
Metaheuristic Optimization based Feature
Selection for Software Defect Prediction

Romi Satria Wahono

Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka
Graduate School of Computer Science, Dian Nuswantoro University, Semarang, Indonesia

Email: romi@brainmatics.com

Nanna Suryana and Sabrina Ahmad
Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka

Email: {nsuryana, sabrinaahmad}@utem.edu.my

Abstract—Software defect prediction has been an important
research topic in the software engineering field, especially to
solve the inefficiency and ineffectiveness of existing
industrial approach of software testing and reviews. The
software defect prediction performance decreases
significantly because the data set contains noisy attributes
and class imbalance. Feature selection is generally used in
machine learning when the learning task involves high-
dimensional and noisy attribute datasets. Most of the
feature selection algorithms, use local search throughout the
entire process, consequently near-optimal to optimal
solutions are quiet difficult to be achieved. Metaheuristic
optimization can find a solution in the full search space and
use a global search ability, significantly increasing the
ability of finding high-quality solutions within a reasonable
period of time. In this research, we propose the combination
of metaheuristic optimization methods and bagging
technique for improving the performance of the software
defect prediction. Metaherustic optimization methods
(genetic algorithm and particle swarm optimization) are
applied to deal with the feature selection, and bagging
technique is employed to deal with the class imbalance
problem. Results have indicated that the proposed methods
makes an impressive improvement in prediction
performance for most classifiers. Based on the comparison
result, we conclude that there is no significant difference
between particle swarm optimization and genetic algorithm
when used as feature selection for most classifiers in
software defect prediction.

Index Terms—software defect prediction, feature selection,
genetic algorithm, particle swarm optimization, bagging
technique

I. INTRODUCTION

Software defects or software faults are expensive in
quality and cost. It is a deficiency in a software product
that causes it to perform unexpectedly [1]. Moreover, the
cost of capturing and correcting defects is one of the most
expensive software development activities [2]. The
accurate prediction of defect‐prone software modules can
help direct test effort, reduce costs, improve the quality of
software [3], reach a highly dependable system,
improving the test process by focusing on fault-prone

modules, and identifying refactoring candidates that are
predicted as fault- prone [4].

Recent studies showed that the probability of
detection of fault prediction models might be higher than
the probability of detection of software reviews. Menzies
et al. found defect predictors with a probability of
detection of 71 percent [5]. This is markedly higher than
other currently used industrial methods such as manual
code reviews. A panel at IEEE Metrics 2002 [6]
concluded that manual software reviews can find 60
percent of defects. Therefore, software fault prediction
approaches are much more efficient and effective to
detect software faults compared to software reviews.

Software defect prediction has been an important
research topic in the software engineering field [3].
Current software defect prediction research focuses on
three topics [7]. First topic concern on estimating the
number of defects remaining in software systems, the
second one, concern on discovering defect associations,
and the third topic, focus on classifying the defect-
proneness of software components, typically into two
classes, defect-prone and not defect-prone.

The first type of work employs statistical approaches
[8] [9], capture-recapture models [10] [11] [12], and
detection profile methods [13] to estimate the number of
defects remaining in software systems with inspection
data and process quality data. The prediction result can be
used as an important measure for the software developer
and can be used to control the software process and gauge
the likely delivered quality of a software system [14].

The second type of work borrows association rule
mining algorithms from the data mining community to
reveal software defect associations [15] [16] [17] which
can be used for three purposes. First, finding as many
related defects as possible to the detected defects and
consequently, make more effective corrections to the
software. Second, helping to evaluate reviewers’ results
during an inspection. Thus, a recommendation might be
that their work should be reinspected for completeness.
Third, assisting managers in improving the software
process through analysis of the reasons why some defects
frequently occur together. If the analysis leads to the

1324 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1324-1333

identification of a process problem, managers can devise
corrective action.

The third type of work classifies software components
or modules as defect-prone and non-defect-prone by
means of metric based classification [18] [19] [20] [21]
[7]. Classification algorithm is a popular machine
learning approach for software defect prediction [21]. It
categorizes the software code attributes into defective or
not defective, which is completed by means of a
classification model derived from software metrics data
from previous development projects [22]. Being able to
predict which components are more likely to be defect-
prone supports better targeted testing resources and
therefore, improved efficiency. This research is focused
and concerned with the third approach.

Various types of classification algorithms have been
applied for software defect prediction, including logistic
regression [23], decision trees [24], neural networks [25],
naïve-bayes [20]. Unfortunately, software defect
prediction remains a largely unsolved problem. The
comparisons and benchmarking result of the defect
prediction using machine learning classifiers indicate that,
no significant performance differences could be detected
[21] and no particular classifiers that performs the best
for all the data sets [7]. There is a need of accurate defect
prediction model for large-scale software system.

Two common aspects of data quality that can affect
classification performance are class imbalance and noisy
attributes [26] of data sets. Software defect datasets have
an imbalanced nature with very few defective modules
compared to defect-free ones [27]. Imbalance can lead to
a model that is not practical in software defect prediction,
because most instances will be predicted as non-defect
prone [28]. Learning from imbalanced datasets is difficult.
The insufficient information that is associated with the
minority class impedes making a clear understanding of
the inherent structure of the dataset [29]. The software
defect prediction performance also decreases significantly
because the dataset contains noisy attributes [30] [31].
However, the noisy data points in the datasets that cannot
be confidently assumed to be erroneous using such
simple method [32].

Feature selection is generally used in machine
learning when the learning task involves high-
dimensional and noisy attribute datasets. Most of the
feature selection algorithms, use local search throughout
the entire process, consequently near-optimal to optimal
solutions are quiet difficult to be achieved. Metaheuristic
optimization can find a solution in the full search space
and use a global search ability, significantly increasing
the ability of finding high-quality solutions within a
reasonable period of time [33]. Mostly used metaheuristic
optimization for feature selection includes genetic
algorithm (GA), particle swarm optimization (PSO) and
ant colony optimization (ACO).

In the current work, we propose the combination of
metaheuristic optimization methods (GA and PSO) and
bagging technique for improving the accuracy of software
defect prediction. Metaheuristic optimization methods are
applied to deal with the feature selection, and bagging

technique is employed to deal with the class imbalance
problem. Bagging technique is chosen due to the
effectiveness in handling class imbalance [26]. The
proposed method is evaluated using the state-of-the-art
and public datasets from NASA metric data repository.

