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Abstract—Stopping accuracy is one of the most important 
indexes of efficiency of automatic train operation (ATO) 
systems. Traditional stopping control algorithms in ATO 
systems have some drawbacks, as many factors have not 
been taken into account. In the large amount of field-
collected data about stopping accuracy there are many 
factors (e.g. system delays, stopping time, net pressure) 
which affecting stopping accuracy. In this paper, three 
popular data mining methods are proposed to analyze the 
train stopping accuracy. Firstly, we find fifteen factors 
which have impact on the stopping accuracy. Then, ridge 
regression, lasso regression and elastic net regression are 
employed to mine models to reflecting the relationship 
between the fifteen factors and the stopping accuracy. Then, 
the three models are compared by using Akaike information 
criterion (AIC), a model selection criterion which 
considering the trade-off between accuracy and 
complexity. The computational results show that elastic net 
regression model has a best performance on AIC value. 
Finally, we obtain the parameters which can make the train 
stop more accurately which can provide a reference to 
improve stopping accuracy for ATO systems. 
 
Index Terms—data mining, train stopping accuracy, ridge 
regression, lasso regression, elastic net regression 
 

I. INTRODUCTION 

In recent years, urban railways have been developed 
rapidly due to high-speed, punctuality and safety in 
public transportation systems [1]. Most developed cities in 
China such as Beijing and Shanghai have to depend on 
metros to reduce the public traffic jam [2]. Automatic train 
operation (ATO) systems have been widely used in 
current urban rail transit systems to improve their 
performances. Stopping accuracy is one of the most 
important performance indexes in evaluating the 
efficiency of ATO systems. Some measures and solutions 
are conductive to increasing the efficiency of the metro 
operation, such as analyzing the relationship between the 
stopping accuracy and train operation parameters, finding 
out the reasons which lead to inaccurate stopping and 
putting forward some suggestions for improving stopping 
accuracy. 

The stopping accuracy analysis has been mainly 
studied by some subway operating companies or research 
institute. H.-P Yu analyzed the stopping accuracy of 
urban rail train based on the braking system, signal 
system, traction control system and line conditions, then 
presented some suggestions for the improvement of train 
braking system [3]. X.-Y Li analyzed the failure of 
inaccurate stopping in ATO systems, then found out the 
reasons affecting the stopping accuracy in terms of route 
and speed, at last provided improvement methods on 
signal professional [4]. A simple model for train stopping 
is proposed by Richard Banach by investigating the 
development of train control systems [5]. D.-W. Chen 
presented least square estimation and an adaptive network 
based fuzzy inference system (ANFIS) to estimate the 
train station parking error in urban rail transit [6,7] and 
employed some online learning algorithms to 
dynamically change braking rate to reduce the stopping 
error [8]. X.-J. Jiang found the reasons why the train 
stopped inaccurately by analyzing the real time running 
data in the station, then presented a method to find the 
installation location of the platform screen door (PSD)  to 
make the train stop more accurately [9]. 

The previous works have achieved some results about 
the stopping accuracy analysis. However, the previous 
works mainly laid emphasis on the locomotive 
performance in the ATO systems. And, only a few of 
factors, such as speed, time, location, were studied. 
Furthermore, the field-collected data were too small to 
mine enough useful rules for stopping accuracy. Some 
specific factors which could influence stopping accuracy 
still cannot be found and explained. 

Different from previous research, we use large amount 
of field-data and regression methods in data mining to 
establish some models which reflect the relationship 
between stopping accuracy and many other factors. 
Moreover, we concretely analyze which factors influence 
the stopping accuracy and how to influence it in order to 
provide a basis for improving stopping accuracy. 
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II. DATA PREPROCESSING 

A.  Data Cleaning 
Some abnormal points and noise will be inevitably 

added to the process of data acquisition. On one hand, the 
data inputted manually will be puzzled by input errors; on 
the other hand, noise data also exists in the process of 
automatic data collection caused by equipment 
malfunction. Furthermore, there may be some error data 
in the collection of precise stopping data, e.g., deviation 
in the recording of ATO operation data, or failure of data 
collecting device. Hence, processing for some abnormal 
points is required to deal with the above situations. 

