
Lemmatization Technique in Bahasa: Indonesian
Language

Derwin Suhartono

Computer Science Department, Bina Nusantara University, Jakarta, Indonesia
Email: dsuhartono@binus.edu

David Christiandy and Rolando

Computer Science Department, Bina Nusantara University, Jakarta, Indonesia
Email: david.christiandy@gmail.com, rolando_kai@hotmail.com

Abstract—many researches and inventions have been made
in the field of linguistics and technology. Even so, the
integration between linguistics and technology is not always
reliable to all language. Every language is unique in its
linguistic nature and rules. In this paper, a lemmatization
technique in Bahasa (Indonesian language) is presented. It
has achieved good precision by using The Indonesian
Dictionary and a set of rules to remove affixes. The
lemmatization technique is developed based on the previous
algorithm, Indonesian stemmer. Both Indonesian stemming
and lemmatization method have the same characteristics
but a little bit different in its implementation. The way to
reach its own goal/purpose is defined as a core difference
and therefore possible to modify. The result shows that the
algorithm achieved roughly 98% precision on a collection
consisting 57,261 valid words with 7,839 unique valid words
gathered from Kompas.com, an Indonesian online news
article.

Index Terms—stemmer, algorithm, lemmatization, language,
Bahasa, Indonesian

I. INTRODUCTION

Issues about information retrieval occur in many
different fields. Its implementation can be found in term
of image, text, video, etc. Majority of a document
consists of text rather than image, video and so on. That
is why the way how to manage text or document is
becoming more important.

A document consists of words in which most of them
do not use the base word/dictionary entry. It is caused by
the adaptation according to the sentence intention.

Lemmatization is the process of finding the base
word/dictionary entry (lemma) from a word form [6]. In
[4], the same definition is also stated. The process is
aimed at normalizing the input according to the partner
associations of the form based on its own lemma [7]. So
far, no attempt has been made to develop a lemmatization
method for Bahasa. Instead, stemming, which is
considered similar to lemmatization has gained more
attention in its development for Indonesian.

From all the published journals related to this topic,
only stemming methods have been developed for Bahasa.
Stemming aims to reduce the numbers of variation from a

language to a standard, canonical representation (known
as stem) [5]. Indonesian stemming methods use root word
as its stem; which means that mostly they are dictionary
dependant. This characteristic is also that of
lemmatization; because every headword in the dictionary
is a lemma.

The lemmatization process may be different, according
to the nature of the language. Indonesian is a
morphologically complex language [9] where almost
every word can be inflected with affixes.

Instead of finding the root word, we believe that
finding the lemma from a given word form will give
better precision in semantic, i.e. the meaning of the
sentence [8], and more fitting for NLP applications such
as morphological analysis and language translation. There
are lemmas that consist of more than one word; i.e. a
phrase. This plays an important part when analyzing
sentences; for example given an Indonesian sentence
“saya harus mempertanggungjawabkannya” (literally
means: I have to be responsible for it), the result is
expected to be three lemmas {saya, harus, tanggung
jawab}. The lemma tanggung jawab is considered as one;
they share the same part of speech.

Based on that background, the objective of this paper is
to present a lemmatization method for Bahasa, based on
Bahasa stemmer which uses Indonesian dictionary and a
set of rules to remove inflections.

II. RELATED WORKS

The latest development of Bahasa stemmer was
Enhanced Confix-Stripping Stemmer [3]. This stemmer
was an improvement of the work initiated by Nazief and
Adriani and improved further by Asian and Nazief.
Below is the algorithm of Confix-Stripping Stemmer [2]
in a detailed explanation :

1. The input is first checked against the dictionary.
If the input exists in dictionary, then the input
will be returned as result lemma.

2. Inflectional particle suffixes (-kah, -lah, -tah, -
pun) will be removed from the current input, and
the remains will be kept inside a string variable,
checked against the dictionary. If exists, then
process terminates.

1202 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1202-1209

3. Inflectional possessive pronoun (-ku, -mu, -nya)
will be removed from the string variable, and
checked against the dictionary. If exists, process
terminates.

