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Abstract— In PCA based face recognition, the basis images
may contain negative pixels and thus do not facilitate
physical interpretation. Recently, the technique of non-
negative matrix Factorization (NMF) has been applied to
face recognition: the non-negativity constraint of NMF yields
a localized parts-based representation which achieves a
recognition rate that is on par with the eigenface approach.

In this paper, we propose a new variation of the NMF
algorithm that incorporates training information in a super-
vised learning setting. We integrate an additional term based
on Fisher’s Linear Discriminant Analysis into the NMF
algorithm and prove that our new update rule can maintain
the non-negativity constraint under a mild condition and
hence preserve the intuitive meaning for the base vectors
and weight vectors while facilitating the supervised learning
of within-class and between-class information.

We tested our new algorithm on the well-known ORL
database, CMU PIE database and FERET database, and
the results from experiments are very encouraging compared
with traditional techniques including the original NMF, the
Eigenface method, the sequential NMF+LDA method and
the Fisherface method.

Index Terms— nonnegative matrix factorization, principal
component analysis, fisher linear discriminant analysis,
eigenface, fisherface

I. INTRODUCTION

As an important problems of image processing, face
recognition has received significant attention. It is a
typical pattern recognition problem which can be applied
to promote the resolution of many other classification
problems, and also has lots of potential applications.

Generally, automatic face recognition contains two ap-
proaches, namely, constituent-based and face-based meth-
ods [1], [2]. The first approach performs recognition based
on the spatial relationship between different facial features
such as eyes, mouth and nose [3], [4], therefore its
performance is highly sensitive to the accuracy of facial
feature detection algorithms. However, since extracting
facial components accurately is difficult, a small error at
this stage may cause a large classification error.

In contrast, the face-based approach defines the face
as a whole [5], [6], i.e. the corresponding image is

considered as a two-dimensional pattern and classified
based on its underlying statistics.

As an effective face-based approach, Principal Compo-
nent Analysis (PCA) [5] uses the orthogonal basis images
which have a statistical interpretation as the directions of
largest variance. Based on this idea, Turk and Pentland
[6] built a face recognition system in which the significant
features (eigenvectors associated with large eigenvalues)
are called eigenfaces. This approach represents a face
image using a weighted sum of eigenfaces and the classi-
fication is performed by comparing the weight vectors of
the test images with those of the reference face images.

However, the traditional Eigenface-based methods suf-
fer from some limitations. Firstly, it is well known that
PCA gives a very good representation of the images. Giv-
en two images of the same person, the similarity measured
under PCA representation is very high. However, for the
two images of different persons, the similarity measured
is still high. This suggests this method may not enjoy a
very high discriminatory ability.

The second problem is that many of the basis images do
not have an obvious visual interpretation. This is because
PCA allows the coefficients of base vectors and weight
vectors to be of arbitrary sign. Since the basis images are
used in linear combinations that generally involve com-
plex cancellations between positive and negative numbers,
many of them do not have intuitive meaning.

Finally, the PCA approach is based on extracting global
face features, so the case of occlusions is difficult to
handle.

Recently, a new technique to obtain a linear representa-
tion of data has been proposed. This new method, called
non-negative matrix factorization (NMF), was first used
in the work of Lee and Seung [7] to find parts of objects.
NMF differs from other methods by the usage of non-
negativity constraints.

Recently NMF has been widely applied in many fields,
and it has been shown to outperform PCA in image
recognition for certain face databases [8]–[10]. NMF
factorizes the image database into two matrix factors,
whose entries are all non-negative, and produces a parts-
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based representation of images because it allows only
additive, not subtractive, combinations of basis images.
Therefore the resultant NMF bases are localized features
which correspond to the intuitive idea of combining parts
to form a whole. In real face databases, the images
generally contain natural occlusions such as sunglasses
and scarfs. If some such images are contained in the
training set, then the basis images would be significantly
affected in global methods such as PCA while the local
basis images of NMF remain relatively stable and thus
obtain better recognition performance (see eg [8]).

