JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

1055

Architecture for Near Zero Latency in
Datawarehouse

Ahmed Kabiri and Dalila Chiadmi
Ecole Mohammadia d'ingénieurs, Université Mohammed V - Agdal, Rabat, Morocco
Email: {akabiri, chiadmi}@emi.ac.ma

Abstract—Data war ehouse (DW) has been widely recognized
as an effective solution for integrating diverse information
systems. In addition, DW supplies a platform for business
intelligence applications which aims to improve the pr ocess
of decision making. At execution level, after the first load,
DW is regularly populated with fresh data by ETL
(Extraction, Transformation and L oading) processes. In real
setting, DW refreshment is an event managed by DW
administrators. Still, non freshness of data is a drawback of
classical DW system. In this paper, we suggest a solution for
this issue by presenting ar chitecture of near real time DW.
We visit DW system layers and we show how they should
cooper ate. Finally, we define the scope and the challenge of
each layer simultaneously with our suggestion to fill its
mission.

Index Terms—KANTARA, Data warehouse, real time data
warehouse, ETL, ALWASSIT, MDA.

1. INTRODUCTION

In this section we review data integration solutions
which have been investigated by research community.
Particularly we focus on data warehouse solutions. In
section B, we expose the motivation of this work while in
section C we visit data warehouse architecture. Finally
section D highlights the outline of this work.

A. Data Integration Background

Data integration is an active area of research. Several
solutions have been suggested to same issues. In one
hand, there is virtual data integration solutions
represented by mediators like WASSIT [3, 4]...etc. A
mediation system usually has a global schema, which
provides the user with a uniform interface in order to
access information stored in the data sources. This
category of approaches has the advantage to access to
data source on fly. However, rewriting step involved in
mediation process is complex and requires non negligible
time to dispatch the query before to collect results and
combine it’s again. Depending on the query complexity
and data volume, mediator response will last.

In other hand, data integration with data warehouse
approaches, supplies flexible solutions regarding
response time. In this category, data transformation
(including data cleaning and data conforming) are done at

early stage. Data is pre calculated and saved in DW stores.

Then, user queries are executed over aggregated data.
During data-warchousing process, ETL (Extraction,
Transformation and Loading) layer is responsible of

©2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1055-1061

gathering data from disparate sources. Finally, ETL
processes are executed at periodical times for refreshing
DW with new events recorded at sources.

B. Motivation

In order to develop a successful strategy, managers
need constantly to know the situation of their business.
For this reason, they have to analyze their own data (data
collected from operational applications). To meet this
need, enterprises as organizations invest in DW projects.
Thus, DW defined by Inmon [1] as “collection of
integrated, subject-oriented databases designated to
support the decision making process” aims to improve
decision process by supplying unique access to several
sources.

The data latency requirement describes how quickly
the data must be delivered to end users [2]. In first
projects implementing DW solutions, this requirement
has not a great weight. End users are satisfied to analyze
on delayed data. But step by step the context is changing
and the need to access fresh data is increasing. Indeed,
business is growing and competiveness is becoming hug.
So in order to survive and to face this international
mutation, enterprises as organizations should sophisticate
and speed up their responsiveness. Thus, the need to
access fresh data (slow data latency) in DW system is a
serious requirement.

In next section and in order to meet the requirement
expressed above, we start by introducing the architecture
of DW system.

C. DW Architecture

The architecture of DW system is depicted in Fig. 1
where disparate sources are integrated into a single
repository called data warehouse (DW).

-
— 2 '_}
W

[sourcel]
Figure 1. Classical Data warehouse Architecture.

[sourcez l_’
\[%umeni

1056

In this setting centralized around DW, ETL tools (ETL
layer) perform three tasks. Firstly they pull data from
several sources (databases, flat files, ERP ...etc),
secondly they apply complex transformations to data
extracted in previous step. Finally they load data to the
target which is DW. The last layer of Fig 1 is
REPORTING and Analysis layer which has the mission
to catch end-user query and translate it to DW layer.
Once queries are executed, collected data are served and
formatted into reports like histograms and dashboard for
end users.