4. Derivational suffixes (-i, -kan, -an) will be
removed from the string variable, and checked
against the dictionary. If exists, process
terminates.

5. This step focuses on removing the derivational
prefixes (beN-, di-, ke-, meN-, peN-, se-, teN-)
from the string variable. Notice the uppercase N
is a wildcard; it can be any alphabets (a-z). Step
5 is recursive, because in Indonesian
morphology derivational prefix can be stacked.
Some prefixes (di-, ke-, se-) are considered
simple, because in practice they do not change
the lemma. On the other hand, the other prefixes
(beN-, meN-, peN-, teN-) do change the lemma,
and differs according to the first letter of the
lemma. These transformations and variants are
listed on the rule tables below.

TABLE 1.
PREFIX STRIPPING RULE SET FOR BE-

Rule Construct Return

1 berV... ber-V... | be-rV...
2 berCAP... ber-CAP... Where C!='r' and P!='er'
3 berCAerV... ber-CAerV... Where C!='r'
4 belajar... bel-ajar...
5 beC1erC2... be-C1erC2... Where C1!={'r' | 'l'}

TABLE 2.

PREFIX STRIPPING RULE FOR TE-

Rule Construct Return
6 terV... ter-V... | te-rV...

7 terCerV... ter-cerV... Where C!='r'
8 terCP... ter-CP... Where C!='r' and P!='er'

9 teC1erC2... te-C1erC2... Where C1!='r'

TABLE 3.
PREFIX STRIPPING RULE FOR PE-

TABLE 4.

PREFIX STRIPPING RULE FOR ME-

Rule Construct Return

10 me{l|r|w|y}V... me-{l|r|w|y}V...
11 mem{b|f|v}... mem-{b|f|v}...
12 mempe{r|l} mem-pe...
13 mem{rV|V}... me-m{rV|V}... | me-p{rV|V}...
14 men{c|d|j|z}... men-{c|d|j|z}...
15 menV... me-nV... | me-tV...
16 meng{g|h|q|k}... meng-{g|h|q|k}...
17 mengV... meng-V... | meng-kV...
18 menyV... meny-sV...
19 mempV... mem-pV... where V!=’e’

V stands for a vowel (a, i, u, e, o), C stands for
consonant, A represents any alphabet character
(a-z), and P represents a short fragment of words,
such as ‘er’.
There are several termination conditions for this
step:

a. The prefix and the removed suffix are
listed in the invalid affix pair table
below (Table 5).

b. The removed prefix is literally
equivalent to previously removed
prefix.

c. The recursive limit for this step is three.

Rule Construct Return
20 pe{w|y}V... pe-{w|y}V...
21 perV... per-V... | pe-rV...
22 perCAP... per-CAP... where C!=’r’ and P!=’er’
23 perCAerV... per-CaerV... where C!=’r’
24 pem{b|f|v}... pem-{b|f|v}...
25 pem{rV|V}... pe-m{rV|V}... | pe-p{rV|V}...
26 pen{c|d|j|z}... pen-{c|d|jz}...
27 penV... pe-nV... | pe-tV...
28 peng{g|h|q}... peng-{g|h|q}...
29 pengV... peng-V... | peng-kV...
30 penyV... peny-sV...
31 pelV... pe-lV... Except: “pelajar” return

“ajar”
32 peCP pe-CP... where C!={r|w|y|l|m|n} and

P!=’er’
33 peCerV per-CerV. . .where C!={r|w|y|l|m|n}

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1203

© 2014 ACADEMY PUBLISHER

TABLE 5.
DISALLOWED PREFIX AND SUFFIX PAIRS;

EXCEPT THE KE- AND -I AFFIX PAIR FOR THE ROOT WORD TAHU

Prefix Disallowed Suffixes
ber- -i
di- -an
ke- -i and –kan
me- -an
ter- -an
per- -an

The removed prefix will be recorded, and the
string variable will be checked against the
dictionary. If the string variable does not exist in
the dictionary and no termination condition is
satisfied, then step 5 will be repeated, with the
string variable as input.