II. RELATED RESEARCH

Feature selection is an important data preprocessing
activity and has been extensively studied in the data
mining and machine learning community. The main goal
of feature selection is to select a subset of features that
minimizes the prediction errors of classifiers. Feature
selection techniques are divided into two categories:
wrapper-based approach and filter-based approach. The
wrapper-based approach involves training a learner
during the feature selection process, while the filter-based
approach uses the intrinsic characteristics of the data,
based on a given metric, for feature selection and does
not depend on training a learner. The primary advantage
of the filter-based approach over the wrapper-based
approach is that it is computationally faster. However, if
computational complexity was not a factor, then a
wrapper-based approach was the best overall feature
selection scheme in terms of accuracy. Because the
objective of this research is to improve the quality and
accuracy of software defect prediction model, it was
decided to use the wrapper-based approach. Nevertheless,
wrapper methods have the associated problem of having
to train a classifier for each tested feature subset. This
means testing all the possible combinations of features
will be virtually impossible.

Most of the feature selection strategies attempt to find
solutions that range between sub-optimal and near
optimal regions. They use local search throughout the
entire process, instead of global search. On the other hand,
these search algorithms utilize a partial search over the
feature space, and suffer from computational complexity.
Consequently, near-optimal to optimal solutions are quiet
difficult to achieve using these algorithms. As a result,
many research studies now focus on metaheuristic
optimization techniques [34]. The significance of
metaheuristic optimization techniques is that they can
find a solution in the full search space on the basis of
activities of multi-agent systems that use a global search
ability utilizing local search appropriately, thus
significantly increasing the ability of finding very high-
quality solutions within a reasonable period of time [33].
Metaheuristic optimization techniques have been
developed in several domains and include algorithms like
simulated annealing, tabu-search, as well as bio-inspired
methods like genetic algorithms, evolution strategies, ant
colony optimization and particle swarm optimization.
These methods are able to find fairly good solutions
without searching the entire workspace.

Although feature selection has been widely applied in
numerous application domains for many years, its
application in the software quality prediction domain is
limited. Song et al. [7] applied two wrapper approaches,
forward selection and backward elimination, as a feature
selection for their proposed model. Song et al. concluded

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1325

© 2014 ACADEMY PUBLISHER

that a feature selection techniques, especially forward
selection and backward elimination can play different
roles with different learning algorithms for different data
sets and that no learning scheme dominates, i.e., always
outperforms the others for all data sets. This means we
should choose different learning schemes for different
data sets, and consequently, the evaluation and decision
process is important. Wang et al. [35] applied ensemble
feature selection techniques to 16 software defect data
sets, and they concluded that ensembles of very few
rankers are very effective and even better than ensembles
of many or all rankers.

The class imbalance problem is observed in various
domain, including software defect prediction. Several
methods have been proposed in literature to deal with
class imbalance: data sampling, boosting and bagging.
Data sampling is the primary approach for handling class
imbalance, and it involves balancing the relative class
distributions of the given data set. There are two types of
data sampling approaches: under sampling and
oversampling [36]. Boosting is another technique, which
is very effective when learning from imbalanced data.
Compared to data sampling, boosting has received
relatively little attention in data-mining research with
respect to class imbalance. However, Seiffert et al. [36]
show that boosting performs very well. Bagging, may
outperform boosting when data contain noise [37],
because boosting may attempt to build models to
correctly classify noisy examples. In this study we apply
bagging technique, because Khoshgoftaar et al. [26]
showed that the bagging techniques generally outperform
boosting, and hence in noisy data environments.
Therefore bagging is the preferred method for handling
class imbalance.

While considerable work has been done for feature
selection and class imbalance problem separately, limited
research can be found on investigating them both together,
particularly in the software engineering field [26]. In this
study, we combine metaheuristic optimization methods
(GA and PSO) for selecting features and bagging
technique for solving the class imbalance problem, in the
context of software defect prediction.

III. PROPOSED SOFTWARE DEFECT PREDICTION
FRAMEWORK

A. Integration of GA Based Feature Selection Method
and Bagging Technique

Figure1 shows an activity diagram of the integration
of Bagging technique and GA based feature selection.
The aim of GA is to find optimum solution within the
potential solution set. Each solution set is called as
population. Populations are composed of vectors, namely,
chromosome or individual. Each item in the vector is
called as gene. In the proposed method, chromosomes
represent features, which are encoded as binary strings of
1 and 0. In this scheme, 1 represents se- lection of a
feature and 0 means a non-selection.

As shown in Figure 1, input data set includes training
data set and testing data set. Relational feature subsets are
chosen and unrelated features subsets are discarded by

feature subset selection. After training data set and testing
data set discarded unrelated feature subsets, they become
training data set of selected feature subset and testing data
set of selected feature subset. Classifiers are trained by
training set with selected feature subset.

Bagging (Bootstrap Aggregating) was proposed by
Leo Breiman in 1994 [38] to improve the classification
by combining classifications of randomly generated
training sets. The bagging classifier separates a training
set into several new training sets by random sampling,
and builds models based on the new training sets. The
final classification result is obtained by the voting of each
model. It also reduces variance and helps to avoid
overfitting. Description of the bagging technique is as
follows. Given a standard training set D of size n,
bagging generates m new training sets Di, each of size
n’<n, by sampling from D uniformly and with
replacement. By sampling with replacement, some
observations may be repeated in each Di. If n’=n, then for
large n the set Di is expected to have the fraction (1 - 1/e)
of the unique examples of D, the rest being duplicates.
This kind of sample is known as a bootstrap sample. The
m models are fitted using the above m bootstrap samples
and combined by averaging the output (for regression) or
voting (for classification). Bagging leads to
improvements for unstable procedures [38], which
include neural network, classification and regression trees,
and subset selection in linear regression. On the other
hand, it can mildly degrade the performance of stable
methods such as K-nearest neighbors.

Figure 1. Activity Diagram of the Integration of Bagging Technique and
Genetic Algorithm based Feature Selection

Data Set

Select the Feature Subset

Validate the Generated Model

Testing
Data Set

Training
Data Set

Implement Bagging

Satisfy
Stopping
Criteria?

Calculate the Model Accuracy

Train Classifier with Selected
Feature Subset

yes

Optimized Feature Subset

Selection Operation

Crossover Operation

Mutation Operation

no

All Classifiers
Finished?

Combine Votes of All
Classifiers

no

yes

Calculate the Fitness Value

1326 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Classification accuracy of classifier is calculated by
testing set with selected feature subset. Classification
accuracy of classifier, the number of selected features and
the feature cost are used to construct a fitness function.
Every chromosome is evaluated by the equation (1).

