum value f, then insert 20 into CloseTable. At 
this time, CloseTable = {3,16,18,17,12,19,20}, 
OpenTable = {5,6,7,9,10,11,8,13}, F(20) = 19. 

Step 7: Insert 14 which is the next node of 20 into 
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,14}. 
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) 
= 19, f(8) = 23, f(13) = 18; g(14) = 6, h*(14) = 8, f(14) = 
6+8+3 = 17. We see 14 has the minimum value f, then 
insert 14 into CloseTable. At this time, CloseTable = 
{3,16,18,17,12,19,20,14}, OpenTable = {5,6,7,9,10,11,8, 
13}, F(14)=20. 

Step 8: Insert 21 which is the next node of 14 into 
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,21}. 
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) 
= 19, f(8) = 23, f(13) = 18; g(21) = 7, h*(21) = 2, f(21) = 
7+2+8 = 17. We see 21 has the minimum value f, then 

TABLE I.  
NUMBER OF COMPONENT AND CONNECTOR 

Number Node Number Node 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

ClockLogic 
StatusADT 
ChuteADT 
WellADT 

PaletteADT 
NextTilePlacingLogic 

TileMatchLogic 
RelativePosLogic 

StatusLogic 
StatusArtist 
ChuteArtist 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

WellArtist 
PaletteArtist 

TileArtist 
LayoutManager 
GraphicsBinding 

LAConn 
LLConn 

ALAConn 
TAConn 
LTConn 
GLConn 

 

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1475

© 2014 ACADEMY PUBLISHER



insert 21 into CloseTable. At this time, CloseTable = 
{3,16,18,17,12,19,20,14,21}, OpenTable = {5,6,7,9,10,11, 
8,13}, F(21) = 14. 

Step 9: Insert 15 which is the next node of 21 into 
OpenTable, then OpenTable = {5,6,7,9,10,11,8,13,15}. 
f(5) = 26, f(6) = 25, f(7) = 24, f(9) = 21, f(10) = 20, f(11) 
= 19, f(8) = 23, f(13) = 18; g(15) = 8, h*(15) = 1, f(15) = 
8+1+2 = 11. We see 15 has the minimum value f, then 
insert 15 into CloseTable. At this time, CloseTable = 
{3,16,18,17,12,19,20,14,21,15}, OpenTable = {5,6,7,9,10, 
11,8,13}, F(15) = 21. 

Because the 15 is the destination node, then use the 
backtracking method to find its parent node 21 and so on. 
In the end, find the start node 3, then get the shortest 
component path from the start node to the destination 
node {3,16,18,12,19,20,14,21,15}. 

Because 12 and 9,10,11 are at the same level, so use 
them replace 12, we obtain other shortest component 
paths {3,16,18,11,19,20,14,21,15}, {3,16,18,10,19,20,14, 
21,15}, and {3,16,18,9,19,20,14,21,15}. Replace the 
number with the component name and the connection 
name. We obtain the shortest component path set from 
WellADT to GraphicsBinding is as follow: 

(1) WellADT→LAConn→ALAConn→PaletteArtist→ 
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding 

(2) WellADT→LAConn→ALAConn→WellArtist→ 
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding 

(3) WellADT→LAConn→ALAConn→ChuteArtist→ 
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding 

(4) WellADT→LAConn→ALAConn→StatusArtist→ 
TAConn→LTConn→LayoutManager→GLConn→Grap
hicsBinding 

Ⅳ.  EXPERIMENTAL RESULTS AND ANALYSIS 
To better understand our approach, we have performed 

an experimental study by applying the shortest 
component path for KLAX system. 

A.  Experimental Results 
We have implemented a prototype tool that generates 

the shortest component path generation automatically by 
our approach. We have implemented our tool using Java. 
The tool uses C2-ADL specification as input. Then it 
analyzes the names of all components, connectors and 
interfaces, interfaces types, the connection relationship 
between components and connectors and so on. These are 
stored in corresponding data structure respectively. Then 
according to the shortest component path generation 
method, it can generate the shortest component path set. 
In addition, the tool also provides the help documents 
about the details of the system functions, the operation 
and some open source code in an html format and so on 

Table II gives percentage improvement of every 
component for the A* algorithm and the improved A* 
algorithm. 