In classical DW configuration, ETL was constraint to
run at special time, often at midnight, where sources (data
producers) are not actives. Consequently, DW and
sources are asynchronous. In other words, events happing
at sources take T time to appear in the DW. Thus, T is
time duration between two consecutive DW refreshments
performed by ETL processes. Consequently, T measures
data latency, the delay to populate DW with fresh data.

D. Paper Organization

The remainder of this paper is organized as follow.
Section 2 formulates the problem which is data freshness
requirements in DW environment. Section 3 is reserved
to our proposal while in section 4; we discuss related
works to the issue involved in this work. We conclude
and present our future works in section 5.

II. PROBLEM AND SOLUTION STATEMENTS

A. Non Freshness of Data is the Problem

In first generation of data warehouses, DW
refreshment events are planned at specific times, exactly
at times where organizational applications (producing
data) are inactive. The priority is given to data producers.
But by the time, the context is changing and end users
needs are changing too. Simply, end users need accessing
fresh data.

An intuitive solution to ensure data freshness is to
shortcut DW refreshment event by running ETL
processes many times per day. But, since data latency
requirement is urgent, the architecture of the DW system
must evolves to new state in which almost every step of
the data-delivery pipeline must be re-implemented [2].

Since DW serves as the foundation for improved
decision making, DW should supply right information in
right time. Thus, the objective is to reduce delay between
the following events:

e When business events occur (at sources),
e Data are available on the DW,
e Decisions are made using new data.

This third factor depends on end-user. We ignore it in
the following sections. Thus, we focus on the first and the
second factors expressed above.

In conclusion, non freshness of data is a main
drawback of classical DW solutions. To overcome this
situation, it is helpful and desirable to reduce latency time
in DW system. Therefore all components of DW should
cooperate effectively to achieve performance and speed.

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

B. Solution Overview

In this paper, we intend to overcome data freshness
drawback in DW system. We aim to have a near real time
DW system where events recorded at source level
become available on time at DW level. To meet this need,
we suggest end-to-end DW solution focusing on data
freshness issue with optimized coordination between its
layers. Namely we suggest:

e Near real time oriented architecture of DW
based on partitioning data inside DW into local
and independent sources.

e Managing ETL processes in near real time
context. We use KANTARA, our framework for
managing ETL.

e Using AI-WASSIT, a light version of WASSIT
mediator developed in our laboratory, as
REPORTING layer

In next section we illustrate this new DW architecture
by presenting our solution for each layer.

ITII. OUR PROPOSAL FOR NEAR REAL TIME DW

In this section, we expose our proposal for handling
data freshness in DW systern. Particularly, section A
gives an overview of this architecture while next sections
give details of each DW layers. Thus, section B deals
with ETL while section C deals with DW store. Finally,
section D deals with REPORTING layer. At the end, in
section E we sketch DW schema management in near real
time setting.

A. Global Architecture

At high level, the architecture of DW in near real time
environment that we suggest is similar to the classical one
illustrated in Fig. 1. This architecture is based on same
layers which cooperate to fill the same mission that is the
warehousing of data. However, the main difference is the
internal architecture.

Fig. 2 highlights our solution. It has three levels. From
top to down, the first level retrace classical data
warehouse layers depicted in Fig 1, namely Sources, ETL,
DW and REPORTING. The second level recalls the basic
mission of each layer present in first level. Finally, the
third level shows the candidate or the technique we will
use to perform the mission of associated layer.

KANTARA and AL-WASSIT used respectively for
ETL and REPORTING layers are two frameworks

S A KA.

Data Data Data Store (| Data
Provider Processor Reporter
Replication KANTARA | Partitions AlWASSIT

l

Figure 2. Solution Overview.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

developed in our laboratory SIR

DW layer deals with data storage. In our vision, we
split DW into many parts or partitions.

Finally, for sources it is interesting to note that they are
autonomous. Furthermore they have the priority to run
their processes (which produce data) than to serve any
business intelligence application. To overcome this
situation we consider cloning sources. In other words, we
replicate sources. At this level we consider that the owner
of data (data provider) collaborate with ETL and DW
teams. Making near real time DW is a vital decision
which requires cooperation and high integration.

In next sections we give details of each layer.

B. ETL

The ETL mission is to feed DW with data coming
from sources. In first DW projects, DW refreshment
(performed by ETL processes) takes place regularly at
specific times. But currently, DW users’ needs have been
changed. Simply, end users want accessing fresh data via
DW solution (to keep DW advantages). Thus the ETL
mission, in near real time DW configuration, becomes
critical and very complex. Stated differently, after the
first load of DW, new events occurring at sources should
take little time to figure in the DW. Consequently the
challenges are:

1. To detect changes at sources level,
2. To propagate changes toward the targets.

Regarding the first challenge, many solutions have
been proposed. They are associated to incremental
loading techniques of DW. Thus as mentioned in [2], one
can use audit columns technique or log sniffing method.
Another option is to use triggers on databases. We refer
to [2] for definitions and more details. All these
approaches are effective [2], but they require cooperation
from sources owners. They have to supply this service
and implement these techniques in their operational
applications. Making near real time DW is a strategic
investment which comes with cost.

Finlay in table 1, we summarize techniques of
extracting changed data. It is clear that all techniques
don’t supply same service. Therefore and depending on
the technique used; only a part of changed data can be
detected.

TABLE L.
TECHNIQUES CAPABILITIES FOR DETECTING CHANGES
Insert Delete First Other
update | updates
Audit Columns Yes No Yes No
Snapshot Yes Yes Yes No
Differential
(Process of
Elimination)
Log scraping or Yes Yes Yes Yes
sniffing
Initial and Yes Yes Yes No
Incremental
Loads

©2014 ACADEMY PUBLISHER

1057

The second challenge deals with integrating modified
data. The idea is to deliver changed data into DW
(dimensions or facts) with less delay. Therefore the goal
is to adapt ETL processes which work on bulk mode
(extraction of full data from sources) to ETL processes
which work on delta mode where only changed data are
extracted. It is interesting to note that switching from
bulk mode to delta mode is done at logical level.

As shown in Fig. 3, we represent the problem
according to KANTARA (our framework) which is
aligned to MDA (Model Driven Architecture) paradigm.
Let recall that “MDA separates certain key models of a
system, and brings a consistent structure to these
models... explicitly and mainly into Platform
Independent Models (PIMs), and Platform Specific
Models (PSMs) which is derived from the PIM via some
transformation” [17]. Using MDA terminologies:

e Conceptual Model of ETL process constitutes
the PIM of the model.

e Logical design of ETL on Bulk Mode and
Logical design of ETL on Delta Mode
respectively PSM; and PSM, constitute two
instances of PSM model.

e T1, T2 and Adaptor constitute transformations
between models (see Fig. 3)

The Fig. 3 states that there are two direct paths to get
logical design of ETL processes on delta mode (DM).
Indeed, this is possible from Conceptual Model of ETL
process (CM) through T2 transformations or from
Logical design of ETL on Bulk Mode (BM) through
Adaptor transformations. Obviously indirect paths are
possible by combining {T2 and Adaptor} with TI1.
However let note that direct path means less
transformations.

Conceptual

Model of
ETL
process

Qﬁﬁ
Logical

design of
ETL on Delt
Mode

Logical
design of
ETL on Bulk

Mode

Figure 3. Relationship between ETL modes.

Actually in the literature we find some works
proposing conversion from BM to DM. Unlike theses
works, we suggest to build Adaptor transformations for
existents projects and to build T2 transformations for new
projects.

The specification and the implementation of T2 as
Adaptor are not in the scope of this paper. In addition,

1058

making an ETL layer, should take in account DW
organization. Next section presents our vision toward
DW layer.

C. Data Warehouse or Data Store

In his evaluation of DW, Inmon [4] et al recognizes a
life cycle of data within the DW. The basic idea is, as
data ages (once it is inside DW) its access probability
diminishes. Therefore data inside DW can be divided into
partitions. The benefit is achieving performance in query
processing. Still, how many partitions to make? How to
identify the content of a partition?

In classical DW environment, DW is a central element
that acts as a single store. In near real time environment,
DW stills a central element but acts as multi store.
Clearly we split DW into several partitions. The number
of partitions is governed by a set of parameters managed
by DW administrator. These parameters and the process
of making partitions are described below.

S ¥ ¥ $ ¥ § DataTransition
Sy

—
Data Transition 2

Figure 4. Data Repartition within Data Warehouse

Fig 3 illustrates how we distribute data within DW. We
consider each partition as a source. Let note that at early
age, only Sy and S; exist.

e S;: Static DW store. It represents the classical
data store, except that it contains recent data
produced in a given time interval. For example,
if such time interval is 5 years then S, contains
data of current 5 years.

e Sy It plays the role of real time partition which
has the mission to collect fresh data from data
sources, on near real time. Thus, events recorded
at source level are immediately processed and
forwarded to this store area. Consequently Sy
contains today data. Finally Sy can be seen as a
gate that data transit to arrive into DW.

e Data Transition (DT): it is a data flow which
has the mission to feed S; by Sy. More precisely,
all Sy data are purged into S;. Data transition
event takes place every day at specific time. For
example, this event can be planned every
midnight.

e S At the beginning, DW contains only S, and
S,. After T* time (for example 6 years), data

! It should be estimated by DW administrator

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

inserted at early phases becomes old. Thus S, is
derived from S; by purging old data from S, into
S,. Old data, which are less active than other
data, are relatively defined by DW administrator.
For example, old data may be data belonging to
[0, 2 years] interval.

e Data Transition2 (DT2): Conversely to Data
Transition flow, this data flow is not frequent. It
performs data migration from S; to next
candidate partition S,. Depending on partition
time interval, it may happen few times. For
example, if partition time interval is 2 years,
DT2 is executed twice (one by year). Finally,
this event can be planned at specific date every
year.

e S:fori>2;S;is produced similarly to S,. One
can note that S; # S;for i #j.

The content of DW at certain time t is the content of all
partitions. With abuse of notation, we note in (1)

DW =Yi=nsi (1)
The relation between t and n is defined in (2).
n= floor(“=) +2)

floor refers to greatest integer function. T is interval time
of source S; while L is time interval of each partition S;.
Obviously, we suppose that these parameters are
constants.

During this section, we have presented how we store
data inside DW (by splitting DW into partitions, which
we consider as local sources). This has an impact on
REPORTING layer. Indeed, in classical configuration,
REPORTING layer consumes data from a single store
that is DW. In next section we will see how to handle
reporting task in this new configuration.

D. Reporting and Analysis

The closing layer in DW environment is the
REPORTING (RA) layer. To avoid confusion, we use
this term to refer to different ways to access data in DW.
By construction RA is the representation layer which has
the mission to catch end-user queries and translate it to
DW. Resulting data are formatted and served to end-users
in several formats like reports or dashboards...etc.

In classical DW configuration, RA layer pulls data
from a single source that is the data warehouse. In our
setting we had split the DW store into several partitions
which behave as sources. Therefore the RA layer should
evolve to work in compatibility with this new setting. The
challenge is:

e To query several sources instead of a central
repository whether the RA layer is heavy or thin.

RA layer is heavy when DW layer is thin and vice
versa. DW is heavy when the schemas of all partitions are
synchronized (more description in section E).

For RA layer we suggest to re-use WASSIT mediator
developed in our laboratory. The main reason for that is
we have to deal with several sources. Each source

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

contains data belonging to DW in projection to a specific
time interval (snap shot of DW in certain time interval).

WASSIT mediator is based on the wrapper-mediator
architecture. The description of WASSIT architecture and
more details about it can be found in [3], [4]. WASSIT
intends to integrate disparate sources. But currently, we
want to adapt WASSIT mediator to fill the mission of
REPORTING layer in near real time DW architecture.
For this end, we call AI-WASSIT (depicted in figure 3)
the derived version from WASSIT mediator.

Reports Interface]

Time interval + Query l

Y ™\

o Inputs Analysis & XAT generation]
b1 v
3 2 Rewriti o
2 3 ewriting 3
w| |3 3

1] w
> =k Y %,
B = Optimization] @
- w
s @ v

Execution & integration

J

[

™

U |
| So i | S |
| S, S, |

A High level Architecture of AI-WASSIT.

]

Dw
Partitions

Figure 5.

Description of AI-WASSIT components:

e Timeinterval & Query: constitute the input of
AI-WASSIT. Query is the end-user request
while time interval indicates how long the query
is. It dictates the age of data to be taken in
account during data analysis. Stated differently,
this last input governs the number of sources
which will be solicited while executing the

query.

e Inputs Analysis & XAT generation: This
module has to analyze the input query. It rejects
bad inputs which are syntactically incorrect. Too,
it eliminates the queries that refer to unavailable
concepts. This is done using the knowledge base.
User’s queries are then transformed into XML
algebra trees where each node of a XAT tree is
an algebraic operator.

e Rewriting: Let's remind that we aim to access a
set of sources while every source has (by default)
its local schema that describes its structure in a
data model. The query submitted by end user is
formulated in terms of DW schema (global
schema that is the schema of S;). In order to
execute a user’s query, AIl-WASSIT must
rewrite this query, expressed in terms of DW
schema, as several sub-queries where each sub-

©2014 ACADEMY PUBLISHER

1059

query is dedicated to a particular source and
formulated in terms of its local schema. The
rewriting module takes as input the XAT tree
corresponding to the user’s query. Also, a
mapping between the DW schema and the local
schema may be included in this process of
rewriting which produces at the end; Query
Execution Plan or QEP to be sent to each
involved source.

e Optimization: This module is useful only when
each data source has its own schema. Otherwise
sub queries are identical then they are directly
sent to local sources. Next section explains when
local sources have the same schema. In first case
where local sources are different, this module
takes three inputs: a) the QEP obtained after
query rewriting, b) the description of sources
capabilities and finally c) the cost model. Then it
produces the optimal query plan for each sub-
query.

e Execution & integration: This module sends
sub-queries to appropriate sources using
localization information supplied by the
knowledge base. Also it uses a cache in order to
store the intermediate results. After sub queries
execution, it combines the results in order to
forward them to coming module.

e Formatting: This module has the mission to
format results returned by the Execution and
Integration module, according to user
specification. For instance, this module is
responsible of data graphical representation.

e The knowledge base: The knowledge base
stores general information used for queries
processing. It is a repository for metadata
involved in AI-WASSIT. Particularly, it contains
schemas of DW partitions, formatting options,
mapping...etc.

In conclusion, AI-WASSIT performs RA layer mission.
But as we said previously, there are two modes of making
this layer: RA heavy or RA thin. Next section deals with
this aspect.

E. Schema Management: DW or REPORTING Heavy

The life cycle of data within Sy (real time partition) is
very short (one day in maximum). Furthermore, the
schema of S, is identical to S; schema. Therefore data
transition from S, to S; is direct. It does not require any
transformation. However data transition, from S; to S,, is
more complex and requires dealing with schema
differences between the source S| and the target S,.