ݏݏ݁݊ݐ݂݅ ൌ ܹ 	ൈ ܣ ிܹ ൈ ቀܲ ൫∑ ܥ ൈ ୀଵܨ ൯ቁିଵ 					(1)

where A is classification accuracy, WA is weight of
classification accuracy, Fi is feature value, WF is feature
weight, Ci is feature cost, P is setting constant of avoiding
that denominator reaches zero.

When ending condition is satisfied, the operation ends,
otherwise, continue with the next generation operation.
The proposed method searches for better solutions by
genetic operations, including crossover, mutation and
selection.

B. Integration of PSO based Feature Selection and
Bagging Technique

Particle swarm optimization (PSO) is an emerging
population-based meta-heuristic that simulates social
behavior such as birds flocking to a promising position to
achieve precise objectives in a multi-dimensional space.
PSO performs searches using a population (swarm) of
individuals (particles) that are updated from iteration to
iteration. The size of population is denoted as psize. To
discover the optimal solution, each particle changes its
searching direction according to two factors, its own best
previous experience (pbest) and the best experience of all
other members (gbest). Shi and Eberhart [39] called pbest
the cognition part, and gbest the social part.

Each particle represents a candidate position
(solution). A particle is considered as a point in a D-
dimension space, and its status is characterized according
to its position and velocity. The D-dimensional position
for the particle i at iteration t can be represented as	ݔ௧ ൌ 	 ሼݔଵ௧ , ଶ௧ݔ , … , ௧ݔ 	ሽ. Likewise, the velocity (distance
charge) for particle i at iteration t, which is also a D-
dimension vector, can be described as ݒ௧ ൌ 	 ሼݒଵ௧ , ଶ௧ݒ , … , ௧ݒ 	ሽ.

In the later version of PSO, a new parameter, called
inertia weight introduced by [39] due to control over the
previous velocity of the particles. Let ௧ ൌ 	 ሼଵ௧ , ଶ௧ , … , ௧ 	ሽ represent the best solution that
particle i has obtained until iteration t, and ௧ ൌ	൛ଵ௧ , ଶ௧ , … , ௧ 	ൟ denote the best solution obtained
from ௧ in the population at iteration t. To search for the
optimal solution, each particle changes its velocity
according to the cognitive and social part using equation
(2).

 ܸௗ௧ ൌ ݓ ∗ 	 ܸௗ௧ିଵ 	ܿଵݎଵ(ܲௗ௧ െ ௗ௧ݔ) 	ܿଶݎଶ൫ ܲௗ௧ െ ௗ௧ݔ ൯						(2)

Note that, ܿଵ indicates the cognitive learning factor, ܿଶ
indicates the social learning factor, inertia weight (w) is
used to slowly reduce the velocity of the particles to keep
the swarm under control, and ݎଵ and ݎଶ are random
numbers uniformly distributed in U(0,1).

Each particle then moves to a new potential solution
based on the equation (3).
 ܺௗ௧ାଵ ൌ ܺௗ௧ ܸௗ௧ 																																					(3)

Figure 2 shows an activity diagram of the integration
of bagging technique and particle swarm optimization
based feature selection. A group of particles are random
generated, dimensional discrete binary variable. The
particle length is the total characteristics number, and if
and each particle is one the first i-bit is 1, then the first
feature i was selected, otherwise it will be shielded. Each
particle represents a feature subset, which is a candidate
solution. Implement bagging technique and train the
classifier on the larger training set based on the selected
feature subset and the type of kernel. If all classifiers are
finished, combine votes of all classifiers. Finally,
measure validation accuracy on testing data set via the
generated model.

Figure 2. Activity Diagram of the Integration of Bagging Technique and

Particle Swarm Optimization based Feature Selection

We use the accuracy of classifier to evaluate fitness

size, the higher accuracy rate, the greater the fitness. the
goal of select the feature characteristic subset that is to
the achieve the use a small number of same or better
classification results, so the fitness function evaluation
should also take into consideration the number of
characteristics, given same accuracy to two
characteristics of a subset, the one which have fewer
characteristic number will be higher fitness.

Update the global and personal best according to the
fitness evaluation results. Record the average validation

Data Set

Select the Feature Subset

Validate the Generated Model

Testing
Data Set

Training
Data Set

Implement Bagging

Satisfy
Stopping
Criteria?

Calculate the Accuracy of
Model (Fitness of Particle)

Train Classifier with Selected
Feature Subset

yes

Optimized Feature Subset

if Particle’s Fitness > Particle Best Fitness
Update Particle Best

if Particle’s Fitness > Global Best Fitness
Update Global Best

Update Particle’s Velocity

Update Particle’s Position

no

All Classifiers
Finished?

Combine Votes of All
Classifiers

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1327

© 2014 ACADEMY PUBLISHER

accuracy for the global and personal best. If the fitness is
better than the particle’s best fitness, then the position
vector is saved for the particle. If the particle’s fitness is
better than the global best fitness, then the position vector
is saved for the global best. Finally the particle’s velocity
and position are updated until the termination condition is
satisfied. To avoid overtraining, we observe the
validation accuracy curve, and stop training when the
iteration has the best validation accuracy during the
training process. With the stopping training iteration
determined in the previous step, recall the recorded
feature subset and the type of kernel in the stopping
iteration.

IV. EXPERIMENTAL SETUP

A. Framework
The framework of our experiment is shown in Figure

3. The framework is comprised 1) a data sets 2) a feature
selection, 3) a meta-learning, 4) a learning algorithm, 5) a
model validation, 6) a model evaluation and 7) a model
comparison. The used platform is Intel Core i7 2.2 GHz
CPU, 16 GB RAM, and Microsoft Windows 7
Professional 64-bit with SP1 operating system. The
development environment is Netbeans 7 with Java
programming language. The application software is
RapidMiner 5.2.

Figure 3. The Framework of Experiment

B. Data Sets
One of the most important problems for software fault

prediction studies is the usage of nonpublic (private) data
sets. Several companies developed fault prediction
models using proprietary data and presented these models
in conferences. However, it is not possible to compare
results of such studies with results of our own models
because their datasets cannot be reached. The use of
public datasets makes our research repeatable, refutable,
and verifiable [40]. Recently, state-of-the-art public data

sets used for software defect prediction research is
available in NASA Metrics Data (MDP) repository [32].