 
B.  Experimental Results Analysis 

• From Table II, we have: For component 
ClockLogic, StatusADT, ChuteADT, WellADT, 
and PaletteADT, the improved A* algorithm is 
more efficient than A* algorithm for improving 
6.67%. For component StatusArtist, ChuteArtist, 
WellArtist, and PaletteArtist, the improved A* 
algorithm is more efficient than A* algorithm for 
improving 2.94%. Compared with improved A* 
algorithm and A* algorithm, the extend node 
reduced, search efficiency improved. 

• The efficiency of some components increase, 
some doesn’t. Through the experiment, we can 
draw the conclusion: If the current node to 
destination node has multiple shortest component 
paths, the efficiency will increase. If the current 
node to destination node has only one, the 
efficiency will not increase. 

• When search in the algorithm, the improved 
evaluation function made the search direction in 
the A* algorithm faster towards the destination 
node, greatly reduce the number of traversal node 
in the algorithm, and improved the search speed. 
Of course, if need, we can increase the parent 
node of the parent node of the parent node of 
current node. In the same way, evaluate the 
distance from the node to destination node. 

• Not increasing more evaluation node, the 
efficiency of the algorithm is higher. Though 
increasing more evaluation node, the traversal 
node in the algorithm will be less, but first, it will 
increase the storage capacity, second it will 
increase the evaluation number, thus increase the 
burden of algorithm. 

Ⅵ.  RELATED WORK 

Path coverage is a kind of important standard that 
investigates the sufficiency of software testing [15,16]. 
The goal of software architecture testing is to choose a 
certain effect and low cost of coverage criteria, or 

TABLE II.  
A* ALGORITHM VS IMPROVED A* ALGORITHM FOR KLAX SYSTEM 

Component 
A* 

Algorithm 
Our 

Algorithm 
Percentage 

Improvement 
ClockLogic 
StatusADT 
ChuteADT 
WellADT 

PaletteADT 
NextTilePlacingLogic 

TileMatchLogic 
RelativePosLogic 

StatusLogic 
StatusArtist 
ChuteArtist 
WellArtist 

PaletteArtist 
TileArtist 

LayoutManager 
GraphicsBinding 

60 
60 
60 
60 
60 
15 
18 
18 
26 
34 
34 
34 
34 
50 
57 
77 

56 
56 
56 
56 
56 
15 
18 
18 
26 
33 
33 
33 
33 
50 
57 
77 

6.67% 
6.67% 
6.67% 
6.67% 
6.67% 

0 
0 
0 
0 

2.94% 
2.94% 
2.94% 
2.94% 

0 
0 
0 
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according to certain criteria, selection of a finite subset of 
all logical path to test, using the minimum test case, 
finding the error of software architecture. There are a few 
path generation method of the software architecture. 

Zhenyi and Offutt proposed a technology of generating 
test cases [17] in view of architecture description 
language Wright, according to Interface Connectivity 
Graph (ICG) and Behavior Graph (BP), and developed 
testing criteria for generating software architecture level 
tests from software architecture descriptions. 

Stafford et al. introduced software architecture 
dependence analysis technique [18,19], called chaining, 
to support software architecture development such as 
debugging and testing. In chaining, links represent the 
dependence relationships that exist in an architectural 
specification. Links connect elements of the specification 
that are directly related, producing chain of dependencies 
that can be followed during analysis. 

Gao et al. focused on component test coverage issues, 
and proposed test models (CFAGs and D-CFAGs) [20] to 
represent a component's API-based function access 
patterns in static and dynamic views. A set of component 
API-based test criteria is defined based on the test models, 
and a dynamic test coverage analysis approach is 
provided. 

Hashim et al. presented Connector-based Integration 
Testing for Component-based Systems (CITECB) with an 
architectural test coverage criteria [21], and describe the 
test models used that are based on probabilistic 
deterministic finite automata which are used to represent 
gate usage profiles at run-time and test execution. It also 
provides a measuring mechanism of how well the 
existing test suite are covering the component interactions 
and provides a test suite coverage monitoring mechanism 
to reveal the test elements that are not yet covered by the 
test suites. The model extraction technique used to 
generate the CITECB test models is a simple and less 
time consuming process. In addition to that, these test 
models are able to closely represent the component 
interactions as they are extracted directly from the system. 