However, since the traditional NMF method is an unsu-
pervised learning technique, it’s difficult to take advantage
of the discrimination information in the training set to
boost the classification capability. In this paper we intro-
duce an LDA-based Non-negative Matrix Factorization
algorithm which is a new variation to NMF. To take
advantage of more information in the training images,
we add the Fisher Linear Discriminant into the objective
function in NMF algorithm, which will lead to more
discriminatory base vectors and weight vectors. Since
this algorithm encodes discrimination information for face
recognition, it can improve the result for classification.

As our new approach is based on a subspace definition,
we have used the Principal Component Analysis (PCA),
the original NMF algorithm and the Fisherface method
for direct comparison. Moreover, we also use NMF as
a method of reducing dimensions and then subject the
projected vectors to LDA to extract the feature vectors
for face recognition. Since this sequential NMF+LDA
process would preserve the unsupervised nature of N-
MF as initially formulated by Lee and Seung, a direct
comparison between this procedure and our algorithm
is important. After implementing all these methods on
the face image databases, the results from experiments
support the conclusion that our new algorithm can achieve
a better performance in face recognition.

This paper is organized as follows. Section 2 reviews
the background of PCA, NMF and Fisherface. The details
of our LDA-based Non-negative Matrix Factorization
algorithm are described in section 3. All the testing
databases used in this paper are described in section 4.
Results from experiments on a face recognition system
based on the proposed method are discussed in section 5.
Conclusions & future work are presented in section 6.

An earlier version of this paper was presented at the
18th International Conference on Pattern Recognition,
2006 [11]. In this paper, a detailed analysis and proof
about our model is provided, and we use more relevant
algorithms for the performance comparison based on
some well known face databases.

II. REVIEW OF PCA, NMF AND FISHERFACE FOR
FACE RECOGNITION

This section provides the background theory of PCA,
NMF, and Fisherface for face recognition.

A. Principal component analysis

PCA is originally used to find a low dimensional
representation of data [12]. Some details are described
as follows.

Let X = {Xn ∈ Rd| n = 1, . . . , N} be an set of
vectors. In image processing, they are formed by row or
column concatenation of the original image matrix, with
d being the product of the width and the height of an
image. Let

E[X] =
1

N

N∑
n=1

Xn

be the mean vector in the image set. After subtracting it
from each vector of X , we get

X̂ = {X̂n, n = 1, . . . , N} with X̂n = Xn − E[X]

Then we define the auto-covariance matrix M for X
as

M = cov(X) = E(X̂⊗X̂)

where M ∈ Rd×d, with elements

M(i, j) =
1

N − 1

N∑
n=1

(X̂n(i)X̂n(j)), 1 ≤ i, j ≤ d

From matrix theory, it’s well known that the auto-
covariance matrix for the eigenvectors is diagonal, it
follows that the coordinates of the vectors in X with
respect to the eigenvectors are un-correlated random vari-
ables. Then the PCA of a vector y can be calculated by
projecting it onto the subspace which is spanned by d′

eigenvectors corresponding to the top d′ eigenvalues of
the autocorrelation matrix M sorted in descending order.
Furthermore, Eigenfaces are the eigenvectors associated
with the largest eigenvalues from the PCA method. After
representing a face image using a weighted sum of
eigenfaces, face recognition is performed by comparing
the corresponding weight vectors between the test image
and reference faces.

B. NMF method

Non-negative Matrix Factorization (NMF) [7] is a
method to obtain a representation of data under non-
negativity constraints. These constraints produce a parts-
based representation because they allow only additive,
not subtractive, combinations, so the corresponding ba-
sis images can be understood as localized features that
correspond better with intuitive notions of the parts of
face images.

If an initial image database is represented as a n×m
matrix V , where each column is a non-negative vector
corresponding to a face image, we can find two new non-
negative matrices (W and H) to approximate the original
data matrix

Vij ≃ (WH)ij =

r∑
a=1

WiaHaj ,W ∈ Rn×r,H ∈ Rr×m

(1)
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Each column of matrix W represents a basis vector
while each column of H represents the weights used to
approximate the corresponding column in V using the
bases from W .

For the NMF method, in contrast to PCA, no sub-
tractions can occur, so the non-negativity constraints are
compatible with the intuitive idea of combining parts to
form a whole face, which is how NMF learns a parts-
based representation.

The dependencies between image pixels and the en-
coding variables are depicted in Fig.1. The top nodes
represent an encoding h1, . . . , hr (column of H), and the
bottom nodes represent an image v1, . . . , vn (column of
V ). The nonnegative value Wia characterizes the extent
of influence that the a′th encoding variable ha has on
the i′th image pixel vi. Because of the non-negativity of
Wia, the image pixels in the same part of face image will
be coactivated when the part is present, and NMF learns
by adapting Wia to generate the optimal approximation.

Figure 1. Probabilistic hidden variables model underlying non-negative
matrix factorization [7].

The update rule for NMF is derived as below:
First define an objective function to measure the simi-

larity between V and WH:

F =
n∑

i=1

m∑
j=1

[Vij log
Vij

(WH)ij
− Vij + (WH)ij ] (2)

Then an iterative algorithm to reach a local maximum
of this objective function is given [7]:

Ŵ t+1
ia = W t

ia

∑
j

Vij

(W tHt)ij
Ht

aj (3)

W t+1
ia =

Ŵ t+1
ia∑

j

Ŵ t+1
ja

(4)

Ht+1
aj = Ht

aj

∑
i

W t+1
ia

Vij

(W t+1Ht)ij
(5)

The convergence of the process is proved in [13].
The flow chart of the NMF algorithm is as below.

i

i

itia li

i

F i H

F i W
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con ver gen ce 
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Figure 2. Flowchart of the NMF algorithm (after [14]).

In face recognition, NMF is applied as follows. Firstly,
in the feature extraction stage, all the training images form
the original data matrix V , then the bases W1 can be
obtained using the above update rules (3)-(5). Next, let
W+ = (WT

1 W1)
−1WT

1 , then each training face image
Vt is projected onto the linear space as a feature vector
Ht = W+Vt which is then used as a prototype feature
point. A probe image Vp to be classified is represented
as Hp = W+Vp. Finally, we classify the probe images
using the nearest neighbour classification scheme. At this
stage, some suitable distance between the weight vectors
of the probe image and training image, dist(Hp,Ht), is
calculated, then the probe image is classified to the class
with the minimum distance.

C. Fisherface and sequential NMF+LDA

As a classical technique in multivariate statistics, LDA
has also been successfully applied in pattern recognition
[15]. It utilizes class-specific information within the train-
ing images and finds a feature space in which the ratio
of the between-class scatter and the within-class scatter
is maximized.

However, for the face recognition problem, the within-
class scatter matrix is often singular. In order to overcome
this difficulty, Peter N. Belhumeur, Joao P. Hespanha, and
David J. Kriegman [16] proposed the Fisherface method,
which combines PCA with the standard LDA method to
reduce the dimensionality of feature vectors. Nowadays,
it is one of the most popular feature extraction and
dimension reduction techniques used in the face-based
approach.
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In the Fisherface procedure, none of the class informa-
tion is incorporated in the PCA stage, while all the PCA-
based feature vectors are subsequently used to extract the
LDA-based feature vectors so that the classification is
more robust. Similarly, we could also first use NMF with-
out any class information to reduce the dimensionality of
feature vectors, and then use the LDA method to take
advantage of the class information in the same way. Since
this sequential NMF+LDA process is a simple procedure
to preserve the nature of NMF as initially formulated
by Lee and Seung [7], we will use it and Fisherface as
benchmarks for comparison with our LDA-based NMF
method, which also exploits the same class information
within the training images.

III. LDA-BASED NMF

A. Our model

In the original NMF model and Eigenface model,
the training face images are used collectively without
reference to the class membership of the training faces.
To improve the performance for face recognition, we
propose to add the Fisher discriminant to the original
NMF algorithm formulation. Because the columns of the
weight matrix H have a one-to-one correspondence with
the columns of the image matrix V , we naturally hope
to maximize the between-class scatter and simultaneously
minimize the within-class scatter of H . Based on this idea,
we define the new objective function:

F1 =
n∑

i=1

m∑
j=1

[Vij log
Vij

(WH)ij
− Vij + (WH)ij ]

+ αSW − αSB ,

(6)

where α > 0 is a regularization parameter, SW is the
within-class scatter of the weight matrix H , and SB is
the between-class scatter of H .

Let Mtr denote the number of vectors in each class
and C denote the number of classes. We define SW and
SB as follows:

SB =
1

C(C − 1)

C∑
i=1

C∑
j=1

(µi − µj)
T (µi − µj) (7)

SW =
1

CMtr

C∑
i=1

∑
k∈Ci

(H(:, k)− µi)
T (H(:, k)− µi)

(8)

Here Ci means the i′th person’s images, µi =
1

Mtr

∑
k∈Ci

H(:, k) denotes the mean vector of the i′th class

in H .
In the next section, we shall derive the update rules for

our model. Note that a similar idea has been discussed
and the relevant model developed in [17]. But their final
update rule is entirely different from ours. In [18], the
authors’ idea is also similar to our work, however, our
model uses just one Lagrangian multiplier α in the new
objective function which is much more convenient for
parameter selection in practical experiments. Moreover,

we used a different definition for SW and SB based on
unbiased estimation, and the final update rules are also
different from theirs. Furthermore, we shall also prove
that using our update rules, the non-negativity constraints
for all the coefficients in W and H can be satisfied
automatically under a mild condition, and this issue of
maintaining non-negativity was not addressed in [18].

B. Modified update rules
To derive our modified update rules, we will use a

technique which minimizes an objective function by using
an auxiliary function similar to that used in [13].

Definition 1: G(H,H
′
) is an auxiliary function for the

function F (H) if

G(H,H
′
) ≥ F (H), G(H,H) = F (H)

Then we can use the following lemma:
Lemma 1: If G is an auxiliary function, then F is

nonincreasing by using this update rule:

Ht+1 = argmin
H

G(H,Ht)

where Ht and Ht+1 denote the obtained weight matrices
after t iterations and t+ 1 iterations respectively.

Proof 1: Since F (Ht+1) ≤ G(Ht+1,Ht),
G(Ht+1,Ht) ≤ G(Ht,Ht) and G(Ht,Ht) = F (Ht)
we can conclude F (Ht+1) ≤ F (Ht).

Using this lemma, we can obtain the corresponding
update rule for the objective function F1. Noting that the
new terms in function F1 are just related to the weight
matrix H , we can directly adopt the update rule for W in
the original NMF algorithm, then just deduce the iterative
algorithm for Ht+1 when fixing W and given Ht.

First, we can design the following auxiliary function
for F1:

Lemma 2: Define

G1(H,Ht) =
∑
i,j

(Vij log Vij − Vij) +
∑
i,j

(WH)ij

−
∑
i,j,k

Vij

WikH
t
kj∑

n
WinHt

nj

(log(WikHkj)

− log
WikH

t
kj∑

n
WinHt

nj

) + αSW − αSB

It’s an auxiliary function for F1(H).
Proof 2: Proof G1(H,Ht) = F1(H) is straightfor-

ward to verify. To show that G1(H,Ht) ≥ F1(H), we
use the convexity of the log function to get the following
inequality:

