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Abstract—Software defect prediction has been an important 
research topic in the software engineering field, especially to 
solve the inefficiency and ineffectiveness of existing 
industrial approach of software testing and reviews. The 
software defect prediction performance decreases 
significantly because the data set contains noisy attributes 
and class imbalance. Feature selection is generally used in 
machine learning when the learning task involves high-
dimensional and noisy attribute datasets. Most of the 
feature selection algorithms, use local search throughout the 
entire process, consequently near-optimal to optimal 
solutions are quiet difficult to be achieved. Metaheuristic 
optimization can find a solution in the full search space and 
use a global search ability, significantly increasing the 
ability of finding high-quality solutions within a reasonable 
period of time. In this research, we propose the combination 
of metaheuristic optimization methods and bagging 
technique for improving the performance of the software 
defect prediction. Metaherustic optimization methods 
(genetic algorithm and particle swarm optimization) are 
applied to deal with the feature selection, and bagging 
technique is employed to deal with the class imbalance 
problem. Results have indicated that the proposed methods 
makes an impressive improvement in prediction 
performance for most classifiers. Based on the comparison 
result, we conclude that there is no significant difference 
between particle swarm optimization and genetic algorithm 
when used as feature selection for most classifiers in 
software defect prediction. 
 
Index Terms—software defect prediction, feature selection, 
genetic algorithm, particle swarm optimization, bagging 
technique 
 

I.  INTRODUCTION 

Software defects or software faults are expensive in 
quality and cost. It is a deficiency in a software product 
that causes it to perform unexpectedly [1]. Moreover, the 
cost of capturing and correcting defects is one of the most 
expensive software development activities [2]. The 
accurate prediction of defect‐prone software modules can 
help direct test effort, reduce costs, improve the quality of 
software [3], reach a highly dependable system, 
improving the test process by focusing on fault-prone 

modules, and identifying refactoring candidates that are 
predicted as fault- prone [4]. 

Recent studies showed that the probability of 
detection of fault prediction models might be higher than 
the probability of detection of software reviews. Menzies 
et al. found defect predictors with a probability of 
detection of 71 percent [5]. This is markedly higher than 
other currently used industrial methods such as manual 
code reviews. A panel at IEEE Metrics 2002 [6] 
concluded that manual software reviews can find 60 
percent of defects.  Therefore, software fault prediction 
approaches are much more efficient and effective to 
detect software faults compared to software reviews. 

Software defect prediction has been an important 
research topic in the software engineering field [3]. 
Current software defect prediction research focuses on 
three topics [7]. First topic concern on estimating the 
number of defects remaining in software systems, the 
second one, concern on discovering defect associations, 
and the third topic, focus on classifying the defect-
proneness of software components, typically into two 
classes, defect-prone and not defect-prone. 

The first type of work employs statistical approaches 
[8] [9], capture-recapture models [10] [11] [12], and 
detection profile methods [13] to estimate the number of 
defects remaining in software systems with inspection 
data and process quality data. The prediction result can be 
used as an important measure for the software developer 
and can be used to control the software process and gauge 
the likely delivered quality of a software system [14]. 

The second type of work borrows association rule 
mining algorithms from the data mining community to 
reveal software defect associations [15] [16] [17]  which 
can be used for three purposes. First, finding as many 
related defects as possible to the detected defects and 
consequently, make more effective corrections to the 
software. Second, helping to evaluate reviewers’ results 
during an inspection. Thus, a recommendation might be 
that their work should be reinspected for completeness. 
Third, assisting managers in improving the software 
process through analysis of the reasons why some defects 
frequently occur together. If the analysis leads to the 
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identification of a process problem, managers can devise 
corrective action. 

The third type of work classifies software components 
or modules as defect-prone and non-defect-prone by 
means of metric based classification [18] [19] [20] [21] 
[7]. Classification algorithm is a popular machine 
learning approach for software defect prediction [21]. It 
categorizes the software code attributes into defective or 
not defective, which is completed by means of a 
classification model derived from software metrics data 
from previous development projects [22]. Being able to 
predict which components are more likely to be defect-
prone supports better targeted testing resources and 
therefore, improved efficiency. This research is focused 
and concerned with the third approach. 