The shortest path problem [22] is one of the most 
important optimization problems in such fields as 
computer sciences and artificial intelligence. 

Valverde and Solé [23] stated that the software 
architecture references as software graph. Consider the 
measurement experiment in a software graph: choose a 
pair of nodes (vi, vj) and then trace a path from vi to vj 
while traversing the minimum number of edges. Count 
how many edges have traversed in such path and will 
obtain the length of the shortest path between the two 
end-nodes: dmin(i, j). According to the shortest path 
between the two end-nodes, we get is the mean average 
path length (or characteristic path length) for the software 
graph. 

Ⅶ.  CONCLUSIONS AND FUTURE WORK 

This paper presents an approach of the shortest 
component path for C2-style architecture. First, it 
describes software architecture through C2-style, then 
represents software architecture through CIG, and 

abstracted the behavior of interactive between 
components and connectors. Formalized the shortest 
component path, generated the shortest component path 
set that covered the architecture according to improved 
A* algorithm. This technology could establish an abstract 
model to describe the characteristics of dynamic 
architecture, it covered all the testing component nodes 
and reduced scale of testing coverage set, so that test the 
architecture effectively. 

As for the future work, the application of the approach 
needs to study at the implementation level. It is also 
planned to investigate other testing criteria and testing 
criteria adequacy and the approach to generate test cases 
which satisfy the testing criteria without necessarily 
simulating the execution process of all possible test paths. 

ACKNOWLEDGMENT 

The authors are grateful to the anonymous referees for 
their detailed comments and insightful suggestions, which 
helped in refining and improving the presentation of the 
paper. Part of this work is supported by the Scientific 
Research Foundation of Heilongjiang Provincial 
Education Department of China under Grant No. 
12541250. 

REFERENCES 

[1] D. E. Perry, A. L. Wolf, “Foundations for the Study of 
Software Architecture”, ACM SIGSOFT Softw.Eng. Notes, 
vol. 17, pp. 40-52, October 1992. 

[2] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang. 
“What Industry Needs from Architectural Languages: A 
Survey”, IEEE Trans. on Software Engi., vol. 39, pp. 869-
891, June 2013. 

[3] H. Muccini, A. Bertolino, P. Inverardi, “Using Software 
Architecture for Code Testing”, IEEE Trans. Software 
Engi., vol. 29, pp. 160-171, March 2003. 

[4] P. Zhang, H. Muccini, B. Li, “A Classification and 
Comparison of Model Checking Software Architecture 
Techniques”, J. Systems and Software, vol. 83, pp. 723-744, 
May 2010. 

[5] P. Pelliccione, P. Inverardi, H. Muccini, “Charmy: A 
Framework for Designing and Verifying Architectural 
Specifications”, IEEE Trans. Software Engi., vol. 35, pp. 
325-346, May-June 2009. 

[6] E. R. Poort, H. Vliet, “Architecting as a Risk- and Cost 
Management Discipline”, in: Proc. of IEEE/IFIP Ninth 
Working Conference Software Architecture (WICSA2011), 
Boulder, Colorado, USA, pp. 2-11, June 2011. 

[7] L. J. Lun, H. Xu, “An Approach to Software Architecture 
Testing”, in: Proc. of 9th International Conference for 
Young Computer Scientists (ICYCS2008), Zhangjiajie, 
China, pp. 1070-1075, November 2008. 

[8] L. J. Lun, X. Chi, X. M. Ding, “Edge Coverage Analysis 
for Software Architecture”, Journal of Software, vol. 7, pp. 
1121-1128, May 2012. 

[9] L. J. Lun, X. Chi, X. M. Ding, “C2-Style Architecture 
Testing and Metrics Using Dependency Analysis”, Journal 
of Software, vol. 8, pp. 276-285, February 2012. 

[10] E. W. Dijkstra, “A Note on Two Problems in Connexion 
with Graphs”, Numer. Math., vol. 1, pp. 269-271, 
December 1959. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1477

© 2014 ACADEMY PUBLISHER



[11] C. Zeng, Q. Zhang, X. P. Wei, “GA-based Global Path 
Planning for Mobile Robot Employing A* Algorithm”, 
Journal of Computers, vol. 7, pp. 470-474, February 2012. 