The data used in this research are collected from the
NASA MDP repository. NASA MDP repository is a
database that stores problem, product, and metrics data
[32]. The primary goal of this data repository is to
provide project data to the software community. In doing
so, the Metrics Data Program collects artifacts from a
large NASA dataset, generates metrics on the artifacts,
and then generates reports that are made available to the
public at no cost. The data that are made available to
general users have been sanitized and authorized for
publication through the Metrics Data Program Web site
by officials representing the projects from which the data
originated.

TABLE I.
NASA MDP DATA SETS AND THE CODE ATTRIBUTES

Each NASA data set is comprised of several software

modules, together with their number of faults and
characteristic code attributes. After preprocessing,
modules that contain one or more errors were labeled as
fault-prone, whereas error-free modules were categorized
as not-fault-prone. Besides line of codes (LOC) counts,
the NASA MDP data sets include several Halstead
attributes as well as McCabe complexity measures. The
former estimates reading complexity by counting
operators and operands in a module, whereas the latter is
derived from a module’s flow graph.

Some researchers endorse the static code attributes
defined by McCabe and Halstead as defect predictors in
the software defect prediction. McCabe and Halstead are
module-based metrics, where a module is the smallest
unit of functionality. Static code attributes are used as
defect predictors, since they are useful, generalizable,
easy to use, and widely used [27].

Feature Selection
(Particle Swarm Optimization)

Model Validation
(10 Fold Cross Validation)

Meta-Learning
(Bagging Technique)

Learning Algorithm
(10 Classifiers)

Model Evaluation
(Area Under Curve (AUC))

Model Comparison
(Paired Two-tailed t-Test)

NASA MDP Data Sets
(9 Data Sets)

Code Attributes
NASA MDP dataset

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4
LOC counts LOC total √ √ √ √ √ √ √ √ √

LOC blank √ √ √ √ √ √ √ √ √
LOC code and comment √ √ √ √ √ √ √ √ √
LOC comments √ √ √ √ √ √ √ √ √
LOC executable √ √ √ √ √ √ √ √ √
number of lines √ √ √ √ √ √ √ √

Halstead content √ √ √ √ √ √ √ √ √
difficulty √ √ √ √ √ √ √ √ √
effort √ √ √ √ √ √ √ √ √
error est √ √ √ √ √ √ √ √ √
length √ √ √ √ √ √ √ √ √
level √ √ √ √ √ √ √ √ √
prog time √ √ √ √ √ √ √ √ √
volume √ √ √ √ √ √ √ √ √
num operands √ √ √ √ √ √ √ √ √
num operators √ √ √ √ √ √ √ √ √
num unique operands √ √ √ √ √ √ √ √ √
num unique operators √ √ √ √ √ √ √ √ √

McCabe cyclomatic complexity √ √ √ √ √ √ √ √ √
cyclomatic density √ √ √ √ √ √ √ √
design complexity √ √ √ √ √ √ √ √ √
essential complexity √ √ √ √ √ √ √ √ √

Misc. branch count √ √ √ √ √ √ √ √ √
call pairs √ √ √ √ √ √ √ √
condition count √ √ √ √ √ √ √ √
decision count √ √ √ √ √ √ √ √
decision density √ √ √ √ √ √ √ √
edge count √ √ √ √ √ √ √ √
essential density √ √ √ √ √ √ √ √
parameter count √ √ √ √ √ √ √ √
maintenance severity √ √ √ √ √ √ √ √
modified condition count √ √ √ √ √ √ √ √
multiple condition count √ √ √ √ √ √ √ √
global data complexity √ √
global data density √ √
normalized cyclomatic complexity √ √ √ √ √ √ √ √
percent comments √ √ √ √ √ √ √ √
node count √ √ √ √ √ √ √ √

Programming Language C C++ Java C C C C C C
Number of Code Attributes 37 21 39 39 37 37 77 37 37
Number of Modules 505 1571 458 127 403 1059 4505 1511 1347
Number of fp Modules 48 319 43 44 31 76 23 160 178
Percentage of fp Modules 9.5 20.31 9.39 34.65 7.69 7.18 0.51 10.59 13.21

1328 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

In this research, we use nine software defect
prediction data sets from NASA MDP. Individual
attributes per data set, together with some general
statistics and descriptions, are given in Table I. These
data sets have various scales of LOC, various software
modules coded by several different programming
languages including C, C++ and Java, and various types
of code metrics including code size, Halstead’s
complexity and McCabe’s cyclomatic complexity.

C. Model Validation
We use the state-of-the-art stratified 10-fold cross-

validation for learning and testing data. This means that
we divided the training data into 10 equal parts and then
performed the learning process 10 times. Each time, we
chose another part of dataset for testing and used the
remaining nine parts for learning. After, we calculated the
average values and the deviation values from the ten
different testing results. We employ the stratified 10-fold
cross validation, because this method has become the
standard method in practical terms. Some tests have also
shown that the use of stratification improves results
slightly [41].

D. Model Evaluation
We applied area under curve (AUC) as an accuracy

indicator in our experiments to evaluate the performance
of classifiers. AUC is area under ROC curve. Lessmann
et al. [21] advocated the use of the AUC to improve
cross-study comparability. The AUC has the potential to
significantly improve convergence across empirical
experiments in software defect prediction, because it
separates predictive performance from operating
conditions, and represents a general measure of
predictiveness. Furthermore, the AUC has a clear
statistical interpretation. It measures the probability that a
classifier ranks a randomly chosen fault-prone module
higher than a randomly chosen non-fault-prone module.
Consequently, any classifier achieving AUC well above
0.5 is demonstrably effective for identifying fault-prone
modules and gives valuable advice as to which modules
should receive particular attention in software testing.

A rough guide for classifying the accuracy of a
diagnostic test using AUC is the traditional system,
presented below [42]:

• 0.90 - 1.00 = excellent classification
• 0.80 - 0.90 = good classification
• 0.70 - 0.80 = fair classification
• 0.60 - 0.70 = poor classification
• 0.50 - 0.60 = failure

E. Model Comparison using Paired Two-tailed t-Test
A paired t-test compares two samples in cases where

each value in one sample has a natural partner in the other.
A paired t-test looks at the difference between paired
values in two samples, takes into account the variation of
values within each sample, and produces a single number
known as a t-value. In this research, we have applied pair
wise t-tests over mean values of each datasets in order to
determine statistical significance of results with	∝	ൌ 0.05.