Various types of classification algorithms have been 
applied for software defect prediction, including logistic 
regression [23], decision trees [24], neural networks [25], 
naïve-bayes [20]. Unfortunately, software defect 
prediction remains a largely unsolved problem. The 
comparisons and benchmarking result of the defect 
prediction using machine learning classifiers indicate that, 
no significant performance differences could be detected 
[21] and no particular classifiers that performs the best 
for all the data sets [7]. There is a need of accurate defect 
prediction model for large-scale software system. 

Two common aspects of data quality that can affect 
classification performance are class imbalance and noisy 
attributes [26] of data sets. Software defect datasets have 
an imbalanced nature with very few defective modules 
compared to defect-free ones [27]. Imbalance can lead to 
a model that is not practical in software defect prediction, 
because most instances will be predicted as non-defect 
prone [28]. Learning from imbalanced datasets is difficult. 
The insufficient information that is associated with the 
minority class impedes making a clear understanding of 
the inherent structure of the dataset [29]. The software 
defect prediction performance also decreases significantly 
because the dataset contains noisy attributes [30] [31]. 
However, the noisy data points in the datasets that cannot 
be confidently assumed to be erroneous using such 
simple method [32]. 

Feature selection is generally used in machine 
learning when the learning task involves high-
dimensional and noisy attribute datasets. Most of the 
feature selection algorithms, use local search throughout 
the entire process, consequently near-optimal to optimal 
solutions are quiet difficult to be achieved. Metaheuristic 
optimization can find a solution in the full search space 
and use a global search ability, significantly increasing 
the ability of finding high-quality solutions within a 
reasonable period of time [33]. Mostly used metaheuristic 
optimization for feature selection includes genetic 
algorithm (GA), particle swarm optimization (PSO) and 
ant colony optimization (ACO). 

In the current work, we propose the combination of 
metaheuristic optimization methods (GA and PSO) and 
bagging technique for improving the accuracy of software 
defect prediction. Metaheuristic optimization methods are 
applied to deal with the feature selection, and bagging 

technique is employed to deal with the class imbalance 
problem. Bagging technique is chosen due to the 
effectiveness in handling class imbalance [26]. The 
proposed method is evaluated using the state-of-the-art 
and public datasets from NASA metric data repository. 

II. RELATED RESEARCH 

Feature selection is an important data preprocessing 
activity and has been extensively studied in the data 
mining and machine learning community. The main goal 
of feature selection is to select a subset of features that 
minimizes the prediction errors of classifiers. Feature 
selection techniques are divided into two categories: 
wrapper-based approach and filter-based approach. The 
wrapper-based approach involves training a learner 
during the feature selection process, while the filter-based 
approach uses the intrinsic characteristics of the data, 
based on a given metric, for feature selection and does 
not depend on training a learner. The primary advantage 
of the filter-based approach over the wrapper-based 
approach is that it is computationally faster. However, if 
computational complexity was not a factor, then a 
wrapper-based approach was the best overall feature 
selection scheme in terms of accuracy. Because the 
objective of this research is to improve the quality and 
accuracy of software defect prediction model, it was 
decided to use the wrapper-based approach. Nevertheless, 
wrapper methods have the associated problem of having 
to train a classifier for each tested feature subset. This 
means testing all the possible combinations of features 
will be virtually impossible. 

Most of the feature selection strategies attempt to find 
solutions that range between sub-optimal and near 
optimal regions. They use local search throughout the 
entire process, instead of global search. On the other hand, 
these search algorithms utilize a partial search over the 
feature space, and suffer from computational complexity. 
Consequently, near-optimal to optimal solutions are quiet 
difficult to achieve using these algorithms. As a result, 
many research studies now focus on metaheuristic 
optimization techniques [34]. The significance of 
metaheuristic optimization techniques is that they can 
find a solution in the full search space on the basis of 
activities of multi-agent systems that use a global search 
ability utilizing local search appropriately, thus 
significantly increasing the ability of finding very high-
quality solutions within a reasonable period of time [33]. 
Metaheuristic optimization techniques have been 
developed in several domains and include algorithms like 
simulated annealing, tabu-search, as well as bio-inspired 
methods like genetic algorithms, evolution strategies, ant 
colony optimization and particle swarm optimization. 
These methods are able to find fairly good solutions 
without searching the entire workspace. 

Although feature selection has been widely applied in 
numerous application domains for many years, its 
application in the software quality prediction domain is 
limited. Song et al. [7] applied two wrapper approaches, 
forward selection and backward elimination, as a feature 
selection for their proposed model. Song et al. concluded 
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that a feature selection techniques, especially forward 
selection and backward elimination can play different 
roles with different learning algorithms for different data 
sets and that no learning scheme dominates, i.e., always 
outperforms the others for all data sets. This means we 
should choose different learning schemes for different 
data sets, and consequently, the evaluation and decision 
process is important. Wang et al. [35] applied ensemble 
feature selection techniques to 16 software defect  data 
sets, and they concluded that ensembles of very few 
rankers are very effective and even better than ensembles 
of many or all rankers.  

The class imbalance problem is observed in various 
domain, including software defect prediction. Several 
methods have been proposed in literature to deal with 
class imbalance: data sampling, boosting and bagging. 
Data sampling is the primary approach for handling class 
imbalance, and it involves balancing the relative class 
distributions of the given data set. There are two types of 
data sampling approaches: under sampling and 
oversampling [36]. Boosting is another technique, which 
is very effective when learning from imbalanced data. 
Compared to data sampling, boosting has received 
relatively little attention in data-mining research with 
respect to class imbalance. However, Seiffert et al. [36] 
show that boosting performs very well. Bagging, may 
outperform boosting when data contain noise [37], 
because boosting may attempt to build models to 
correctly classify noisy examples. In this study we apply 
bagging technique, because Khoshgoftaar et al. [26]  
showed that the bagging techniques generally outperform 
boosting, and hence in noisy data environments. 
Therefore bagging is the preferred method for handling 
class imbalance. 

While considerable work has been done for feature 
selection and class imbalance problem separately, limited 
research can be found on investigating them both together, 
particularly in the software engineering field [26]. In this 
study, we combine metaheuristic optimization methods 
(GA and PSO) for selecting features and bagging 
technique for solving the class imbalance problem, in the 
context of software defect prediction. 

III. PROPOSED SOFTWARE DEFECT PREDICTION 
FRAMEWORK 

A. Integration of GA Based Feature Selection Method 
and Bagging Technique 

Figure1 shows an activity diagram of the integration 
of Bagging technique and GA based feature selection. 
The aim of GA is to find optimum solution within the 
potential solution set. Each solution set is called as 
population. Populations are composed of vectors, namely, 
chromosome or individual. Each item in the vector is 
called as gene. In the proposed method, chromosomes 
represent features, which are encoded as binary strings of 
1 and 0. In this scheme, 1 represents se- lection of a 
feature and 0 means a non-selection. 

As shown in Figure 1, input data set includes training 
data set and testing data set. Relational feature subsets are 
chosen and unrelated features subsets are discarded by 

feature subset selection. After training data set and testing 
data set discarded unrelated feature subsets, they become 
training data set of selected feature subset and testing data 
set of selected feature subset. Classifiers are trained by 
training set with selected feature subset.  

Bagging (Bootstrap Aggregating) was proposed by 
Leo Breiman in 1994 [38] to improve the classification 
by combining classifications of randomly generated 
training sets. The bagging classifier separates a training 
set into several new training sets by random sampling, 
and builds models based on the new training sets. The 
final classification result is obtained by the voting of each 
model. It also reduces variance and helps to avoid 
overfitting. Description of the bagging technique is as 
follows. Given a standard training set D of size n, 
bagging generates m new training sets Di, each of size 
n’<n, by sampling from D uniformly and with 
replacement. By sampling with replacement, some 
observations may be repeated in each Di. If n’=n, then for 
large n the set Di is expected to have the fraction (1 - 1/e) 
of the unique examples of D, the rest being duplicates. 
This kind of sample is known as a bootstrap sample. The 
m models are fitted using the above m bootstrap samples 
and combined by averaging the output (for regression) or 
voting (for classification). Bagging leads to 
improvements for unstable procedures [38], which 
include neural network, classification and regression trees, 
and subset selection in linear regression. On the other 
hand, it can mildly degrade the performance of stable 
methods such as K-nearest neighbors. 

 

 
 

Figure 1. Activity Diagram of the Integration of Bagging Technique and 
Genetic Algorithm based Feature Selection 
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Classification accuracy of classifier is calculated by 
testing set with selected feature subset. Classification 
accuracy of classifier, the number of selected features and 
the feature cost are used to construct a fitness function. 
Every chromosome is evaluated by the equation (1). 

ݏݏ݁݊ݐ݂݅  ൌ ܹ 	ൈ ܣ  ிܹ ൈ ቀܲ  ൫∑ ܥ ൈ ୀଵܨ ൯ቁିଵ 					(1)              
 
where A is classification accuracy, WA is weight of 
classification accuracy, Fi is feature value, WF is feature 
weight, Ci is feature cost, P is setting constant of avoiding 
that denominator reaches zero. 

When ending condition is satisfied, the operation ends, 
otherwise, continue with the next generation operation. 
The proposed method searches for better solutions by 
genetic operations, including crossover, mutation and 
selection. 

B. Integration of PSO based Feature Selection and 
Bagging Technique 

Particle swarm optimization (PSO) is an emerging 
population-based meta-heuristic that simulates social 
behavior such as birds flocking to a promising position to 
achieve precise objectives in a multi-dimensional space. 
PSO performs searches using a population (swarm) of 
individuals (particles) that are updated from iteration to 
iteration. The size of population is denoted as psize. To 
discover the optimal solution, each particle changes its 
searching direction according to two factors, its own best 
previous experience (pbest) and the best experience of all 
other members (gbest). Shi and Eberhart [39] called pbest 
the cognition part, and gbest the social part. 

Each particle represents a candidate position 
(solution). A particle is considered as a point in a D-
dimension space, and its status is characterized according 
to its position and velocity. The D-dimensional position 
for the particle i at iteration t can be represented as	ݔ௧ ൌ 	 ሼݔଵ௧ , ଶ௧ݔ , … , ௧ݔ 	ሽ. Likewise, the velocity (distance 
charge) for particle i at iteration t, which is also a D-
dimension vector, can be described as ݒ௧ ൌ 	 ሼݒଵ௧ , ଶ௧ݒ , … , ௧ݒ 	ሽ. 

In the later version of PSO, a new parameter, called 
inertia weight introduced by [39] due to control over the 
previous velocity of the particles. Let ௧ ൌ 	 ሼଵ௧ , ଶ௧ , … , ௧ 	ሽ  represent the best solution that 
particle i has obtained until iteration t, and ௧ ൌ	൛ଵ௧ , ଶ௧ , … , ௧ 	ൟ  denote the best solution obtained 
from ௧ in the population at iteration t. To search for the 
optimal solution, each particle changes its velocity 
according to the cognitive and social part using equation 
(2).  
 
 ܸௗ௧ ൌ ݓ ∗ 	 ܸௗ௧ିଵ 	ܿଵݎଵ( ܲௗ௧ െ ௗ௧ݔ ) 	ܿଶݎଶ൫ ܲௗ௧ െ ௗ௧ݔ ൯						(2)  
 

Note that, ܿଵ indicates the cognitive learning factor, ܿଶ 
indicates the social learning factor, inertia weight (w) is 
used to slowly reduce the velocity of the particles to keep 
the swarm under control, and ݎଵ  and ݎଶ  are random 
numbers uniformly distributed in U(0,1). 

Each particle then moves to a new potential solution 
based on the equation (3). 
 ܺௗ௧ାଵ ൌ ܺௗ௧  ܸௗ௧ 																																					(3)                      
 

Figure 2 shows an activity diagram of the integration 
of bagging technique and particle swarm optimization 
based feature selection. A group of particles are random 
generated, dimensional discrete binary variable. The 
particle length is the total characteristics number, and if 
and each particle is one the first i-bit is 1, then the first 
feature i was selected, otherwise it will be shielded. Each 
particle represents a feature subset, which is a candidate 
solution. Implement bagging technique and train the 
classifier on the larger training set based on the selected 
feature subset and the type of kernel. If all classifiers are 
finished, combine votes of all classifiers. Finally, 
measure validation accuracy on testing data set via the 
generated model. 
 