− log(
∑
k

WikHkj) ≤ −
∑
k

αijk log
WikHkj

αijk
,

if αijk ≥ 0 and
∑
k

αijk = 1

Setting αijk =
WikH

t
kj∑

k

WikHt
kj

, based on the above inequal-

ity we can conclude

− log(WH)ij ≤ −
∑
k

WikH
t
kj∑

n
WinHt

nj

(logWikHkj
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− log
WikH

t
kj∑

n
WinHt

nj

), i.e. G1(H,Ht) ≥ F1(H)

Based on this lemma, we minimize F1(H) by using
the following rule

Ht+1 = argmin
H

G1(H,Ht)

The minimum of G1(H,Ht) is obtained by setting
∂G1(H,Ht)

∂Hβγ
= 0 for any β, γ. Let H(:, γ) be the weight

vector of an image belonging to the i′1th class. Since

∂G1(H,Ht)

∂Hβγ
=−

∑
i

Viγ

WiβH
t
βγ∑

n
WinH

t
nγ

1

Hβγ

+
∑
i

Wiβ

+
2αHβγ

CMtr
−

2α
∑

γ1∈Ci1

Hβγ1

CM2
tr

− 4α

MtrC(C − 1)

∑
j ̸=i1

(µi1(β)− µj(β)),

we obtain a quadratic equation for Hβγ :

aH2
βγ + bHβγ + d = 0

where

b = 1− 6α

CM2
tr

∑
n∈Ci1,n̸=γ

Ht
βn+

4α

MtrC(C − 1)

∑
j ̸=i1

µj(β)

a =
2αMtr − 6α

CM2
tr

, d = −Ht
βγ

∑
i

Viγ

W t+1
iβ

(W t+1Ht)iγ

Then we derive the formula for the bigger of the two
real roots, namely, Ht+1

βγ :

Ht+1
βγ =

−b+
√
b2 − 4ad

2a
(9)

Using the derivation in [13], we can obtain the update
rules for W :

Ŵ t+1
λβ = W t

λβ

∑
γ

Vλγ

(W tHt)λγ
Ht

βγ (10)

W t+1
λβ =

Ŵ t+1
λβ∑

γ
Ŵ t+1

γβ

(11)

Comparing these final update rules with the original
NMF rules (i.e. equations (5) and (9)), we see that the
main difference between our new algorithm and the tra-
ditional NMF method is the new update rule for H which
integrates the class information in the weight vectors of
the training set.

C. Proof of Non-negativity

From the previous section, the update rules for W
is the same as in the conventional NMF and its non-
negativity is ensured [13]. However, the incorporation
of class information via LDA has yielded very different
update rule for the weight matrix H . In this section, we
shall establish a sufficient condition to ensure its non-
negativity.

We shall proceed by induction and assume that Ht > 0.
Then we have

Ht,W t+1 > 0 ⇒ d < 0

We also note that

Mtr > 3 ⇔ a > 0

then since d < 0, from (9) we have

Mtr > 3 ⇒ a > 0 ⇒ b2 − 4ad > b2 ⇒ Ht+1
βγ > 0

And since H0 > 0, by induction we have Ht > 0, ∀t.
Therefore, we have established a sufficient condition for
the non-negativity of H , namely Mtr > 3, i.e. the number
of training images must be 4 or more.

Based on the above analysis, we conclude that our
update rules will produce a sequence of nonincreasing
values of the new objective function, which is at least
convergent to a locally optimal solution and satisfies the
non-negativity constraints as long as sufficient number of
training images are used.

Lastly, we note that although the condition Mtr > 3
is not strictly necessary for the non-negativity of Ht+1

(since Ht+1
βγ > 0 whenever b < 0), in practice the sign of

b is data-dependent, thus it’s advisable to treat the condi-
tion as if it is a necessary condition such that the update
rules won’t break down in any case and maintains non-
negativity. Since most practical face databases generally
include many images for each person, it’s a mild condition
in real applications.