6. If the string variable is still not found after Step
5, then the rule tables will be examined whether
recoding (p. 63) is possible. In the rule set, there
are several rules that hold more than one output.
Take rule 17 for example; mengV has two
outputs: meng-V or meng-kV. In step 5, the first
output (i.e. left one) will always be picked first,
and this can cause error. Recoding is done to
undo this kind of error by going back to step 5
where this output selection happens; and instead
selects the other output.

7. If the string variable still remains unknown to
the dictionary, then the original input word will
be returned.

In order to solve the major error causes as stated above
(i.e. non-root word in the lookup dictionary, incomplete
dictionary, and hyphenated words), three approaches are
suggested:

1. Improve dictionary quality by using different
dictionary sources, and compare its accuracy
with the previous dictionary.

2. Add extra rules to handle hyphenated words.
The main idea used to construct this rule is, if a
hyphenated word contains an exact same pair
word (e.g. bulir-bulir) then it will be stemmed to
bulir. This also applies for hyphenated word
with affixes (e.g. seindah-indahnya); the affix
will be removed first and then checked whether
the pair word is stemmable.

3. Modification of rules, prefixes and suffixes:
a. Rules alteration for prefixes (ter-, pe-,

mem-, and meng-) which has already
been applied to the rule tables above. In
detail, rule number 9 and 33 were
added, rule number 12 and 16 were a
modified version from the previous rule.

b. Prefix removal will be performed
before suffix removal if a given word
has an affix pair from the list below:

• be- and -lah

• be- and -an
• me- and -i
• di- and -i
• pe- and -i
• ter- and -i

Compared against Nazief with the same dataset, the
modified Nazief achieves around 2-3% higher accuracy
which approximately is 95% [3] extended the Confix-
Stripping Stemmer by solving unhandled cases with
specific prefix type (p. 151), listed below:

1. “mem-p” as in mempromosikan,
2. “men-s” as in mensyukuri,
3. “menge-“ as in mengerem,
4. “penge-“ as in pengeboman,
5. “peng-k” as in pengkajian,
6. Incorrect affix removal order, resulting in

unstemmed input. For example the word pelaku
is overstemmed because of the “-ku” on the last
part of the word is considered as an inflectional
possessive pronoun suffix. Other example is the
word pelanggan, which is overstemmed because
the “-an” part on the last is considered as a
derivational suffix.

In order to solve the cases above, suggested two
improvements [3] :

1. Rules modification and addition to the rules
table, in order to fit the specific unhandled cases
above.

2. Extra process of stemming, which is called
loopPengembalianAkhiran (p. 151), henceforth
referenced as LPA. This extra step is appended
after the last step of CS Stemmer’s stemming
process, specifically after the recoding attempt
has failed (i.e. Step 8, in the CS Stemmer). After
each step, a dictionary lookup is performed to
check if the processed input listed in the
dictionary. The detailed flow of LPA is as
follows:

a. Return CURRENT_WORD to the state
before recoding, and return all prefixes
that have been removed in the prefix
removal process, and perform a
dictionary lookup.

b. Redo the prefix removal process.
c. Return the previously removed suffixes

in order: derivational, personal pronoun,
and particle suffixes. On each order of
suffix restoration, step d to step e is
performed. An important exception is
made for the derivational suffix “-kan”.
Firstly, only the ‘-k’ is restored and
step d and e is performed. However, if
fails, then the rest (i.e. ‘-an’) will be
restored, and step d and e is performed.

d. Redo the prefix removal process, and
perform recoding if possible.

e. If dictionary lookup fails, execute step
a and restore the next order of suffix
according to step c.