For i >= 1; we note that SHC(S;) # SHC(S;+1) where
SHC(S;) refers the schema of the source S;. Therefore
each source has its own schema. This is the default
approach for managing schemas. Another approach
behaves differently. Indeed we can standardize schemas

1060

of all sources. Then for i >= 1; we note SHC(S;) =
SHC(Si+).

The default approach for managing schema is simple
and direct. The second one has the cost of standardizing
schemas. In other words, any evolution or change in
SHC(S,) should be propagated to other S;. This includes
the application of change subject to data stored in each S;.

It is true that the task of standardizing schemas and
data takes extra times, but it has the advantage to simplify
the task of REPORTING layer. Indeed, when all S; share
the same schema, calculations and data operations
performed in REPORTING layer are executed in short
laps of time in comparison of the case where each S; has
its own schema. More precisely, in the second approach
the step of rewriting in REPORTING layer is simplified
and saves time contrarily to the default one.

Finally we note that the default approach of managing
schemas makes heavy the REPORTING layer, while the
second one makes the DW layer heavy.

IV. RELATED WORKS

Single tools as well as end to end DW solutions exist.
Indeed, a plethora of commercial ETL tools [11], [12] as
well as a set of open sources [9], [10] exist. The same
remark is valid for REPORTING layer [11, 12].

SAP and PENTAHO propose end to end solution.
Respectively SAP-BW [16](commercial) and PENTAHO
[15] (open source). All these solutions are interesting.
However, they solve only a part of DW problem in near
real time context. In addition they consider DW as a
single store (classical configuration).

For ETL in near real time context discussed in this
work, authors in [7] formalize the problem of ETL
running on delta mode. They present an approach to the
automated derivation of incremental ETL based on
equational reasoning. Transformation rules for this
purpose are defined too. While in [8] authors use the
existing method of incremental maintenance of
materialized views to implement the automatic creation
of incremental ETL processes. In comparison to our
approach, [7] like [8], specify and implement Adaptor
transformation (transformation from PSM1 to PSM2 see
Fig. 3). Therefore these approaches require the existence
of the first ETL processes of initial load. Furthermore, the
management of change and evolution, with these
approaches, is not easy.

In reference [2], Kimball et al, examines the historical
and business contexts of the real-time data warehouse.
Particularly, they justify why real time ETL? The authors
focus on evaluating several mechanisms for delivering
real-time reporting and integration services. The strengths
and weaknesses of each approach are presented. In both
cases the architecture of underlying system is based on
two partitions of data: static and real time partition. The
same idea, of DW architecture, is expressed in [5] where
authors use the concept of cashes to receive actual data.
An algorithm for transiting data from certain cash to its
successor is detailed too. However these approaches do
not deal with static partition neither with REPORTING
layer. Finally we note that authors of [6], adopt the same

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

concepts (static and dynamic data division) to partition
data.

In reference [1], Inmon et al, suggest architecture for
new generation of data warehouses. First, the life cycle of
data within DW is repartitioned in four sectors.
Interactive sector is the entry point of data into DW. Data
arrives rapidly to interactive sector either by ETL
processes or either by a direct application housed inside.
Secondly, the transition of data from one sector to
another is based on access probability. The old is data,
the low is its access probability. This interesting reference
defines many important architectural features of DW.
However it does not deal deeply with ETL layer. It
suggests to use changed data capture technique (log file)
when possible without showing how to create ETL in this
new mode.

V. CONCLUSION

Data warehouse (DW) is recognized as an effective
solution for integrating diverse information systems. But
DW has the drawback of data freshness. There is an
important delay between events recorded at source level
and availability of such events (data) on DW.
Consequently, it is mandatory to have a new DW
architecture and an effective approach for ensuring data
freshness and performance. Stated differently, there is a
need of DW solution in near real time setting which
comes with the cost of more cooperation between
different stakeholders and a strong integration between
DW layers.