IV. TESTING DATABASES USED IN THIS PAPER

A modern face recognition system [19], [20] has to deal
with realistic situations and achieve good performance
on challenging databases which should include consid-
erable pose variations and real-life illumination changes
etc. Therefore, we use the following well known face
databases for the performance evaluation of our method.

A. ORL database

The Olivetti database, as the name suggests, originated
at the Olivetti Research Laboratory (ORL) in England.
In ORL database, there are 40 persons and each person
consists of 10 images with different facial expressions and
illumination, small scale and small rotation.

B. CMU PIE database

In CMU Pose, Illumination, and Expression (PIE)
database, there are 68 persons and each person has 13
pose variations ranged from right profile image to left
profile image and 43 different lighting conditions, 21
flashes with ambient light on or off. In our experiments,
for each person, we select 56 images including 13 poses
with neutral expression and 43 different lighting condi-
tions in frontal view. For all frontal view images, we apply
alignment based on two eye center and nose center points
but no alignment is applied on the other images with pose.
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C. FERET database
The Facial Recognition Technology (FERET) database

was sponsored by the Department of Defenses Counter-
drug Technology Development Program [21]. We selected
120 persons, 6 frontal-view images for each individual.
Face image variations in these 720 images include illu-
mination, facial expression, partial occlusion and aging
[21]. All images are aligned by the centers of eyes and
mouth.

To reduce the computational complexity, we normal-
ized all the images to the same resolution, 23 × 28, by
nearest neighbour interpolation. We also normalized the
pixel values of each image in the above databases to
[0, 1].

V. EXPERIMENTS

In this section, we build a face recognition system to
provide a direct comparison of PCA, NMF, Fisherface,
sequential NMF+LDA and our LDA-based NMF using
images from databases described in Sect.IV, which in-
clude complicated variations in illumination, pose and
expression.

In all the experiments, we randomly selected Mtr

images per person from the databases to form a training
set and use the remainder as the test set. Then the system
adopts the aforementioned 5 approaches and all of them
consist of two stages, namely, training and recognition
stages. Training stage computes the representational bases
for training images and converts them into training image
representations, then all the representations are stored into
the library. Recognition stage translates the probe image
into probe image representation using the representational
bases, and then, matches it with those training images
stored in the library to identify the face image.

The detailed procedure for PCA, Fisherface and NMF
can be found in references [6], [9], [16], so we just
mention the two stages for our LDA-based NMF.

A. Training stage
There are 3 major steps in the training stage:
First, we use an n ×m matrix V1 to represent all the

training images in one database.
In the second step, LDA-based NMF algorithm is

applied to V1 and we can find two new matrices (W1

and H1) s.t.

(V1)ij ≃ (W1H1)ij =
r∑

a=1

(W1)ia(H1)aj

as described in the section 3 to obtain the base matrix
W1.

Finally, let W+ = (WT
1 W1)

−1WT
1 , then each training

face image Vt is projected onto the linear space as a
feature vector Ht = W+Vt which is then used as a
prototype feature point.

B. Recognition stage
The recognition stage can be divided into 2 steps.

1) Feature extraction: Each probe image Vp to be
classified is represented as Hp = W+Vp. Then, we will
get the weight matrix H2 for the probe set.

2) Nearest neighbor classification: In this step, some
suitable distance between the probe image and training
image, dist(Hp,Ht), is calculated, then the probe image
is classified to the class which the closest training image
belongs to.

C. Distance measures and parameter selection

The Mahalanobis distance is one of the most widely-
used distance measures in pattern recognition tasks [15],
[22], so it’s applied as a replacement for the Euclidean
distance in this classification task.

The definition of Mahalanobis distance is as below:

d(X,Y ) =
√
(X − Y )′σ−1(X − Y ) (12)

Where X,Y are feature vectors of length n obtained by
different methods, and σ is the auto-covariance matrix for
weight vector of training images. In our experiments, we
use the full covariance matrix (as opposed to the simpler
diagonal covariance matrix) since it always obtains the
better result for our face databases.