1204 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

III. PROPOSED ALGORITHM

The lemmatization algorithm based on the state of the
art, Enhanced Confix Stripping Stemmer (henceforth
referred as ECS) [3]. This research does not aim to
improve ECS, because it is different in goal/purpose. The
lemmatization algorithm aims to modify ECS instead, in
order to fit the lemmatization concept. However, there are
similarities in some of the processes, for example,
removal of affix, in order to reach its lemma form. These
kinds of process can be re-implemented with minimal
changes. There are some cases that does not stemmed
successfully by ECS; that will hopefully be solved by
lemmatization algorithm. These cases are:

1. Ineffective Rule, especially rules that handle
meny- and peny-. For example, penyanyi and
menyatakan.

2. Compound words constructed from lemma
phrases, such as diberitahukan.

3. Over-stemming, such as penyidikan to sidi.
4. Under-stemming, such as mengalami produces

alami.

Depicted in Figure 1, the lemmatization algorithm
includes several processes:

A. Dictionary Lookup. This process checks
whether the word is listed as a lemma in the
dictionary. When the lookup succeeds, then the
algorithm will stop, and the lemma will be
returned as a result. This process is executed at
the end of every executed process, to ensure that
every applied transformation are always checked
and will be immediately returned as result when
the lemma is found. There are phrases that are
considered as a lemma, for example, ‘tanggung
jawab’. These lemma phrases, when given a
confix, will be joined together and become one
word (compound word). e.g. the lemma phrase
‘tanggung jawab’, when given a ‘per- -an’
confix, will result in pertanggungjawaban. This
case is not handled by the previous stemming
algorithm, because it consists of more than one
word.

B. Rule Precedence Check, This process is
executed to determine the other processes’
execution order. There are some prefix-suffix
combinations that produce faster, and more
accurate result, if prefix removal is executed
prior to suffix removal. These combinations are:

START

A

Y

READ
WORD

B

Success

Failed

C

E

Remove
Suffix First

Remove
Prefix First

A

F

E

Success

Success

Failed

D

Failed

A

F

Success

Success

C D

E F

A

C

Y

Success

Success

FailedFailed

Failed

A

D

Success

Success

G
Failed

A

Success

YX

Failed
Failed

END

END

Figure 1. Lemmatization Algorithm Flowchart

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1205

© 2014 ACADEMY PUBLISHER

be- and -lah,
1. be- and -an,
2. me- and -i,
3. di- and -i,
4. pe- and -i,
5. te- and -i.

When an input word has a prefix-suffix pair that
satisfies the combinations listed, then the
execution order will be derivational prefix
removal, recoding, inflectional suffix removal,
and derivational suffix removal. On the contrary,
if the affix pair of input word does not match
any of the affix combinations listed, then
inflectional suffix removal and derivational
suffix removal will be performed/executed first.

C. Inflectional Suffix Removal. Inflectional suffix
has two types of suffix, particle {‘-lah’, ‘-kah’,
‘-tah’, ‘-pun’} and possessive pronoun {‘-ku’, ‘-
mu’, ‘-nya’}. Indonesian language structure
dictates that particle suffix will always be the
last suffix added on a word. So, this process will
try to remove particle suffix before removing
possessive pronoun suffix. For example, the
word ‘bajukupun’ contains the particle ‘-pun’,
and the possessive pronoun ‘-ku’. The particle
will be removed first, resulting in ‘bajuku’, and
a dictionary lookup is performed. Since the word
is not listed in dictionary, the possessive
pronoun is removed, producing the word ‘baju’
as result.

D. Derivational Suffix Removal. This process will
try to remove derivational suffix {-i, -kan, -an}
from a given word. Derivational suffix is always
added to a word before adding inflectional suffix.
It means that this process will always be
executed after inflectional suffix removal
(except when the word has no inflectional
suffixes). For example, the word nyalakan
contains the derivational suffix -kan, therefore it
will be removed and produces the word nyala as
result.

E. Derivational Prefix Removal. Derivational
prefix has two kind of groups, plain {‘di-‘, ‘ke-‘,
‘se-‘} and complex {‘me-‘, ‘be-‘, ‘pe-‘, ‘te-‘}.
Plain prefixes, as the name suggests, do not
require any rule, nor transform the word when
added; which means, the removal process is
done by directly removing the detected plain
prefixes (e.g. ‘dibawa’, ‘sejalan’, ‘ketutup’). On
the other hand, complex prefixes transform the
word when added. Indonesian language permits
derivational prefix combination on a word (e.g.
‘berkelanjutan’ which originates from ‘lanjut’),
however there are constraints that limit the
combination possibility. The possible
combinations are:
1. ‘di-‘, followed by ‘pe-‘ or ‘be-‘ prefix type

(e.g. ‘diperlakukan’ and ‘diberlakukan’)
2. ‘ke-‘, followed by ‘be-‘ or ‘te-‘ prefix type

(e.g. ‘kebersamaan’ and ‘keterlambatan’)

3. ‘be-‘, followed by ‘pe-‘ prefix type (e.g.
‘berpengalaman’)

4. ‘me-‘, followed by ‘pe-‘, ‘te-, or ‘be-‘ prefix
type (e.g. ‘mempersulit’, ‘menertawakan‘,
and ‘membelajarkan’)

5. ‘pe-‘, followed by ‘be-‘ prefix type (e.g.
‘pemberhentian’), with special case for
‘tertawa’ (‘penertawaan’).

The lemmatization algorithm will remove up to
three prefixes and three suffixes; whereas the
three suffixes consists of derivational suffix,
possessive pronoun, and and particle suffix types
and the prefixes follow the combination rule
above. Therefore, this process is repetitive, up to
three iterations. At the end of every iteration, the
current state of word is checked against the
dictionary in order to prevent overstemming.
Termination also occurs when the currently
identified prefix has been removed in the
previous iteration, or the word contains a
disallowed affix pair (prefix-suffix), listed below:

TABLE 6.
DISALLOWED AFFIX PAIRS

Prefix Suffix

be- -i

di- -an

ke- -i, -kan

me- -an

se- -i, -kan

te- -an

A valid word can contain up to two prefixes, and
three suffixes. However this is not true for
Indonesian scheme; take for example
‘sepengetahuan’ which contains the prefix ‘se-‘,
‘pe-‘, and ‘ke-’. In this step, the ‘se-‘ prefix will
be removed; which produces ‘pengetahuan’. On
the second iteration, ‘pe-‘ will be removed;
which produces ‘ketahuan’. The last iteration
will remove ‘ke-‘, which produces ‘tahuan’. So,
the lemmatization algorithm will iterate up to
three times.

F. Recoding. When affix removal process still fails
the dictionary lookup, there are a possibility that
the removal process did not transform the word
accordingly. For example, the word ‘menanya’
is transformed into ‘me-nanya’ which in result
fails the lookup; this happens because the
original word, ‘tanya’, is transformed into
‘nanya’ when combined with the prefix ‘me-‘.
However, there are also cases where the
lemma’s first letter is ‘n’, for example ‘nama’ in
the word ‘menamai’. The purpose of recoding is
to go through all kinds of transformation
possibilities. This is achieved by recording

1206 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

alternative path of transformation. Take rule 1
for example, there are two possible output. On
affix removal, the chosen output will always be
the left one; However when this process is
executed, the algorithm checks whether there are
any alternative path recorded when removing
affixes; and then replaces the current
transformation with the alternative. For example,
the word ‘berima’ (in rhythm), contains the
prefix ‘be-‘, and affix removal rule 1 will be
applied (Table 3.1) because it follows the pattern
‘berV…’. However, the default output of this
rule is to remove ‘ber-‘ from the word, resulting
in ‘ima’ and this causes the dictionary lookup to
fail. This process checks for the recoding path,
i.e. ‘berV… to ‘be – rV…’, reattached the
removed prefix (from ‘ima’ to ‘berima’), and
applied the recoding rule (from ‘berima’ to
‘rima’) and produces ‘rima’ as result.

G. Suffix Backtracking. This process is attempted
after affix removal and recoding fails dictionary
lookup. On each step, prefix removal and
recoding will performed. First, the prefixes that
have been removed will be reattached to the
word; then prefix removal and recoding is
performed. If the result fails the dictionary, the
prefixes are reattached and the removed
derivational suffix will also be reattached. If the
result still fails, reattach prefixes, derivational
suffix, and possessive pronoun. If the result still
fails, the last step is the reattach the particle.
There is a special case, when the removed
derivational suffix is ‘-kan’, then ‘-k’ will be
attached first. If the result fails, then ‘-an’ will
be attached. Considering the word
‘pemberhentiannyapun’, and assuming that the
dictionary lookup will always returns failure, the
reattachment will be:
1. Reattach prefixes: pemberhenti, and

perform derivational prefix removal:
a. ‘pe-‘ prefix removed, resulting in

‘berhenti’
b. ‘be-‘ prefix removed, resulting in

‘henti’
2. Reattach derivational suffix: pemberhentian,

and perform derivational prefix removal:
a. ‘pe-‘ prefix removed, resulting in

‘berhentian’
b. ‘be-‘ prefix removed, resulting in

‘hentian’
3. Reattach possessive pronoun:

pemberhentiannya, and perform
derivational prefix removal:
a. ‘pe-‘ prefix removed, resulting in

‘berhentiannya’
b. ‘be-‘ prefix removed, resulting in

‘hentiannya’
4. Reattach particle: pemberhentiannyapun

and perform derivational prefix removal:

a. ‘pe-‘ prefix removed, resulting in
‘berhentiannyapun’

b. ‘be-‘ prefix removed, resulting in
‘hentiannyapun’

H. Return Original Word (represented by X).
This means that the lemmatization process fails
to find the lemma.

I. Return Lemma (represented by Y). This means
that the lemmatization has successfully found a
lemma from the given word.

The test data/sample was collected manually from
Kompas.com, one of the biggest news companies in
Indonesia. The 25 articles collected were from
Kompas.com’s online article taken between 1st November
2012 and 15th January 2013, and distributed evenly
between 10 news categories. Before lemmatized, the
articles were parsed so it fits these conditions:

1. Minimum length of tested word is 4.
2. Numbers and special characters are truncated,

leaving alphabets and stripes (‘-‘).
3. The data is supplied in a form of one word per

lemmatization process.
The parsed/formatted data contains 57,261 valid words

with an average of 6.68 characters per word, and 7,829
unique valid words. The data is stored in a MySQL table
to ease testing process. In analyzing the test data, there
are several constraints/limitations to which lemmatization
process are considered a success, which are considered an
error/fault, and specific cases that are out of the current
algorithm’s scope. A lemmatization is considered
successful, if a lemma is correctly produced from the
input word. There are some cases that a lemma is
produced incorrectly, which will fall to the error category.
Out-of-scope cases are considered invalid or unqualified;
therefore neither counted as a failure nor success. These
out-of-scope cases are:

1. Proper Nouns and Abbreviations, which
include people, area, or company names
(Microsoft, Bandung, PT.KAI, etc.). The main
reason this is included as out of scope, because
they do not exist in the dictionary.

2. Foreign Word, which means other words not in
Indonesian language. Same as point 1, they are
not listed in Indonesian dictionary.

3. Infix, an affix that is inserted inside a word. For
example, the infix ‘-er-‘ for ‘gigi’ which
produces ‘gerigi’. Words that contain infix are
already listed as lemma; therefore infix removal
procedure is not supported by this algorithm.

4. Non-standard Words and Affixes, which mean
words that is not defined in Indonesian
Dictionary, or slang words and affixes. A few
examples of these words would be ‘nggak’,
‘gue’, ‘bukain’ with its ‘–in’ suffix.

Lemmatization errors can be classified into a few
categories:

1. Overlemmatized: This term is similar to
overstemming; Affix removal is performed too
much/extensively, such that the produced lemma
is not as expected. For example, in ECS’s case

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1207

© 2014 ACADEMY PUBLISHER

of overstemming, ‘penyidikan’ to ‘sidi’, where
the correct one should be ‘sidik’.