V. RESULTS AND ANALYSIS

A. Preliminary Results
First of all, we conducted experiments on 9 NASA

MDP data sets by using 10 classification algorithms.
More specifically, it applies five types of classification
models that include traditional statistical classifiers
(Logistic Regression (LR), Linear Discriminant Analysis
(LDA), and Naïve Bayes (NB)), Nearest Neighbors (k-
nearest neighbor (k-NN) and K*), Neural Network (Back
Propagation (BP)), Support Vector Machine (SVM), and
Decision Tree (C4.5, Classification and Regression Tree
(CART), and Random Forest (RF)).

The experimental results are reported in Table II. This
result confirmed Hall et al. result [3] that NB and LR, in
particular, seem to be the techniques used in models that
are performing relatively well in software defect
prediction. Models based on Decision Tree seem to
underperform due to the class imbalance. SVM
techniques also perform less well, though SVM has
excellent generalization ability in the situation of small
sample data like NASA MDP data set.

TABLE II.
AUC OF 10 CLASSIFIERS ON 9 DATA SETS

B. Integration of GA Based Feature Selection Method
and Bagging Technique

In the next experiment, we implemented GA and
bagging technique for 10 classification algorithms on 9
NASA MDP data sets. The experimental result is shown
in Table III. The improved model for each classifier is
highlighted width boldfaced print.

TABLE III.
AUC OF 10 CLASSIFIERS ON 9 DATA SETS (WITH GA AND BAGGING)

Figure 4 visually shows AUC comparisons of 10
algorithms on 9 NASA MDP data sets. As shown in
Table III and Figure 4, almost all classifiers that

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

Statistical
Classifier

LR 0.763 0.801 0.713 0.766 0.726 0.852 0.849 0.81 0.894

LDA 0.471 0.536 0.447 0.503 0.58 0.454 0.577 0.524 0.61

NB 0.734 0.786 0.67 0.739 0.732 0.781 0.811 0.756 0.838

Nearest
Neighbor

k-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

K* 0.6 0.678 0.562 0.585 0.63 0.652 0.754 0.697 0.76
Neural
Network BP 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883

Support Vector
Machine SVM 0.753 0.752 0.642 0.761 0.714 0.79 0.534 0.75 0.899

Decision Tree

C4.5 0.565 0.515 0.497 0.455 0.543 0.601 0.493 0.715 0.723

CART 0.604 0.648 0.637 0.482 0.656 0.574 0.491 0.68 0.623

RF 0.573 0.485 0.477 0.525 0.74 0.618 0.649 0.678 0.2

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

Statistical
Classifier

LR 0.753 0.795 0.691 0.761 0.742 0.852 0.822 0.813 0.901

LDA 0.592 0.627 0.635 0.64 0.674 0.637 0.607 0.635 0.715

NB 0.702 0.79 0.677 0.739 0.724 0.799 0.805 0.78 0.861

Nearest
Neighbor

k-NN 0.666 0.689 0.67 0.783 0.656 0.734 0.554 0.649 0.732

K* 0.71 0.822 0.503 0.718 0.68 0.876 0.877 0.816 0.893
Neural
Network BP 0.744 0.797 0.707 0.835 0.689 0.829 0.905 0.799 0.921

Support Vector
Machine SVM 0.667 0.767 0.572 0.747 0.659 0.774 0.139 0.476 0.879

Decision Tree

C4.5 0.64 0.618 0.658 0.732 0.695 0.758 0.642 0.73 0.844

CART 0.674 0.818 0.754 0.709 0.703 0.819 0.832 0.842 0.9

RF 0.706 0.584 0.605 0.483 0.735 0.696 0.901 0.734 0.601

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1329

© 2014 ACADEMY PUBLISHER

implemented
method. It i
feature selec
improve cla
Machine (SV
significant
selection and
performance
SVM may be
optimization
between GA
on the perf
classifiers, su

Figure 4. AUC

In order

between the p
a method wi
methods are
(Paired Two
(algorithm) p
data set. In s
the probabil
extreme as th
that the null
hypothesis"
predetermine
observed res
hypothesis. I

d GA and ba
indicate that
ction and bag
assification p
VM) techniqu
improvement

d bagging ar
problem. Th

e underperfor
for best per
and bagging

formance of
uch as C4.5 an

Comparisons of
(Without/Wit

to verify wh
proposed met
ithout GA an
 compared. W
o Sample for
pair of withou
statistical sign
ity of obtain
he one that w
hypothesis is

when the
ed significanc
sult would be
In this case, w

agging outper
the integrati

gging techniq
performance.
ues perform
t. It indica
e not the ans
his result als
rming as they
rformance [3]
technique aff
the class im

nd CART.

9 Data Sets Class
th GA and Baggi

hether a sign
thod (with GA
nd bagging, th
We performed
r Means) fo

ut/with GA an
nificance test

ning a test st
was actually ob

true. One ofte
P value is

ce level (α), i
highly unlik

we set the stati

rform the ori
ion of GA b

que is effectiv
Support V

less well an
ates that fe
swer of the S
so confirmed
require param

]. The integr
fected signific
mbalance suf

sified by 10 Class
ng)

nificant differ
A and bagging
he results of
d statistical t
r every clas

nd bagging on
ing the P val
tatistic at lea
bserved, assum
en "rejects the
s less than
indicating tha
ely under the
istical signific

iginal
based
ve to

Vector
nd no
eature
SVM

d that
meter
ration
cantly
ffered

sifiers

rence
g) and

both
t-Test
sifier
each

lue is
ast as
uming
e null

the
at the
e null
cance

leve
sign

T
two
diffe
thos
SVM
(P v
bagg
accu
that
impr
class

PA

C. In
Bagg

I
bagg
NAS
in T
high

AUC

Figu
algo
Tabl
impl
meth
featu
impr
Mac
sign

Cla

Sta
Cla

Nea
Nei

Neu
Sup
Ma

Dec

Classi

Statist
Classi

Neare
Neigh

Neura
Netwo
Suppo
Mach

Decisi

el (α) to be
nificant differe
The result is s

classifiers (L
erence (P valu
se of remainin
M, C4.5, CAR
value < 0.05
ging techniq
uracy for most

the propo
rovement in
sifiers.