[12] N. T. Richard, N. Medvidovic, K. M. Anderson, E. J. 
Whitehead, J. E. Robbins, “A Component- and Message-
Based Architecture Style for GUI Software”, IEEE Trans. 
on Software Engi., vol. 22, pp. 390-406, June 1996. 

[13] H. Muccini, M. Dias, D. J. Richardson, “Systematic 
Testing of Software Architectures in the C2 style”, in: 
Proc. Conference Fundamental Approaches to Software 
Engineering (FASE2004), Barcelona, Spain, LNCS 2984, 
pp. 295-309, March 2004. 

[14] The C2 Architectural Style, http://www.ics.uci.edu/pub/ 
arch/c2.html. 

[15] M. Marré, A. Bertolino, “Automatic Generation of Path 
Covers based on the Control Flow Analysis of Computer 
Programs”, IEEE Trans. on Software Engi., vol. 20, pp. 
885-899, December 1994. 

[16] G. Ye, X. J. Li, D. Yu, Z. W. Li, J. Yin, “The Design and 
Implementation of Workflow Engine for Spacecraft 
Automatic Testing”, Journal of Computers, vol. 6, pp. 
1145-1151, June 2011. 

[17] J. Zhenyi, J. Offutt, “Deriving Tests from Software 
Architectures”, in: Proc. of 12th IEEE International 
Symposium on Software Reliability Engineering, 
Washington, DC, USA, pp. 308-313, November 2001. 

[18] J. A. Stafford, D. J. Richardson, A. L. Wolf, “Architecture-
Level Dependence Analysis for Software Systems”, Int. J. 
Softw. Eng. Know., vol. 11, pp. 431-451, April 2001. 

[19] J. A. Stafford, A. L. Wolf, M. Caporuscio, “The 
Application of Dependence Analysis to Software 
Architecture Descriptions”, LNCS, vol. 2804, pp. 52-62, 
September 2003. 

[20] J. Gao, R. Espinoza, J. He, “Testing Coverage Analysis for 
Software Component Validation”, in: Proc. Annual 
International Computer Software and Applications 
Conference (COMPSAC2005), Edinburgh, Scotland, UK, 
pp. 463-470, July 2005. 

[21] N. L. Hashim, S. Ramakrishnan, H. W. Schmidt, 
“Architectural Test Coverage for Component-based 
Integration Testing”, in: Proc. International Conference on 
Quality Software (QSIC2007), Portland, Oregon, USA, pp. 
262-267, October 2007. 

[22] Y. Gu, “Research on Optimization of Relief Supplies 
Distribution Aimed to Minimize Disaster Losses”, Journal 
of Computers, vol. 6, pp. 603-609, March 2011. 

[23] S. Valverde, R. V. Solé, “Hierarchical Small Worlds in 
Software Architecture”, Dynamics of Continuous Discrete 
and Impulsive Systems: Series B; Applications and 
Algorithms, 2007. 

 
 
 
 

Lijun Lun was born in Harbin, 
Heilongjiang Province, China, in 1963. 
He received his B.S. degree and Master 
degree in Computer Science and 
Technology from Harbin Institute 
Technology of Computer Science and 
Technology, China, in 1986 and 2000 
respectively.  

Currently, he is a professor, and 

teaches and conducts research in the areas of software 
architecture, software testing, and software metrics, etc. 
 
 
 

Lin Zhang was born in Mudanjiang, 
Heilongjiang Province, China, in 1989. 
She received her B.S. degree in 
Computer Science and Technology from 
Harbin Normal University of Computer 
Science and Technology, China, in 2012. 
Her research topics are mainly in 
software architecture and path planning. 
 

 
 
 

Xin Chi was born in Harbin, 
Heilongjiang Province, China, in 1990. 
She received her B.S. degree in Computer 
Science and Technology from Harbin 
Normal University, China, in 2013. Her 
research topics are mainly in software 
architecture testing and software metrics. 
 
 

 
 
 

Hui Xu was born in Harbin, 
Heilongjiang Province, China, in 1984. 
She received her Master degree in 
Computer Science and Technology from 
Harbin Normal University, China, in 
2009. Now she is studying her PhD 
degree in Harbin Engineering University 
of Computer Science and Technology, 
China. Her research topics are mainly in 

social network and social computing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1478 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER


