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Abstract—This paper proposes a novel stratified self-
calibration method of camera based on rotation movement. 
The proposed method firstly captures more than three 
images of the same scene in the case of constant internal 
parameters by panning and rotating the camera with small 
relative rotation angles among the captured images. After 
feature extraction and matching of captured images, the 
pixel coordinates of feature point are normalized. Then the 
stratified self-calibration is performed, following projective, 
affine and metric calibration. Projective calibration 
determines the camera projective matrix of every image in 
the projective reconstruct space. Affine calibration 
calculates the parameters of infinity reference plane in this 
space and the homography according to approximately 
equal relationship among the main diagonal elements of 
homography, which is inferred by virtue of small relative 
rotation angles among the captured images and the property 
of internal reference matrix corresponding to normalized 
pixel coordinates. Lastly metric calibration acquires 
internal reference matrix from the calculated homography. 
The proposed method can be online applied to simply, fast, 
accurately obtain internal parameters of camera without 
using the calibration reference with known 3D information. 
Real data has been used to test the proposed approach, and 
very good results have been achieved. 
 
Index Terms—camera calibration, self-calibration, rotation 
movement, stratified calibration 
 

I.  INTRODUCTION 

The process of acquiring the parameters of camera 
geometric model is called camera calibration[1]. It is an 
essential step to extract three-dimensional space 
information from two-dimensional images in the 
applications of image processing and computer vision, 
and is widely used in three-dimensional reconstruction, 
navigation, visual surveillance and other fields[2-3]. 
Under certain camera model, camera calibration strikes 
camera parameters of the model with a series of 
mathematical transformations and calculations by virtue 
of the image processing. At present, there have been a lot 
of camera calibration methods, which contain traditional 
calibration and self-calibration.  

Traditional calibration is relatively mature and stable 
but based on specific experimental conditions, such as 

calibration references with known shape or size[4-6]. The 
traditional methods of using calibration references obtain 
a wide range of applications, which typically involve Tsai 
two-step method[4]. These traditional methods require 
using the calibration references in the process of shooting 
calibration images, which would bring great 
inconvenience into the camera calibration, since the use 
and position adjustment of calibration reference may 
result in the online task interrupted. 

Camera self-calibration does not require the use of 
calibration reference, and estimates the camera internal 
parameters based solely on the corresponding relationship 
between feature pixels of images, which makes online 
and real-time calibrating camera parameters possible. 
However, many existing self-calibration methods still 
cannot get stable results and be mature enough for 
practical application[7-11], and therefore it is necessary 
to improve the existing self-calibration techniques 
through some ways. 

This paper presents a novel stratified self-calibration 
method of camera based on rotation movement. The 
proposed method firstly shoots more than three image of 
the same scene following the requirements of small angle 
rotation under the condition of internal parameters 
unchanged. After feature extraction and matching on the 
captured images, the projection, affine and metric 
calibration[12] of three levels are performed by virtue of 
feature correspondence among images. The proposed 
method can be applied to quickly, accurately and stably 
obtain internal parameters of camera. This makes online 
and real-time calibrating the internal parameters of 
camera possible in the case of no dependent calibration 
references, thus improving the existing camera self-
calibration.  

II.  THE PROPOSED APPROACH ON CAMERA SELF-
CALIBRATION 

A.  Capturing the Images of Self-calibration 
For the same scene, we capture M(M≥3) images with 

different angles. During this procedure, internal reference 
matrix K  is kept unchanged, and the camera can be 
freely performed translational motion. Meanwhile, the 
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camera can also be rotated, but the relative rotation 
angles among the captured images should be as small as 
possible, for example, the relative rotation angles along 
three coordinate axes should be less than 15º. Suppose 
that the series of captured images are 1I , 2I , ..., MI . 
Figure 1 shows four self-calibration images with different 
angles in the same scene. 

K  is an upper triangular matrix representing camera 
internal parameters. 
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The goal of this self-calibration method is to determine 
the internal reference matrix K  of camera, where  

uk  is the magnification in u direction (horizontal) of 
image, in pixels, 

vk  is the magnification in v direction (vertical) of 
image, in pixels, 

s is the distortion factor corresponding to the distortion 
of camera axis, 

up  and vp  are the principal point coordinates, in pixels. 
The parameters uk  and vk  are closely linked to focal 

length f of camera. If u vk k=  and 0s = , uk  and vk  are just 
focal length f in pixels. u vk k=  means that the 
photosensitive array of camera contains square pixels. If 

u vk k≠ , uk  is the ratio of the focal length f and the pixel 
size in u direction, and vk  is the ratio of the focal length f 
and the pixel size in v direction. Thus, there are the 
following relationships u uf k dpx= ⋅ , and v vf k dpy= ⋅ , where 

uf  and vf   are effective focal length, or distance from 
image plane to projective center, unit in millimeters, and 
dpx and dpy are the pixel size of image plane, 
respectively in u and v directions. u vk k≠  means that the 
photosensitive array of camera contains non-square pixels, 
such as CCD camera situation. 

B.  Feature Extraction and Matching of Captured Images 
The following step is to extract the feature points for 

every captured image. The feature extraction could be 
based on the general extraction method or SIFT 
extraction method[13]. Then feature matching between 
the images is performed to acquire the pixel coordinate of 
every matched feature point. The matched feature point in 
an image can be matched to one feature point in each of 
other images, and they correspond to the same 3D feature 
in the world. For the proposed stratified self-calibration in 
this paper, at least eight matched feature points in every 
captured image should be determined and found out. The 
more correctly matched feature points, the more 
constraints provided, the more accurate the constraint 
correspondence among the images, thus the more 
desirable results come from the proposed self-calibration. 

C.  Normalizing the Pixel Coordinates of Feature 
To make approximately equal relationship established 

in affine calibration process, the original pixel 

coordinates of feature points are required to transform 
into normalized pixel coordinates. The details are as 
follows. The original pixel coordinate u ( , ,1)Tu v=  of every 
feature point is transformed into the normalized pixel 
coordinate through u uT′ = . In all following steps of 
stratified self-calibration, we use u′ , instead of u . Here, 
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where uc  and vc  are the coordinates of the image center, 
Through this coordinate normalization process, the image 
center of every image is aligned to the coordinate origin 
of the image plane, and two items of normalized pixel 
coordinate are all in the range of (-1,1).  

According to camera perspective projection model, the 
following relationship is established. 

 u ~ X ~ [ | ]XP K R Rt− , (3) 

where u  is the pixel coordinate of feature point in the 
homogeneous form, and X ( , , ,1)Tx y z=  is the coordinate of 
the corresponding 3D feature point in the homogeneous 
form, and P  is the corresponding projection matrix, and 
R  and t  are respectively rotation matrix and translational 
vector in camera coordinate system relative to world 
coordinate system. 

After normalization transformation about pixel 
coordinates of the image, the following relationship is 
established. 

 [ ] [ ]' | X= | Xu u ~ 'R Rt R RtT TK K− −= , (4) 

where  

 'K TK=  (5) 

In the following steps, on the basis of the perspective 
projection equation (4), 'K  is firstly determined by virtue 
of stratified self-calibration, then the original internal 
parameter matrix K  is acquired through (5). 

D.   Projective Calibration 
The projective calibration aims to obtain camera 

projective matrix PiP (i＝1, 2…M) of every image in the 
projective reconstruct space. To simplify the solving 
problem, we let world coordinate system align to the 
camera coordinate system of 1I , so 1I  is considered as the 
reference image. Also, there is the following formula. 

 1 3 3 3[ | 0 ]P IP ×=  (6) 

The other projective matrices PiP （i>1） are solved as 
follows.  

1) Calculating the fundamental matrix 1iF  between 1I  
and iI  
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According to the corresponding relationship of 
matched feature points between 1I  and iI , the 
fundamental matrix 1iF  is calculated by virtue of the 
eight-point algorithm[14]. 

2) Forcing matrix 1iF  rank reduced  
According to the nature of the fundamental matrix 1iF , 

we let 1iF  meet the reduced rank constraint rank( 1iF )=2. 
The details are as follows. 

After SVD decomposition of the matrix 1iF , we can get  

 1i 1i 1i

T
1 F F F=U D ViF  (7) 

where 
1iFD consists of the singular values of 1iF . Set the 

smallest singular value of 
1iFD  to 0, and construct a new 

matrix 
1iF

'D . Let 

 1i 1i 1i

T
1 F F F
' '=U D ViF  (8) 

where 1
'
iF  is the solved fundamental matrix between 1I  

and iI . 
3) Computing the coordinate of epipole 1ie  about the 

image iI  
The epipole 1ie  of the image iI  is the projection of 

camera optical center in the image iI . According to the 
knowledge of epipole geometry, there is the following 
equation. 

 
' T

1 1ie =0iF  (9) 

Since the matrix 1
'
iF  has reduced rank, the solution of (9) 

or the value of 1ie  is unique, and proportional to the last 
column of 

1iFU . 
4) Calculating the projective matrices PiP (i>1) 
According to the selected world coordinate system and 

the knowledge of projection transformation, the 
projective matrices PiP (i>1) of camera is determined as 
follows. 

 1[ | e ]   (i>1)Pi Pi iHP = , (10) 

 1 1 1
'[e ] e πT

Pi i i iH F×= + , (11) 

where 1[e ]i ×  is an anti-symmetric matrix from 1e i . Let 
T

1i 1 2 3e =( , , )e e e , there is  
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×

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (12) 

where π  is a non-zero column vector, for example 
Tπ=[1,1,1] . 

E.   Affine Calibration 
Affine calibration aims to determine the parameters of 

infinity reference plane in the space of projection 

reconstruction, i.e. T
1 2 3π =( , , )π π π∞ , and thus determine the 

homography AiH  associated with the affine calibration. 
This parameter uses the position of the image 1I  as a 
reference position. 

According to the relationships among projective, affine 
and metric calibration in the stratified method, there are 
the relationships as follows. 

 
1

1 1~ ~ [ e π | e ]T
Ai Pi PA Pi i iP P T H−

∞−  (13) 

 
1

Mi~ ~ [ | t ]Ai Mi AM MiP P T K R K K−′ ′ ′  (14) 

where AiP  is affine transformation matrix, and MiP  is 
metric transformation matrix, and PAT  is the transition 
matrix from projective transformation matrix to affine 
transformation matrix, and AMT  is the transition matrix 
from affine transformation matrix to metric 
transformation matrix, and MiR  and Mit  are respectively 
the translation vector and the rotation matrix in the 
position and orientation of the image iI  relative to the 
reference 1I . 
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Thus, according to the first three columns in the 
formulas (13) and (14), we get the following formulas. 

 1
1e π ~T

Ai Pi i MiH K R KH −
∞ ′ ′−=  (18) 

AiH  is the homography which transforms the projection 
in the reference image 1I  of a point in the infinity plane 
into the projection in the image iI . With the effect of 
approximating from the small-angle rotation, we can infer 
that [15] 

 ( ) ~ 1,1,1 T
AiHDiag ⎡ ⎤⎣ ⎦ . (19) 

( )AiHDiag  represents the vector from main diagonal 
elements of AiH . That is to say, the main diagonal 
elements of AiH  can be approximately equal. Thus, 
according to formulas (10) and (18), there is the 
following equation (20) containing unknown π∞ . 
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⎣ ⎦∑  (21)

where ( , )PiP m n  is the item in the mth row and nth column 
of matrix PiP . π∞  can be determined using the method of 
least squares[16]. Furthermore, we refine the unknown 
π∞  by applying Levenberg-Marquardt optimization 
technique to the optimization problem as formula (21). 
After this, we can get AiH (i>1) from π∞  and formula (18). 

Then we normalize the matrix AiH . For every AiH (i>1), 
let Ai i AiH Hα′ =  so as to det( ) 1AiH ′ = . It is easy to know that 

3 1 / det( )i AiHα = , thus AiH  can be transformed into AiH ′  
with unit determinant as follows. 

 3 1 / det( )Ai Ai AiH H H′ = ⋅  (22) 

Moreover, the formula (18) is transformed into as follows. 

 1
Ai MiH K R K −′ ′ ′=  (23) 

F.   Metric Calibration 
This stage consists of two steps. The first is to 

calculate internal reference matrix K ′  of camera. We can 
get 1

Ai MiK H K R−′ ′ ′ =  from (23). According to the property 
T

Mi MiR R−=  of the rotation matrix, we get 
1 T T T

Ai AiK H K K H K− − −′ ′ ′ ′ ′ ′= . Thus we have the following 
important equation. 

 ( )T T T
Ai AiH K K HK K ′ ′ ′ ′=′ ′  (24) 

Let 

 T

a b c
C K K b d e

c e f

⎛ ⎞
⎜ ⎟′ ′= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

. (25) 

Since C is a symmetric matrix, equation (24) is become 
as follows. 

 T
Ai AiH CH C′ ′ =  (26) 

For every AiH ′ , after expanding matrix multiplication in 
(26), and eliminating redundant equations, we can get six 
homogeneous linear equations involving six unknowns a, 
b, c, d, e and f.  

From M-1 AiH ′ (M>=3), we establish a homogeneous 
over-determined system of linear equations as follows. 

 ' 0XC =  (27) 

where ' ( , , , , , )TC a b c d e f=  is a vector consisted of the 
independent items of C, and X is a 6(M-1)×6 matrix. 
The least-square solution of 'C  is the eigenvector 
corresponding to the minimum eigenvalue of TX X [16]. 

By conducting SVD decomposition of X or using Jacobi 
method, we can find the smallest eigenvalue of 
symmetric matrix TX X . According to TC K K′ ′= , solve K ′  
by virtue of Cholesky decomposition. If the diagonal 
terms of K ′  are required to be positive, the Cholesky 
decomposition is unique 

The second step in this stage is to determine original 
internal reference matrix K  of camera. According to the 
formula (5), we have the following formula. 

 
1 'K T K−=  (28) 

In the case that T  and K ′  are known, K  can be solved. 

III.  EXPERIMENTAL RESULTS 

We took real images to confront our proposed 
framework with the real world. The camera to be 
calibrated is an off-the-shelf Panasonic AW-E300 CCD 
camera. The image resolution is 720×576. Only three 
groups of real images which come from three difference 
scenes are shown in the paper due to space limitation, as 
can be seen in Figures 1-3.  

We adopted the proposed self-calibration to calibrate 
each image group, and presented the calibrated results of 
intrinsic parameters in Table 1, where the second, third 
and last rows are for Group 1 of image in Figure 1, Group 
2 of image in Figure 2 and Group 3 of image in Figure 3, 
respectively. In Table 1, f  is effective focal length, or 
distance from image plane to projective center, unit in 
millimeters.  Here we let uf f= . q is the image size factor 
about internal parameters and determined by /u vq f f= . 

As we can see from the calibration results of intrinsic 
parameters, the calibrated coordinate ( up , vp ) is close to 
the ideal computer image coordinate (360, 288) of the 
origin in the image plane, and the calibrated distortion 
factor s is close to 0. We further evaluated the self-
calibration accuracy by how well it can sense the 3D 
world. For each group of image, we applied the calibrated 
camera parameters to back project every 3D feature point 
into the image plane and computed the Euclidean 
distance between back-projected 2D feature point and 
real feature point. Then we averaged the Euclidean 
distances about all back-projected 2D feature points to 
obtain the mean back-projected error. In addition, we 
computed the standard deviation of the back-projected 
error. The mean back-projected error and the standard 
deviation are presented in the second and third columns 
in Table 2, respectively. As we can see from Table 2, the 
mean back-projected error and the standard deviation for 
the self-calibration are all lower than 1 pixel, which is 
satisfactory in many real computer vision and 
photogrammetry tasks, especially in the case of no 
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calibration reference with known 3D information. So our 
proposed self-calibration method actually yields good 

calibration results 

 

 
Figure 1. Group 1 of real images for camera self-calibration 

 
Figure 2. Group 2 of real images for camera self-calibration 

 
Figure 3. Group 3 of real images for camera self-calibration 

TABLE 1.  
CALIBRATION RESULTS OF INTRINSIC PARAMETERS APPLYING THE PROPOSED SELF-CALIBRATION APPROACH RESPECTIVELY TO THREE IMAGE GROUPS 

SHOWN IN FIGURES 1-3. 
images ku kv f pu pv s q 

Group 1 968.42 1020.73 9.72 378.40 259.07 4.20 1.08 

Group 2 902.24 1043.54 9.05 371.88 302.63 12.48 0.98 

Group 3 909.03 1034.80 9.12 392.38 314.09 -1.36 1.00 

 
TABLE 2.  

THE MEAN BACK-PROJECTED ERROR AND THE STANDARD DEVIATION 
FOR THREE IMAGE GROUPS. 

images 
the mean back- 

projected error 

the standard 

deviation 

Group 1 0.403 0.514 

Group 2 0.285 0.372 

Group 3 0.572 0.683 

 
For our experiments, we used a PC platform with 

2.5GHz Intel Core i5-2450M processor, 4G RAM and 
Windows 7 to run the presented self-calibration method 
implemented in C++. We recorded the computation time 
of obtaining the calibrated results as shown in Table 3. 
The computation time for the calibration method involves 
the time t1 for detecting and matching SIFT feature 
points, the time t2 for self-calibration and the time t3 for 
reconstructing and back projecting 3D feature point. As 

we can see from Table 3, since LM optimization method 
is used in the process of rebuilding the 3D coordinates of 
the feature points, the time t3 for reconstructing and back 
projecting 3D feature point is even more than three 
second, but actually t3 is not due to the proposed self-
calibration method and should not be included into the 
time of self-calibration. The time t1 of detecting and 
matching feature points is less than two second, and the 
computation time t2 for self-calibration is far less than 
one second, which has been very pleasing and 
encouraging without interrupting the execution of 
computer vision and photogrammetry tasks. 

TABLE 3.  
THE COMPUTATION TIME OF CALIBRATION FOR THREE IMAGE GROUPS. 

images t1 (s) t2 (s) t3(s) 

Group 1 1.513 0.0004 1.560 

Group 2 1.388 0.016 3.182 

Group 3 1.420 0.015 3.947 
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Figure 4. Input self-calibration images into the program 

 

 
Figure 5. Show the computation time, accuracy and 2D feature points 

 

 
Figure 6. Display the self-calibration results of camera in a popped 

dialog 
 

 
Figure 7. Show the back-projected 2D feature point 

 

We illustrated the software implementation on the 
proposed self-calibration method in Figures 4-7. Figure 4 
showed the program interface, where the self-calibration 
images in Group 1 were loaded into the program by 
“Input Images” button and we can select an image to 
display in the left zone of interface through drop-down 
combobox “Select Image”. Also, we set CCD size and 
effective picture elements of camera through the program 
interface. Then the self-calibration was performed by 
using the method proposed in this paper when the “Self 
Calibration” button was pressed, as shown in Figure 5. 
Figure 5 also displayed the computation time of obtaining 
the calibrated results and the mean back-projected error 
as well as the standard deviation, where the red and white 
marks represented matched 2D feature points. If the 
“Show Results” button is pressed, the self-calibration 
results of the camera internal parameters will be 
displayed as a popped dialog like in Figure 6. Figure 7 
showed the back-projected 2D feature point marked by 
blue and white after we pressed the “Feature/Reproject” 
button. 

IV.  CONCLUSION 

This paper proposed a novel stratified self-calibration 
method of camera based on rotation movement. This 
method requires inputting more than three images from 
the same scene with constant internal reference. During 
capturing the images, the camera can be performed 
translational motion and also rotated, but the relative 
rotation angles among the captured images should be as 
small as possible. The proposed self-calibration method 
firstly extracts and matches feature points for all images. 
Then the stratified calibration involving projective, affine 
and metric calibration of three levels is carried out. 
Projective calibration determines the camera projective 
matrix of every image in the projective reconstruct space. 
Affine calibration calculates the parameters of infinity 
reference plane in this space and the homography 
according to approximately equal relationship among the 
main diagonal elements of homography. Finally metric 
calibration acquires internal reference matrix by virtue of 
the calculated homography. The proposed method 
provides a fast self-calibration solution with stable and 
accurate results. This makes online and real-time 
calibrating the internal parameters of camera possible in 
the case of no dependent calibration references, thus 
improving the existing camera self-calibration. 
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