AIRED TWO-TAILE

ntegration of P
gging Techniqu
In the next e
ging techniqu
SA MDP data
Table V. The
hlighted width

C OF 10 CLASSIFI

ure 5 visual
orithms on 9
le V and F
lemented PSO
hod. It indica
ure selection
rove classifi
chine (SVM) t
nificant impro

assifiers

atistical
assifier

LR

LD

NB

arest
ighbor

k-N

K*

ural Network BP
pport Vector
achine SV

cision Tree

C4

CA

RF

ifiers C

tical
ifier

LR 0

LDA 0

NB 0

est
hbor

k-NN 0

K* 0
al
ork BP

ort Vector
ine SVM 0

ion Tree

C4.5 0

CART 0

RF

0.05. It me
ence if P value
shown in Tab
LR and NB)
ue > 0.05), the
g eight classif
RT and RF) h
5). The integ
que achieve
t classifiers. T
sed method

n prediction

TABLE
ED T-TEST OF WIT

PSO based Fe
ue
experiment, w
ue for 10 clas
a sets. The ex

improved m
h boldfaced pri

TABLE
IERS ON 9 DATA S

ly shows A
NASA MDP

Figure 5, al
O and baggin
ate that the i
and bagging

cation perfo
techniques stil

ovement. The

P va

R 0.15

DA 0.00

B 0.29

NN 0.00

* 0.00

P 0.00

VM 0.03

4.5 0.00

ART 0.00

F 0.01

CM1 KC1 KC3

.738 0.798 0.695

.469 0.627 0.653

.756 0.847 0.71

.632 0.675 0.578

.681 0.792 0.66

0.7 0.799 0.726

.721 0.723 0.67

.682 0.606 0.592

.611 0.679 0.787

0.62 0.604 0.557

means that no
e > 0.05.
ble IV. Althou
) that have n
e results have
fiers (LDA, k
have significa
gration betwe
ed higher
Therefore, we
d makes an

performanc

IV.
THOUT/WITH GA A

eature Selectio

we implement
ssification alg
xperimental re

model for each
rint.

E V.
SETS (WITH PSO

AUC compar
P data sets. A
lmost all cla
ng outperform
integration o

g technique is
ormance. Sup
ill perform les

integration b

alue of t-Test Re

56 No

0004 Sig

94 No

0002 Sig

01 Sig

08 Sig

3 Sig

002 Sig

002 Sig

1 Sig

MC2 MW1 PC1

0.78 0.751 0.848

0.686 0.632 0.665

0.732 0.748 0.79

0.606 0.648 0.547

0.725 0.572 0.822

0.734 0.722 0.809

0.756 0.667 0.792

0.648 0.615 0.732

0.679 0.682 0.831

0.533 0.714 0.686

o statistically

ugh there are
no significant
indicated that
-NN, K*, BP,
ant difference
een GA and
classification
can conclude

n impressive
e for most

AND BAGGING

on and

ted PSO and
gorithms on 9
esult is shown
h classifier is

AND BAGGING)

risons of 10
As shown in
assifiers that

m the original
f PSO based
s effective to
pport Vector
ss well and no
between PSO

esult

ot Sig. (α > 0.05)

g. (α < 0.05)

ot Sig. (α > 0.05)

g. (α < 0.05)

g. (α < 0.05)

g. (α < 0.05)

g. (α < 0.05)

g. (α < 0.05)

g. (α < 0.05)

g. (α < 0.05)

PC2 PC3 PC4

0.827 0.816 0.897

0.571 0.604 0.715

0.818 0.78 0.85

0.594 0.679 0.738

0.814 0.809 0.878

0.89 0.823 0.915

0.294 0.735 0.903

0.732 0.78 0.769

0.794 0.845 0.912

0.899 0.759 0.558

y

e
t
t
,
e
d
n
e
e
t

d
9
n
s

0
n
t
l
d
o
r
o
O

1330 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

and bagging
performance
such as C4.5

Figure 5. AUC

In order

between the
and a metho
both metho
(Paired Two
(algorithm) p
each data se
The result is

PAIRED TWO-

Classifiers

Statistical
Classifier

Nearest
Neighbor

Neural Network
Support Vector
Machine

Decision Tree

g technique
of the class

 and CART.

Comparisons of
(Without/Wit

to verify wh
proposed me

od without PS
ds are com
o Sample for
pair of witho

et. We set sig
shown in Tab

TA
-TAILED T-TEST O

LR

LDA

NB

k-NN

K*

k BP

SVM

C4.5

CART

RF

affected sign
imbalance su

9 Data Sets Class
th PSO and Baggi

hether a sign
ethod (with P
SO and baggi

mpared. We
r Means) fo
out/with PSO
gnificance lev
ble VI.

ABLE VI.
OF WITHOUT/WITH

P value of t-Tes

0.323

0.003

0.007

0.00007

0.001

0.03

0.09

0.0002

0.002

0.01

nificantly on
uffered classi

sified by 10 Class
ing)

nificant differ
PSO and bagg
ing, the resul
performed t
r every clas

O and baggin
vel (α) to be

H PSO AND BAGG

t Result

Not Sig. (P > 0

Sig. (P < 0.05)

Sig. (P < 0.05)

Sig. (P < 0.05)

Sig. (P < 0.05)

Sig. (P < 0.05)

Not Sig. (P > 0

Sig. (P < 0.05)

Sig. (P < 0.05)

Sig. (P < 0.05)

n the
ifiers,

sifiers

rence
ging)
lts of
t-Test
sifier

ng on
0.05.

GING

A
sign
indic
sign
conc
betw
impr
mos

D. C
PSO

F
diffe
the r
t-Te
(algo
each
The

PA

A
diffe
indic
sign
there
whe

A
optim
swar
defe
algo
deal
tech
prob

W
whic
cont
resu
betw
achi
can
impr
mos

.05)

.05)

Cla

Stat
Cla

Nea
Neig

Neu
Sup
Mac

Dec

Although the
nificant differ
cated that tho

nificant differ
clude that th
ween PSO
ressive impro

st classifiers.

Comparison B
O+Bagging
Finally, In o
erence betwee
results of both

est (Paired Tw
orithm) pair
h data set. W
result is show

IRED TWO-TAILE

Although ther
erence (P < 0
cated that tho

nificant differe
e is no signif

en used as feat

A novel m
mization met
rm optimizati

ect prediction
orithm and par
l with the n
hnique is emp
blem.
We conducted
ch is applied
text of softw

ults show us th
ween metaheu
ieved higher

conclude th
ressive impro

st classifiers. F

ssifiers

tistical
ssifier

LR

LD

NB

arest
ghbor

k-N

K*

ural Network BP
pport Vector
chine SVM

cision Tree

C4.