As the stopping accuracy is a continuous variable, the 
method used in this paper is regression, where the data is 
processed smoothly on the basis of data fitting. Multiple 
linear regression is the most popular data analysis method. 
The linear relationship between variables and the output 
is attained by using the sample data fitting, after 
distinguishing the difference between the normal and 
abnormal value input through the function of in-out 
relations. The data with big errors are considered as 
abnormal data, and they will be eliminated. 

The data cleaning and regression analysis are 
performed by Matlab. To do regression analysis, we first 
need to collect input-output data pairs. For the train 
stopping accuracy, we obtained 1600 samples with 15 
inputs and one output. Of course, the output variable is 
the stopping accuracy. As to the other 15 input variables, 
more details can be found in Section 3. After processing, 
the goodness of fit and residual of stopping accuracy are 
shown in Fig.1 and Fig.2. 
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Fig.1 Fitting of stopping accuracy 
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Fig.2 Data cleaning residual 
 

The model fitting value is 0.7112. As it is shown in 
Fig.2, the data with big residual errors are marked by 
circular mark. The area through the vertical line indicates 
the 95% confidence interval of the residual validation. 
The red represents a departure from the regression of 
observed value, and these data will be eliminated. 

After several rounds of data cleaning, the data with big 
errors have been eliminated. The goodness of fit of 
stopping accuracy after cleaning is shown in Fig.3. The 
model fitting value has increased to 0.8509. 
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Fig.3 Fitting of stopping accuracy after cleaning 

 

B.  Data Normalization 
In some cases, the data will be standardized to make 

them change in a certain range. For some algorithms, we 
need to compare and operate among the variables. If there 
is no normalization processing, the final results will be 
distorted. The method employed in this paper is range 
normalization, which is commonly used in regression 
analysis. 

The method linearly changes the data between 0 and 1. 
Find a variable in the maximum (amax) and minimum 
(amin), and then utilize the formula below: 

minmax

min'
aa

aaa
−

−=                             (1) 

Since this method has linear features, it makes the 
distribution of the original variables unchanging. 
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III. APPLING DATA MINING METHODS TO ANALYZE 
STOPPING ACCURACY 

Data mining [10,11] is a kind of intelligent data analysis 
techniques, rising at the end of twentieth century. Due to 
its advantage in automatically extracting and finding 
useful information from the mass data, data mining has 
been applied in many fields. Data mining methods 
includes regression analysis [12], classification analysis [13], 
clustering analysis [14], association analysis [15] and so on. 
In this section, three classic regression methods will be 
used and compared to find the best one for analyzing the 
train stopping accuracy. 

By analyzing the data from ATO systems, we find that 
there are 15 variables which can affect the stopping 
accuracy. We define the 15 input variables as x1, x2, … , 
x15, the meaning of each input variables are shown in 
Table 1. Obviously, there is only one output variable: the 
stopping accuracy or stopping error. 

TABLE I.  

VALUE OF PARAMETERS IN RIDGE REGRESSION MODEL 

Variable Name 

x1 
Distance from the target point at the time of 

air braking (cm) 

x2 
Speed at the time of electro-pneumatic 

switching (cm/s) 

x3 
Distance from the target point at the time of 

electro-pneumatic switching (cm) 

x4 Air braking time (s) 

x5 
Mean acceleration of controller’s output in 

air braking (cm/s2) 

x6 Time (s) 

x7 Air braking rate 

x8 
Mean between goal and actual values in 

electric braking stage (cm) 

x9 
Variance between goal and actual values in 

electric braking stage 

x10 
Mean between goal and actual values in air 

braking stage (cm) 

x11 
Variance between goal and actual values in 

air braking stage braking stage 

x12 Weight of train braking stage (t) 

x13 
Mean of network voltage in braking stage 

(V) 

x14 
Variance of network voltage in braking 

stage 

x15 Mean of gradient in braking stage (‰) 

 

A.  Ridge Regression 
The estimation of coefficients in the multiple linear 

regression model relies on the independence of variables 
in the model. When the variables are linked to each other 
and the variables approximate linear correlation, the 

matrix 1( * )Tx x −  is closed to a singular matrix. Then, 
least squares estimation is as follow: 

yxxxb TT **)*( 1−=                      (2) 
The least squares estimation makes it extremely 

sensitive to the large random error of the observed value 
y and produces a larger error. 

Ridge regression solves this problem by the following 
formula: 

yxkIxxb TT **)*( 1−+=               (3) 
where k  is ridge parameter, and I  is unit matrix. 

This is the ridge regression [16-18] proposed by Hoerl and 
Kannard in 1970. And, they proved that there was a 
parameter k (k>0) which satisfied Eq. (4) 

)())(( bMSEkbMSE <                    (4) 
Hence, the main task of the ridge estimated and 

analytical method turns out to find the minimum value k. 
Attaining the k value, we can calculate the model 

parameters of ridge regression. We select 60% of 1366 
samples after cleaning randomly as the training data set, 
and the remaining 40% are employed as the testing data 
set. The fitting diagram of the training data set is shown 
in Fig.4. 
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Fig.4 Outputs of ridge regression model for training data 

 
For the training data set, the R (correlation coefficient) 

of ridge regression model is 0.8531, and the RMSE (root 
mean square error) is 2.7301. Model testing is performed 
on the remaining 40% testing data, and the fitting 
diagram of model validation is shown in Fig.5. 
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Fig.5 Outputs of ridge regression model for testing data 

 
For the testing data set, the R of ridge regression 

model is 0.8439, and the RMSE is 2.8913, which are very 
close to those in training data set. 

From the above results, we can find that ridge 
regression model achieves good results with high R and 
less RMSE for the train stopping error regression. The 
parameters in the model are shown in Table 2. 

TABLE II.  

VALUE OF PARAMETERS IN RIDGE REGRESSION MODEL 

Variable Coefficient 
x1 6.418904 
x2 -3.95443 
x3 -0.29837 
x4 -6.9465 
x5 1.767661 
x6 0.738984 
x7 -0.03553 
x8 1.350614 
x9 -0.33472 
x10 1.521577 
x11 -2.83665 
x12 0 
x13 -0.39322 
x14 -0.15784 
x15 -0.52106 

Constant term 1.41254 
 
As can be seen in Table 2, the correlation coefficients 

are high for the variables x1, x2, x4. Hence, these three 
variable are x1(distance from the target point at the time 
of air braking) which is proportional to the stopping 
accuracy, x2 (speed at the time of electro-pneumatic 
switching) and x4 (air braking time) which are inversely 
proportional to stopping accuracy. We find the variation 
of the three parameters are [359 521] (cm), [78 127] 
(cm/s) and [0.8 4] (s), respectively according to the 
analysis of the training data. Hence, to achieve high 
stopping accuracy, the variables x1, x2 and x4 should be 

359cm, 127cm/s and 4s respectively. When adopting the 
above values, the stopping accuracy will be better or the 
stopping error will be less. 

B.  Lasso Regression 
Lasso (Least Absolute Shrinkage and selection 

operator) regression is a shrinkage estimation method 
which is firstly proposed by Tibshirani in 1996 [19].  

Lasso is a regularization technique for performing 
linear regression. Lasso includes a penalty term that 
constrains the size of the estimated coefficients. Lasso is 
a shrinkage estimator: it generates coefficient estimation 
which biases to be small. Nevertheless, a lasso estimator 
can have smaller MSE than an ordinary least squares 
estimator for new data. Unlike ridge regression, as the 
penalty term increases, lasso sets more coefficients to 
zero. This means that the lasso estimator is a simpler 
model with fewer explanatory variables. Hence, lasso 
regression is an alternative to stepwise regression and 
other dimensionality reduction techniques. 

For a given value of λ , a nonnegative parameter, 
lasso regression  try to solve this regularization  problem. 

1 1

1min ( )
2

pn
T

i i j
i j

y x
nβ

β λ β
= =

⎧ ⎫
− +⎨ ⎬

⎩ ⎭
∑ ∑           (5) 

where N  is the number of observations, iy  is the 

response at observation i and ix  is data, a vector of p  

values at observation i . λ  is a positive regularization 
parameter corresponding to one value of λ . With the 
increase of λ , the number of nonzero components of β  
decreases. 