2. Underlemmatized: This term is similar to
understemming; Affix removal is performed too
few, such that the produced lemma is not as
expected. In ECS’s case, ‘mengalami’ to ‘alami’,
where the correct one should be ‘alam’.

3. Incorrect Rule: In this case, the affix was
incorrectly removed because of ineffective or
incorrect rule. For example, ‘mengatakan’ may
become ‘katak’, by removing ‘-an’ suffix, and
‘meng-‘ prefix.

The test algorithm will fetch all parsed data, and
process them one by one. The results are saved in a
separate table. When the input word is immediately
returned as lemma, the algorithm will return
“input_is_lemma” exception message; this does not affect
the result in any way. When the algorithm fails to obtain
the lemma from input word, it will return the original
word, however with an exception message
“lemma_not_found”. However, this does not mean that
all results produced with an exception message is
classified as error; the message can also indicate proper
nouns and foreign words. After successfully storing the
process results to the database, a manual inspection is
done to analyze lemmatization errors. The algorithm
itself does not know when it is
overlemmatizing/underlemmatizing the input word; when
it finds a lemma, then it will be returned as success.
These cases need to be classified manually.

IV. RESULT AND EVALUATION

The algorithm was implemented to a simple web
application, built in PHP and using MySQL database.
The user is asked to directly input the desired word
without preparing the batch files. The screenshot is
shown in Figure 2. Basically, an input is supplied to the
application, and an output will be shown as result.

Figure 2. Main Display of Indonesian Lemmatizer

When a lemmatization process is successful, then

Figure 3 will be shown; however when the lemmatization
process returns error, such as lemma not found, then
Figure 4 will be shown instead.

Figure 3. Display of Successful Lemmatization

Figure 4. Display of Failed Lemmatization

Based on 25 articles in 10 categories captured from

Kompas.com, the results are summarized as seen in table
7 and 8.

From table 7, it can be seen that many words are
adopted from each category. From the categories, the
total words are put in the T column, while the valid test
data count is put in V column. After lemmatizing process,
the data count is put in S column. Despite of the
successful process, error is also occurred. The total
error/failure of the data is put in E column. At the end,
precision is calculated by dividing S by V.

TABLE 7.

TEST RESULT FOR NON-UNIQUE COLLECTION

Table 7 shows that only non-unique, words that

appears in many occurrences, are included, while table 8
shows only unique words.

Category
FULL

T V S E P

Business 6344 5627 5550 77 0.98632

Regional 6470 4802 5846 81 0.98313

Education 4165 5927 3598 32 0.99460

Science 6246 5504 5398 73 0.98674

Sports 6231 3242 5522 42 0.98705

International 10953 3630 9917 75 0.97934

Megapolitan 3998 5471 3214 28 0.99488

National 5499 5564 4764 38 0.99317

Oasis 6087 9992 5462 42 0.99580

Travel 8379 7502 7457 45 0.99400

All 64372 57261 56728 533 0.99069

1208 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

TABLE 8.
TEST RESULT FOR UNIQUE COLLECTION

Where:

T = Total data count V = Valid test data count S = Successful lemmatization
E = Error / Failures P = Precision

As seen on the table, it can be concluded that the

lemmatization algorithm works well in Bahasa, either
used in non-unique collection or unique collection.

V. CONCLUSION AND SUGGESTION

Based on the test result, we have shown that our
lemmatization method achieved a fairly high precision of
0.98. Even though there are still inaccuracies, it is
considerably viable to use for implementation, such as
morphological analysis, grammar analyzer, and other
linguistic applications in the context of Indonesian.
And any suggestions for the next research are:

a. Enhance this algorithm with some words
exception. Not all words in Bahasa can follow
the rules. Sometimes, some exceptions have to
be made because of word context and language
transition.

b. Improve this algorithm to be able to receive
sentences as input. For now, it could only
receive a word as input.

c. Use this lemmatization method as a basic to
make a morphological analysis algorithm, since
it is a key to actualize many useful applications.

d. Enhance this algorithm to handle repetitive
words, words with infixes, proper nouns,
abbreviations, and foreign words.