CA

RF

re are three
rence (P >
ose of remain
rence (P < 0
he proposed
and bagging

ovement in p

etween GA+B

order to veri
en the GA+Ba
h methods are

wo Sample for
of GA+Bagg

We set signific
wn in Table VI

TABLE V
D T-TEST OF GA+

e are two clas
0.05) (NB an
se of remainin
ence (P > 0.0
ficant differen
ture selection

VI. CONCL

method that
thods (geneti
on) and bagg

n is proposed
rticle swarm o

noise attribute
ployed to alle

d a comparati
d to nine NA
ware defect
hat the propose
ristic optimiza
classification

hat the prop
ovement in p
From the comp

P va

R 0.25

A 0.19

 0.044

NN 0.063

0.268

0.203

M 0.003

.5 0.3

ART 0.216

0.088

classifiers t
0.05), the

ning eight cla
0.05). Theref

method (th
g technique)
prediction per

Bagging and

ify whether
agging and P
e compared. W
Means) for ev

ging and PSO
cance level (α
II.

VII.
+BAGGING AND P

ssifier that ha
nd SVM), the
ng eight class
05). We can
nce between
for most class

LUSION

integrate
ic algorithm

ging technique
d in this pa
optimization a
es problem,
eviate the cla

ive study of t
ASA MDP d

prediction.
ed methods, th
ation methods

n accuracy. T
posed metho
prediction per
parison result

alue of t-Test Res

Not

Not

4 Sig.

3 Not

8 Not

3 Not

3 Sig.

Not

6 Not

8 Not

that have no
results have

assifiers have
fore, we can
e integration
) makes an
rformance for

a significant
SO+Bagging,

We performed
very classifier

O+Bagging on
α) to be 0.05.

PSO+BAGGING

ave significant
e results have
ifiers have no
conclude that
PSO and GA
sifiers.

metaheuristic
and particle

e for software
aper. Genetic
are applied to
and bagging

ass imbalance

ten classifiers
ata sets with
Experimental
he integration
s and bagging

Therefore, we
d makes an

rformance for
, we conclude

ult

Sig. (α > 0.05)

Sig. (α > 0.05)

. (α < 0.05)

Sig. (α > 0.05)
Sig. (α > 0.05)
Sig. (α > 0.05)

. (α < 0.05)

Sig. (α > 0.05)
Sig. (α > 0.05)
Sig. (α > 0.05)

o
e
e
n
n
n
r

t
,

d
r
n
.

t
e
o
t

A

c
e
e
c
o
g
e

s
h
l
n
g,
e
n
r
e

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1331

© 2014 ACADEMY PUBLISHER

that there is no significant difference between particle
swarm optimization and genetic algorithm when used as
feature selection for most classifiers in software defect
prediction.

Future research will be concerned with benchmarking
and investigating the sophisticated metaheuristic
optimization methods for optimizing parameter of
support vector machine for software defect prediction.

REFERENCES

[1] M. McDonald, R. Musson, and R. Smith, “The practical
guide to defect prevention,” Control, pp. 260–272, 2007.

[2] C. Jones, Applied Software Measurement: Global Analysis
of Productivity and Quality, vol. 38, no. 1. McGraw-Hill
Inc., 2008, p. 662.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell,
“A Systematic Literature Review on Fault Prediction
Performance in Software Engineering,” IEEE Transactions
on Software Engineering, vol. 38, no. 6, pp. 1276–1304,
Nov. 2012.

[4] C. Catal, “Software fault prediction: A literature review
and current trends,” Expert Systems with Applications, vol.
38, no. 4, pp. 4626–4636, Apr. 2011.

[5] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. Bener, “Defect prediction from static code features:
current results, limitations, new approaches,” Automated
Software Engineering, vol. 17, no. 4, pp. 375–407, May
2010.

[6] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M.
Lindvall, D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz,
“What we have learned about fighting defects,” in
Proceedings Eighth IEEE Symposium on Software Metrics
2002, 2002, pp. 249–258.

[7] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A
General Software Defect-Proneness Prediction Framework,”
IEEE Transactions on Software Engineering, vol. 37, no. 3,
pp. 356–370, May 2011.

[8] N. B. Ebrahimi, “On the statistical analysis of the number
of errors remaining in a software design document after
inspection,” Software Engineering IEEE Transactions on,
vol. 23, no. 8, pp. 529–532, 1997.

[9] O. Kutlubay, B. Turhan, and A. B. Bener, “A Two-Step
Model for Defect Density Estimation,” in Software
Engineering and Advanced Applications 2007 33rd
EUROMICRO Conference on, 2007, pp. 322–332.

[10] L. C. Briand, K. El Emam, B. G. Freimut, and O.
Laitenberger, “A comprehensive evaluation of capture-
recapture models for estimating software defect content,”
IEEE Transactions on Software Engineering, vol. 26, no. 6,
pp. 518–540, 2000.

[11] K. El Emam and O. Laitenberger, “Evaluating capture-
recapture models with two inspectors,” IEEE Transactions
on Software Engineering, vol. 27, no. 9, pp. 851–864, 2001.

[12] G. Rücker, V. Reiser, E. Motschall, H. Binder, J. J.
Meerpohl, G. Antes, and M. Schumacher, “Boosting
qualifies capture-recapture methods for estimating the
comprehensiveness of literature searches for systematic
reviews.,” Journal of Clinical Epidemiology, vol. 64, no.
12, pp. 1364–72, 2011.

[13] P. E. R. Runeson and C. Wohlin, “An Experimental
Evaluation of an Experience-Based Capture-Recapture
Method in Software Code Inspections,” Empirical
Software Engineering, vol. 3, no. 4, pp. 381–406, 1998.

[14] N. E. Fenton and M. Neil, “A critique of software defect
prediction models,” IEEE Transactions on Software
Engineering, vol. 25, no. 5, pp. 675–689, 1999.

[15] M. Shepperd, M. Cartwright, and C. Mair, “Software
defect association mining and defect correction effort
prediction,” IEEE Transactions on Software Engineering,
vol. 32, no. 2, pp. 69–82, Feb. 2006.

[16] R. Karthik and N. Manikandan, “Defect association and
complexity prediction by mining association and clustering
rules,” 2010 2nd International Conference on Computer
Engineering and Technology, pp. V7–569–V7–573, 2010.

[17] C.-P. Chang, C.-P. Chu, and Y.-F. Yeh, “Integrating in-
process software defect prediction with association mining
to discover defect pattern,” Information and Software
Technology, vol. 51, no. 2, pp. 375–384, Feb. 2009.

[18] A. A. Porter and W. Richard, “Empirically Guided
Software Development Using Metric-Based Classification
Trees,” IEEE Software, pp. 46–54, 1990.

[19] L. Zhan and M. Reformat, “A practical method for the
software fault-prediction,” in IEEE International
Conference on Information Reuse and Integration, 2007,
pp. 659–666.