The model of lasso regression is adopted to analyze the 
stopping accuracy data, and the error estimation method 
of lasso regression model is mainly used K-fold cross-
validation. The relationship between λ  and MSE (mean 
square error) after cross-validation of lasso regression is 
shown in Fig.6. 
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Fig.6 MSE of lasso regression 

 
We use the MSE to evaluate the lasso regression 

model. In Fig.6, the MSE increase quickly with the 
increase of λ  and the nonzero parameters are too few to 
fit the model. When the value of λ  is very small, the 
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MSE is almost constant with the decrease of λ . Hence, 
overfitting is possible with very small λ  . For this 
stopping accuracy problem, we select 0.0586λ = by 
considering the trade-off of MSE and the number of 
nonzero parameters. Then, the lasso regression for 
training data set is shown in Fig.7.  
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Fig.7 Outputs of lasso regression model for training data  

 
Finally, we find the optimal lasso model with the 

following performance indices: the R of lasso regression 
is 0.8608 and the RMSE is 2.7123. Model testing is 
performed on the remaining 40% testing data, and the 
fitting diagram of model validation is shown in Fig.8. 
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Fig.8 Outputs of lasso regression model for testing data 

 
For the testing data set, the R of lasso regression 

model is 0.8512, and the RMSE is 2.8779. The 
parameters of the lasso regression model are shown in 
Table 3. 

TABLE III.  

VALUE OF PARAMETERS IN LASSO REGRESSION MODEL 

Variable Coefficient 
x1 0.18814 
x2 -0.44023 
x3 0 

x4 -9.1019 
x5 34.6974 
x6 0.16401 
x7 0 
x8 0.40185 
x9 -0.0851 
x10 0.11510 
x11 -0.4563 
x12 0 
x13 -0.01246 
x14 0 
x15 -0.41085 

Constant term 2.37614 
 
In the obtained optimal model by lasso regression, the 

number of model parameter is 11. The variables x3 
(distance from the target point at the time of electro-
pneumatic switching), x7 (air braking rate), x12 (weight 
of train) and x14 (variance of network voltage in braking 
stage) have nothing to do with train stopping accuracy. 
The stopping accuracy is highly correlated with variables 
x4, x5. The variable x4 (air braking time) is inversely 
proportional to the stopping accuracy, and variable x5 
(mean acceleration of controller’s output in air braking) is 
proportional to the stopping accuracy. The variation of 
the these two parameters are [0.8 4](s) and [0.0959  
0.3491](cm/s2), that is to say, when the variable x4 is 
closed to 4s and variable x5 is closed to 0.0959cm/s2, the 
stopping accuracy will be better. 

C.  Elastic Net  Regression 
Elastic net regression [20,21] is a related technique which 

proposed by Hui Zou. Elastic net is a hybrid of ridge 
regression and lasso regression. Like lasso regression, 
elastic net regression can generate reduced models by 
generating zero-valued coefficients. Empirical studies 
have suggested that the elastic net regression is better 
than lasso regression on data with highly correlated 
predictors. 

For an α  strictly between 0 and 1, and a nonnegative 
λ , elastic net regression solves the problem 

   
1

1min ( ) ( )
2

n
T

i i
i

y x P
n αβ

β λ β
=

⎧ ⎫− +⎨ ⎬
⎩ ⎭

∑            (6) 

Here, 
2 2
2 1

1

1 1( )
2 2

p

j j
j

Pα
α αβ β α β β α β

=

− −⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

∑ (7) 

When 1α = , elastic net regression is the same as 
lasso regression. As α  shrinks toward 0, elastic net 
regression approaches to ridge regression. For other 
values of α , the penalty term ( )Pα β  interpolates 

between the 1L  norm of β  and the squared 2L  norm of 
β . Hence, the elastic net regression is similar to ridge 

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1241

© 2014 ACADEMY PUBLISHER



regression. The relationship between λ  and MSE after 
cross-validation for elastic net regression is shown in 
Fig.9. 
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Fig.9 MSE of elastic net regression 

 

We set 0.5α = and also use the MSE to evaluate the 
elastic net regression model. There are different results in 
elastic net regression and lasso regression according to 
the coefficient changing trend. It reflects a qualitative 
analysis of the variables. When the value of λ  increases, 
there are multiple variables tend to be zero. Furthermore, 
it reflects the generality of parameters variation in elastic 
net regression. Along with the variation of λ , elastic net 
regression often remains or removes the coefficient in 
group which is highly correlated with. For this stopping 
accuracy problem, we select 0.0219λ = to achieve the 
trade-off of accuracy and complexity, as shown in Fig.9. 
Then, the results of elastic net regression for training data 
set are shown in Fig.10. 
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Fig.10 Outputs of elastic net regression model for training data 