 
 
Figure 2. Activity Diagram of the Integration of Bagging Technique and 

Particle Swarm Optimization based Feature Selection 
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accuracy for the global and personal best. If the fitness is 
better than the particle’s best fitness, then the position 
vector is saved for the particle. If the particle’s fitness is 
better than the global best fitness, then the position vector 
is saved for the global best. Finally the particle’s velocity 
and position are updated until the termination condition is 
satisfied. To avoid overtraining, we observe the 
validation accuracy curve, and stop training when the 
iteration has the best validation accuracy during the 
training process. With the stopping training iteration 
determined in the previous step, recall the recorded 
feature subset and the type of kernel in the stopping 
iteration. 

IV. EXPERIMENTAL SETUP 

A. Framework 
The framework of our experiment is shown in Figure 

3. The framework is comprised 1) a data sets 2) a feature 
selection, 3) a meta-learning, 4) a learning algorithm, 5) a 
model validation, 6) a model evaluation and 7) a model 
comparison. The used platform is Intel Core i7 2.2 GHz 
CPU, 16 GB RAM, and Microsoft Windows 7 
Professional 64-bit with SP1 operating system. The 
development environment is Netbeans 7 with Java 
programming language. The application software is 
RapidMiner 5.2. 
 

 
 

Figure 3. The Framework of Experiment 

B. Data Sets 
One of the most important problems for software fault 

prediction studies is the usage of nonpublic (private) data 
sets. Several companies developed fault prediction 
models using proprietary data and presented these models 
in conferences. However, it is not possible to compare 
results of such studies with results of our own models 
because their datasets cannot be reached. The use of 
public datasets makes our research repeatable, refutable, 
and verifiable [40]. Recently, state-of-the-art public data 

sets used for software defect prediction research is 
available in NASA Metrics Data (MDP) repository [32]. 

The data used in this research are collected from the 
NASA MDP repository. NASA MDP repository is a 
database that stores problem, product, and metrics data 
[32]. The primary goal of this data repository is to 
provide project data to the software community. In doing 
so, the Metrics Data Program collects artifacts from a 
large NASA dataset, generates metrics on the artifacts, 
and then generates reports that are made available to the 
public at no cost. The data that are made available to 
general users have been sanitized and authorized for 
publication through the Metrics Data Program Web site 
by officials representing the projects from which the data 
originated. 

TABLE I. 
NASA MDP DATA SETS AND THE CODE ATTRIBUTES 

 
Each NASA data set is comprised of several software 

modules, together with their number of faults and 
characteristic code attributes. After preprocessing, 
modules that contain one or more errors were labeled as 
fault-prone, whereas error-free modules were categorized 
as not-fault-prone. Besides line of codes (LOC) counts, 
the NASA MDP data sets include several Halstead 
attributes as well as McCabe complexity measures. The 
former estimates reading complexity by counting 
operators and operands in a module, whereas the latter is 
derived from a module’s flow graph. 

Some researchers endorse the static code attributes 
defined by McCabe and Halstead as defect predictors in 
the software defect prediction. McCabe and Halstead are 
module-based metrics, where a module is the smallest 
unit of functionality. Static code attributes are used as 
defect predictors, since they are useful, generalizable, 
easy to use, and widely used [27]. 

Feature Selection
(Particle Swarm Optimization)

Model Validation
(10 Fold Cross Validation)

Meta-Learning
(Bagging Technique)

Learning Algorithm
(10 Classifiers)

Model Evaluation
(Area Under Curve (AUC))

Model Comparison
(Paired Two-tailed t-Test)

NASA MDP Data Sets
(9 Data Sets)

Code Attributes 
NASA MDP dataset 

CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4
LOC counts LOC total √ √ √ √ √ √ √ √ √

LOC blank √ √ √ √ √ √ √ √ √
LOC code and comment √ √ √ √ √ √ √ √ √
LOC comments √ √ √ √ √ √ √ √ √
LOC executable √ √ √ √ √ √ √ √ √
number of lines √  √ √ √ √ √ √ √