[20] T. Menzies, J. Greenwald, and A. Frank, “Data Mining
Static Code Attributes to Learn Defect Predictors,” IEEE
Transactions on Software Engineering, vol. 33, no. 1, pp.
2–13, Jan. 2007.

[21] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings,”
IEEE Transactions on Software Engineering, vol. 34, no. 4,
pp. 485–496, Jul. 2008.

[22] N. Gayatri, S. Nickolas, A. Reddy, S. Reddy, and A. V.
Nickolas, “Feature Selection Using Decision Tree
Induction in Class level Metrics Dataset for Software
Defect Predictions,” Proceedings of the World Congress
on Engineering and Computer Science, vol. I, pp. 124–129,
2010.

[23] G. Denaro, “Estimating software fault-proneness for tuning
testing activities,” in Proceedings of the 22nd International
Conference on Software engineering - ICSE ’00, 2000, pp.
704–706.

[24] T. M. Khoshgoftaar and K. Gao, “Feature Selection with
Imbalanced Data for Software Defect Prediction,” 2009
International Conference on Machine Learning and
Applications, pp. 235–240, Dec. 2009.

[25] B.-J. Park, S.-K. Oh, and W. Pedrycz, “The design of
polynomial function-based neural network predictors for
detection of software defects,” Information Sciences, Jan.
2011.

[26] T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Comparing Boosting and Bagging Techniques With
Noisy and Imbalanced Data,” IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 41, no. 3, pp. 552–568, May 2011.

[27] A. Tosun, A. Bener, B. Turhan, and T. Menzies, “Practical
considerations in deploying statistical methods for defect
prediction: A case study within the Turkish
telecommunications industry,” Information and Software
Technology, vol. 52, no. 11, pp. 1242–1257, Nov. 2010.

[28] T. M. Khoshgoftaar, Y. Xiao, and K. Gao, “Software
quality assessment using a multi-strategy classifier,”
Information Sciences, Dec. 2010.

[29] Y. Liu, X. Yu, J. X. Huang, and A. An, “Combining
integrated sampling with SVM ensembles for learning
from imbalanced datasets,” Information Processing &
Management, vol. 47, no. 4, pp. 617–631, Jul. 2011.

1332 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

[30] T. Wang, W. Li, H. Shi, and Z. Liu, “Software Defect
Prediction Based on Classifiers Ensemble,” Journal of
Information & Computational Science 8:, vol. 16, no.
December, pp. 4241–4254, 2011.

[31] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with
noise in defect prediction,” Proceeding of the 33rd
International Conference on Software engineering -
ICSE ’11, pp. 481–490, 2011.

[32] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
“Reflections on the NASA MDP data sets,” IET Software,
vol. 6, no. 6, p. 549, 2012.

[33] S. C. Yusta, “Different metaheuristic strategies to solve the
feature selection problem,” Pattern Recognition Letters,
vol. 30, no. 5, pp. 525–534, Apr. 2009.

[34] M. M. Kabir, M. Shahjahan, and K. Murase, “A new
hybrid ant colony optimization algorithm for feature
selection,” Expert Systems with Applications, vol. 39, no. 3,
pp. 3747–3763, Feb. 2012.

[35] H. Wang, T. M. Khoshgoftaar, and A. Napolitano,
“Software measurement data reduction using ensemble
techniques,” Neurocomputing, vol. 92, pp. 124–132, Sep.
2012.

[36] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse,
“Improving Software-Quality Predictions With Data
Sampling and Boosting,” IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, vol.
39, no. 6, pp. 1283–1294, Nov. 2009.

[37] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya,
“Choosing software metrics for defect prediction: an
investigation on feature selection techniques,” Software:
Practice and Experience, vol. 41, no. 5, pp. 579–606, Apr.
2011.

[38] L. Breiman, “Bagging predictors,” Machine Learning, vol.
24, no. 2, pp. 123–140, 1996.

[39] Y. Shi and R. Eberhart, “A modified particle swarm
optimizer,” in 1998 IEEE International Conference on
Evolutionary Computation Proceedings IEEE World
Congress on Computational Intelligence Cat No98TH8360,
1998, vol. 189, no. 2, pp. 69–73.

[40] C. Catal and B. Diri, “Investigating the effect of dataset
size, metrics sets, and feature selection techniques on
software fault prediction problem,” Information Sciences,
vol. 179, no. 8, pp. 1040–1058, Mar. 2009.

[41] I. H. Witten, E. Frank, and M. A. Hall, Data Mining Third
Edition. Elsevier Inc., 2011.

[42] F. Gorunescu, Data Mining: Concepts, Models and
Techniques, vol. 12. Springer-Verlag Berlin Heidelberg,
2011.

Romi Satria Wahono. Received B.Eng
and M.Eng degrees in Computer
Science in 1999 and 2001, respectively
from Saitama University, Japan.
Currently working towards a PhD with
Faculty of Information and
Communication Technology, Universiti
Teknikal Malaysia Melaka. He is a
lecturer at the Graduate School of
Computer Science, Dian Nuswantoro

University, Indonesia. He is also a founder and chief executive
officer of Brainmatics, Inc., a software development company
in Indonesia. His current research interests include software
engineering and machine learning. Professional member of the
ACM and IEEE Computer Society.

Nanna Suryana. Received his B.Sc. in
Soil and Water Eng. (Bandung,
Indonesia), M.Sc. in Comp. Assisted for
Geoinformatics and Earth Science,
(Enschede, Holland), Ph.D. in
Geographic Information System (GIS)
(Wageningen, Holland). He is currently
holding a position of Director of
International Office and professor at
Faculty of Information Technology and

Communication (FTMK) of Universiti Teknikal Malaysia
Melaka (UTEM). His current research interest is in field of GIS
and Data Mining.

Sabrina Ahmad. Received BIT (Hons)
from Universiti Utara Malaysia and
MSc. in real time software engineering
from Universiti Teknologi Malaysia.
She obtained Ph.D in Computer Science
from The University of Western
Australia. Her specialization is in
requirements engineering and focusing
on improving software quality. She is
currently a Senior Lecturer at Faculty of

Information and Communication Technology, Universiti
Teknikal Malaysia Melaka. Her research interests include
software engineering, software requirements, quality metrics
and process model. Certified Professional Requirements
Engineering (IREB CPRE -FL) and Certified Information
Technology Architect (IASA CITA-F).

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1333

© 2014 ACADEMY PUBLISHER