In this paper, we have presented architecture of DW
oriented near real time. Our proposal aims to overcome
high latency in DW environment. Thus, we have shown
DW layers and how they cooperate. Also, we defined the
scope and the challenge of each layer simultaneously
with our suggestion to fill its mission.

For DW layer we suggest to split DW store into local
sources. We have shown the mechanism to create sources
or partitions. Also we discuss schemas management in
DW layer that leads to double status of DW layer.
Namely DW heavy or DW thin depending on
standardization or not of partitions schemas.

For REPORTING layer, we have exposed how to use
Al-WASSIT, a light version of WASSIT mediator, as a
REPORTING layer in near real time DW setting.

In this setting and for ETL layer, we have discussed
the techniques of detecting changed data and how to
integrate them. Namely, via our framework KANTARA
oriented MDA; we have presented how to get ETL
processes running on delta mode.

Finally, in future works, we plan to work on metadata
management in near real time DW setting. Particularly,
managing data and DW schemas being subject of change
is an interesting topic. What and how to manage metadata
will be the main challenges. Besides this, another
question will be whether to centralize all metadata
involved in DW environment in a single repository or to
manage each layer metadata separately.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

REFERENCES

[1] W. Inmon, D. Strauss and G. Neushloss. “DW 2.0 The
Architecture for the next generation of data warehousing”.
Morgan Kaufman, 2007.

[2] R. Kimball and J. Caserta. “The Data Warehouse ETL
Toolkit: Practical Techniques for Extracting, Cleaning,
Conforming, and Delivering Data”. Wiley Publishing,
2004.

[3] F. Wadjinny, L. Gounbark, D. Chiadmi, L. Benhlima and
A. Moujane “Query processing in the WASSIT mediation
framework”. in the seventh ACS/IEEE International
Conference on Computer Systems and applications
(AICCSA), May 10-13Rabat, Morocco, 2009.

[4] L. Benhlima and D. Chiadmi “Vers I’interopérabilité des
systétmes d’information hétérogenes”. e-TI : la revue
¢lectronique des technologies d'information, Number 3,
available: http://www.revue-eti.netdocument.php?id=1166.
(2006,december),.

[5] Cuiru Wang; Shuangxi Liu “SOA Based Electric Power
Real-Time Data Warehouse”. Power Electronics and
Intelligent Transportation System, 2008. PEITS '08.
Workshop on, vol., no., pp.355-359, 2-3 Aug. 2008.

[6] Delin Qin. “Design of Medical Insurance Supervision
System Based on Active Data Warehouse and SOA”.
Computer Science and Information Engineering, 2009

©2014 ACADEMY PUBLISHER

1061

WRI World Congress on , vol.3, no., pp.45-49, March 31
2009-April 2 2009.

[71 T. Jorg and S. Debloch. “Formalizing ETL Jobs for
Incremental Loading of Data Warehouses”. BTW, 2009,
327-346.

[8] X. Zhang, W. Sun, W. Wang, Y. Feng, and B. Shi.
“Generating Incremental ETL Processes Automatically”.
Proceedings of the First International Multi-Symposiums
on Computer and Computational Sciences (IMSCCS'06).

[9] Talend Open Studio, www.talend.com

[10] Vanilla Open source, www.bpm-conseil.com

[11] IBM InfoSphere DataStage, http://www-
01.ibm.com/software/data/infosphere/datastage/

[12] Informatica,
http://www.informatica.com/FR/Pages/index.aspx

[13] SAP Business Objects,
http://www.sap.com/france/solutions/sapbusinessobjects/in
dex.epx.

[14] IBM Cognos, http://www-

01.ibm.com/software/fr/data/cognos/
[15] Pentaho, http://www.pentaho.com/
[16] SAP Business Information Warehouse, www.sap.com.
[17] OMG, http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