Halstead content √ √ √ √ √ √ √ √ √
difficulty √ √ √ √ √ √ √ √ √
effort √ √ √ √ √ √ √ √ √
error est √ √ √ √ √ √ √ √ √
length √ √ √ √ √ √ √ √ √
level √ √ √ √ √ √ √ √ √
prog time √ √ √ √ √ √ √ √ √
volume √ √ √ √ √ √ √ √ √
num operands √ √ √ √ √ √ √ √ √
num operators √ √ √ √ √ √ √ √ √
num unique operands √ √ √ √ √ √ √ √ √
num unique operators √ √ √ √ √ √ √ √ √

McCabe cyclomatic complexity √ √ √ √ √ √ √ √ √
cyclomatic density √  √ √ √ √ √ √ √
design complexity √ √ √ √ √ √ √ √ √
essential complexity √ √ √ √ √ √ √ √ √

Misc. branch count √ √ √ √ √ √ √ √ √
call pairs √  √ √ √ √ √ √ √
condition count √  √ √ √ √ √ √ √
decision count √  √ √ √ √ √ √ √
decision density √  √ √ √ √ √ √ √
edge count √  √ √ √ √ √ √ √
essential density √  √ √ √ √ √ √ √
parameter count √  √ √ √ √ √ √ √
maintenance severity √  √ √ √ √ √ √ √
modified condition count √  √ √ √ √ √ √ √
multiple condition count √  √ √ √ √ √ √ √
global data complexity  √ √   
global data density  √ √   
normalized cyclomatic complexity √  √ √ √ √ √ √ √
percent comments √  √ √ √ √ √ √ √
node count √  √ √ √ √ √ √ √

Programming Language C C++ Java C C C C C C
Number of Code Attributes 37 21 39 39 37 37 77 37 37
Number of Modules 505 1571 458 127 403 1059 4505 1511 1347
Number of fp Modules 48 319 43 44 31 76 23 160 178
Percentage of fp Modules 9.5 20.31 9.39 34.65 7.69 7.18 0.51 10.59 13.21
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In this research, we use nine software defect 
prediction data sets from NASA MDP. Individual 
attributes per data set, together with some general 
statistics and descriptions, are given in Table I. These 
data sets have various scales of LOC, various software 
modules coded by several different programming 
languages including C, C++ and Java, and various types 
of code metrics including code size, Halstead’s 
complexity and McCabe’s cyclomatic complexity. 

C. Model Validation 
We use the state-of-the-art stratified 10-fold cross-

validation for learning and testing data. This means that 
we divided the training data into 10 equal parts and then 
performed the learning process 10 times. Each time, we 
chose another part of dataset for testing and used the 
remaining nine parts for learning. After, we calculated the 
average values and the deviation values from the ten 
different testing results. We employ the stratified 10-fold 
cross validation, because this method has become the 
standard method in practical terms. Some tests have also 
shown that the use of stratification improves results 
slightly [41]. 

D. Model Evaluation 
We applied area under curve (AUC) as an accuracy 

indicator in our experiments to evaluate the performance 
of classifiers. AUC is area under ROC curve. Lessmann 
et al. [21] advocated the use of the AUC to improve 
cross-study comparability. The AUC has the potential to 
significantly improve convergence across empirical 
experiments in software defect prediction, because it 
separates predictive performance from operating 
conditions, and represents a general measure of 
predictiveness. Furthermore, the AUC has a clear 
statistical interpretation. It measures the probability that a 
classifier ranks a randomly chosen fault-prone module 
higher than a randomly chosen non-fault-prone module. 
Consequently, any classifier achieving AUC well above 
0.5 is demonstrably effective for identifying fault-prone 
modules and gives valuable advice as to which modules 
should receive particular attention in software testing. 

A rough guide for classifying the accuracy of a 
diagnostic test using AUC is the traditional system, 
presented below [42]: 

• 0.90 - 1.00 = excellent classification 
• 0.80 - 0.90 = good classification 
• 0.70 - 0.80 = fair classification 
• 0.60 - 0.70 = poor classification 
• 0.50 - 0.60 = failure 

E. Model Comparison using Paired Two-tailed t-Test 
A paired t-test compares two samples in cases where 

each value in one sample has a natural partner in the other. 
A paired t-test looks at the difference between paired 
values in two samples, takes into account the variation of 
values within each sample, and produces a single number 
known as a t-value. In this research, we have applied pair 
wise t-tests over mean values of each datasets in order to 
determine statistical significance of results with	∝	ൌ 0.05. 