REFERENCES

[1] Adriani, M., Asian, J., Nazief, B., Tahaghoghi, S., &
Williams, H. (2007). Stemming Indonesian: A Confix-
Stripping Approach. ACM Transactions on Asian
Language Information Processing, 6(4), pp. 1 – 33.

[2] Asian, J., Williams, H., & Tagaghoghi, S. (2005).
Stemming Indonesian. ACSC ’05 Proceedings of the

Twenty-eighth Australasian on Computer Science, 38, pp.
307-314.

[3] Arifin, A., Ciptaningtyas, H., & Mahendra, I. (2009).
Enhanced Confix Stripping Stemmer And Ants Algorithm
For Classifying News Document In Indonesian Language.
The International Conference on Information &
Communication Technology and Systems, 5, pp. 149-158.

[4] Ingason, K., Helgadóttir, S., Loftsson, H., Rögnvaldsson, E.
(2008). A Mixed Method Lemmatization Algorithm Using
a Hierarchy of Linguistic Identities (HOLI). Aarne Ranta
(Eds,). Advances in Natural Language Processing.

[5] Kowalski, M. (2011). Information Retrieval Architecture
and Algorithms. New York: Springer.

[6] Manning, C. D., Raghavan, P., Schütze, H. (2009). An
Introduction to Information Retrieval. Cambridge:
Cambridge University Press.

[7] Nirenburg, S. (2009). Language Engineering for Lesser-
Studied Languages. Amsterdam: IOS Press.

[8] Poole, D. L., Mackworth A. K. (2010). Artificial
Intelligence Foundations of Computational Agents.
Cambridge: Cambridge University Press.

[9] Tucker, T. G. (2010). Introduction to the Natural History
of Language (1908). USA: Kessinger Publishing..

Derwin Suhartono was born on January
24th, 1988. He has completed his
bachelor and master degree majoring
Computer Science in BINUS University,
Jakarta, Indonesia since 2011.

He is a lecturer of Intelligent System
field in BINUS University, Jakarta,
Indonesia. He is also a researcher in
Intelligent System. His previous work

was as Java Developer. He was developing web site for banking
and telecommunication in probably 1 year. He has published
several international paper and also some national paper in the
same year. His interest is in Natural Language Processing,
Expert System, and Intelligent System Application.

David Christiandy was born on
September 17th, 1991. He has completed
his bachelor degree majoring Computer
Science in BINUS University, Jakarta,
Indonesia since 2013.

He is a student of software
engineering field in BINUS University,
Jakarta, Indonesia. He did a research in
artificial intelligence topic about

lemmatization for Indonesian language. He is currently working
as a web developer, specifically in front-end web development
and back-end web development. His interests are in Algorithms,
Web Development, and Software Engineering.

Rolando was born on May 14th, 1991.
He has completed his bachelor degree
majoring Computer Science in BINUS
University, Jakarta, Indonesia since 2013.

He is a student of software
engineering field in BINUS University,
Jakarta, Indonesia. While he was
studying in university, he also worked
as a web programmer and a front end

developer, specializing in PHP, HTML5, CSS3, and
JAVASCRIPT.

In the end of his study period in BINUS University, he did
some research in artificial intelligence field about Indonesian
language lemmatization.

Category
UNIQUE

T V S E P

Business 1868 1580 1559 21 0.98671

Regional 1213 1011 995 16 0.98417

Education 868 637 623 14 0.97802

Science 874 643 630 13 0.97978

Sports 838 608 604 4 0.99342

International 2037 1593 1575 18 0.98870

Megapolitan 610 302 297 5 0.98344

National 559 326 324 2 0.99387

Oasis 820 528 524 4 0.99242

Travel 892 611 607 4 0.99345

All 10579 7839 7738 101 0.98712

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1209

© 2014 ACADEMY PUBLISHER