 
We find the optimal elastic net model with the 

following performance indices: the R of elastic net 
regression is 0.8609 and the RMSE is 2.6842. Model 
testing is performed on the remaining 40% testing data, 
and the fitting diagram of the model validation is shown 
in Fig.11. 
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Fig.11 Outputs of elastic net regression model for testing data 

 
For the testing data set, the R of elastic net regression 

model is 0.8514, and the RMSE is 2.8443. The 
parameters of the elastic net model are shown in Table 4. 

TABLE IV.  

VALUE OF PARAMETERS IN ELASTIC NET REGRESSION MODEL 

Variable Coefficient 
x1 0.195724 
x2 -0.45043 
x3 0 
x4 -9.11686 
x5 34.7798 
x6 0.16491 
x7 0 
x8 0.40448 
x9 -0.09522 
x10 0.11628 
x11 -0.45885 
x12 0 
x13 -0.0127 
x14 0 
x15 -0.41677 

Constant term 1.24589 
 

The relationship between parameters and stopping 
accuracy is mentioned above, and the number of model 
parameter is 11. As same as lasso regression, also 
variables x3, x7, x12 and x14 have nothing to do with 
train stopping accuracy, and the stopping accuracy is 
highly correlated with variables x4, x5.  

IV. COMPARISONS OF METHODS 

Ridge regression, lasso regression and elastic net 
regression are employed to analyze the stopping accuracy 
in the previous sections. We utilize, number of 
parameters, R, RMSE and AIC (Akaike information 
criterion) [22] one model selection method, to evaluate the 
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performance of each regression method. All comparisons 
for training data and testing data are listed in Table 5 and 
Table 6 respectively. 

TABLE V.  

THE TRAINING DATA RESULTS OF METHODS  

Method Number of 
parameters R RMSE AIC 

Ridge 14 0.8531 2.7301 2.8660 
Lasso 11 0.8608 2.7123 2.7857 

Elastic net 11 0.8609 2.6842 2.7412 

TABLE VI.  

THE TESTING DATA RESULTS OF METHODS 

Method Number of 
parameters R RMSE AIC 

Ridge 14 0.8439 2.8913 2.9583 
Lasso 11 0.8512 2.8779 2.9261 

Elastic net 11 0.8514 2.8443 2.8872 
 
We get the results from Table 5 and Table 6, the 

number of model parameters for ridge regression, lasso 
regression and elastic net regression are 14, 11 and 11 
respectively. The number of model parameter for lasso 
regression and elastic net regression are less, and it can 
explain the model better. The parameters of lasso 
regression and elastic net regression are very similar, but 
the RMSE and AIC of elastic net regression are better 
than lasso regression, and the RMSE and AIC of elastic 
net regression are also the least in the three models. As 
mentioned above, the elastic net regression model makes 
the best effect. We analyze the elastic net regression 
model, and obtain the factors most related to the stopping 
accuracy which are variables x4 and x5. Considering 
various factors, the coefficient values which make the 
stopping accuracy tend to the best are shown in Table 7. 

TABLE VII. 

 THE VALUES OF MAIN FACTORS 

Variable Value 
x4 2.048s 
x5 0.184 cm/s2 

 

V. CONCLUSION AND PROSPECT 

This paper firstly explains the significance of stopping 
accuracy and introduces some of the previous research 
results. Previous research only studied a few of factors 
and field-data about stopping accuracy is limited. By 
analysis, we found there are fifteen factors which could 
affect the stopping accuracy. Based on the large amount 
of field-data, we put forward a new idea to study stopping 
accuracy using data mining methods. 

The ridge regression, lasso regression and elastic net 
regression are employed to analyze the stopping accuracy 
respectively and the results of various methods are 

compared. By using AIC, we found that the elastic net 
regression model is the best one for this problem. And 
two most influential factors are found from 15 ones, 
which are helpful in increasing stopping accuracy for 
ATO systems. 

Nevertheless, there are some future works to be worth 
exploring, such as choosing better methods of data 
mining, giving specific suggestions for improving 
stopping accuracy, and testing the research results in the 
field. 
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