V. RESULTS AND ANALYSIS 

A. Preliminary Results 
First of all, we conducted experiments on 9 NASA 

MDP data sets by using 10 classification algorithms. 
More specifically, it applies five types of classification 
models that include traditional statistical classifiers 
(Logistic Regression (LR), Linear Discriminant Analysis 
(LDA), and Naïve Bayes (NB)), Nearest Neighbors (k-
nearest neighbor (k-NN) and K*), Neural Network (Back 
Propagation (BP)), Support Vector Machine (SVM), and 
Decision Tree (C4.5, Classification and Regression Tree 
(CART), and Random Forest (RF)).  

The experimental results are reported in Table II. This 
result confirmed Hall et al. result [3] that NB and LR, in 
particular, seem to be the techniques used in models that 
are performing relatively well in software defect 
prediction. Models based on Decision Tree seem to 
underperform due to the class imbalance. SVM 
techniques also perform less well, though SVM has 
excellent generalization ability in the situation of small 
sample data like NASA MDP data set. 

TABLE II. 
AUC OF 10 CLASSIFIERS ON 9 DATA SETS 

 
B. Integration of GA Based Feature Selection Method 
and Bagging Technique 

In the next experiment, we implemented GA and 
bagging technique for 10 classification algorithms on 9 
NASA MDP data sets. The experimental result is shown 
in Table III. The improved model for each classifier is 
highlighted width boldfaced print.  

TABLE III. 
AUC OF 10 CLASSIFIERS ON 9 DATA SETS (WITH GA AND BAGGING) 

 
Figure 4 visually shows AUC comparisons of 10 
algorithms on 9 NASA MDP data sets. As shown in 
Table III and Figure 4, almost all classifiers that 

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

Statistical 
Classifier 

LR 0.763 0.801 0.713 0.766 0.726 0.852 0.849 0.81 0.894 

LDA 0.471 0.536 0.447 0.503 0.58 0.454 0.577 0.524 0.61 

NB 0.734 0.786 0.67 0.739 0.732 0.781 0.811 0.756 0.838 

Nearest 
Neighbor 

k-NN 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

K* 0.6 0.678 0.562 0.585 0.63 0.652 0.754 0.697 0.76 
Neural 
Network BP 0.713 0.791 0.647 0.71 0.625 0.784 0.918 0.79 0.883 

Support Vector 
Machine SVM 0.753 0.752 0.642 0.761 0.714 0.79 0.534 0.75 0.899 

Decision Tree 

C4.5 0.565 0.515 0.497 0.455 0.543 0.601 0.493 0.715 0.723 

CART 0.604 0.648 0.637 0.482 0.656 0.574 0.491 0.68 0.623 

RF 0.573 0.485 0.477 0.525 0.74 0.618 0.649 0.678 0.2 

 

Classifiers CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4 

Statistical 
Classifier 

LR 0.753 0.795 0.691 0.761 0.742 0.852 0.822 0.813 0.901 

LDA 0.592 0.627 0.635 0.64 0.674 0.637 0.607 0.635 0.715 

NB 0.702 0.79 0.677 0.739 0.724 0.799 0.805 0.78 0.861 

Nearest 
Neighbor 

k-NN 0.666 0.689 0.67 0.783 0.656 0.734 0.554 0.649 0.732 

K* 0.71 0.822 0.503 0.718 0.68 0.876 0.877 0.816 0.893 
Neural 
Network BP 0.744 0.797 0.707 0.835 0.689 0.829 0.905 0.799 0.921 

Support Vector 
Machine SVM 0.667 0.767 0.572 0.747 0.659 0.774 0.139 0.476 0.879 

Decision Tree 

C4.5 0.64 0.618 0.658 0.732 0.695 0.758 0.642 0.73 0.844 

CART 0.674 0.818 0.754 0.709 0.703 0.819 0.832 0.842 0.9 

RF 0.706 0.584 0.605 0.483 0.735 0.696 0.901 0.734 0.601 
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that there is no significant difference between particle 
swarm optimization and genetic algorithm when used as 
feature selection for most classifiers in software defect 
prediction. 

Future research will be concerned with benchmarking 
and investigating the sophisticated metaheuristic 
optimization methods for optimizing parameter of 
support vector machine for software defect prediction. 
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