The regularization parameter α in the new cost function
(6) is important as it determines the amount of weight to
be assigned to the discriminant factor. According to our
experience, the best results are generally obtained when
α is about 0.1.

D. Results from experiments

A set of experiments were conducted on the above
system, then we evaluated the classification performance
of LDA-based NMF algorithm with the Mahalanobis
distance metrics and compared it with the result of
PCA, NMF, Fisherface and the sequential NMF+LDA
algorithm.

In all the experiments, Mtr images per person were
selected from the database to form a training set and
the rest are used as the test set. The Nearest Neighbor
Classification method is adopted to obtain the correspond-
ing recognition rate. Following [23], to produce reliable
results, we take 10 repetitions of the random split for
each database and then obtain the results in terms of the
average recognition rate (over the 10 different splits) as
well as the standard deviation of the recognition rates,
which we incorporate in the result plots in Fig.3, Fig.4 and
Fig.5 as error bars indicating plus or minus one standard
deviation from the mean.
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Figure 3. Average recognition rates according to the 5 methods for
ORL database when Mtr = 6.
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Figure 4. Average recognition rates according to the 5 methods for
CMU PIE database when Mtr = 5.
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Figure 5. Average recognition rates according to the 5 methods for
FERET database when Mtr = 4.

From these figures, we can see that the NMF class of

methods and the Fisherface performs much better than the
PCA approach. We believe that the superior performance
may be attributed to either the use of LDA (in whatever
form) or the advantage of the parts-based representation
of the NMF-based methods.

For the ORL database, our method is superior to the
traditional NMF, sequential NMF+LDA and Eigenface,
and is comparable to the Fisherface method.

For the CMU PIE database, which contains more
complicated pose variations and real-life illumination
changes, our method is significantly superior to all the
other methods when the dimensionality of feature vectors
are not very big. But the differences become negligible as
the dimensionality increases and our method is practically
the same as the Fisherface and the NMF+LDA, but still
much better than the traditional NMF and the Eigenface.

For the FERET database, once again the three LDA-
based methods outperform the traditional NMF which in
turns outperforms the Eigenface method. The advantage
of our method over Fisherface is still evident (albeit to
a lesser extent) while the sequential NMF+LDA gives
very comparable results to our approach except at large
dimensionality when our method is marginally better.

To summarize, our LDA-based NMF algorithm is much
better than the traditional NMF and Eigenface, and in
specific cases, is at least comparable to the Fisherface
method and the sequential NMF+LDA method which
both use the same class information in the training set.
However, our method is the only method that consistently
achieves the best results for all the experimental databases
used.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we proposed a new constrained nonneg-
ative matrix factorization algorithm, called LDA-based
NMF, for the face recognition problem. Its basic idea is
to add the Fisher discriminant to the cost function of the
nonnegative matrix factorization model. We showed that
it can perform better than PCA and the original NMF for
face recognition. Furthermore, we found its performance
can be better than Fisherface and the sequential NM-
F+LDA method which also take advantage of the same
class information in the training images. However, the
improvement depends on the face database used and the
dimensionality of the feature vectors. This suggests that
our method can be improved if used in conjunction with
a feature selection algorithm.

Recently, several different NMF algorithms [17], [24]
have been proposed, and the advantages and disadvan-
tages of them are compared based on different aspects.
But for the task of face recognition, we still need further
work to enhance their performance. Based on the findings
in this paper, we believe that the introduction of suitable
additional constraint can lead to more robust base vectors
and improve the final recognition result.

As with the PCA method, NMF also suffers from
the problem of large computational load. To resolve this
limitation, we are considering the use of image transform
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to reduce the computational complexity and give better
recognition accuracy. In particular, wavelet transform has
been a very popular tool for image analysis, and we
are considering applying our modified NMF method to
selected subbands in our future work.
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