
Functional Dependency based on XML Node
Sets

Husheng Liao

Beijing University of Technology, Beijing, China
Email: liaohs@bjut.edu.cn

Jia Wu and Jia Liu

Beijing University of Technology, Beijing, China
Email: {daisy711, jeromeliu}@emails.bjut.edu.cn

Abstract—As an essential basis of relational database theory,
integrity constraints such as functional dependency provide
a basis for well-designed databases. Integrity constraints are
also useful for the normalization of the XML schema design
in the expensive applications of XML data. As a semi-
structure feature, XML data are usually located by a path
expression and multiple data items may be represented by
the same path. Thus, functional dependencies for XML
should be constraints between sets of XML data items if the
path expression is used. These constraints also result in data
redundancy. Same as functional dependency, this kind of
data redundancy for XML can lead to update anomalies too.
This paper proposes a kind of XML integrity constraint to
describe the dependent relationship between different sets of
XML data items, and defines a general functional depend-
ency based on XML node sets. Moreover, this paper propos-
es a group of inference rules for the implication problem of
the XML functional dependency, and proves that they are
sound and complete.

Index Terms—Integrity constraints, XML, Functional de-
pendencies, Database semantics

I. INTRODUCTION

In database systems, redundant data would result in the
anomalies of data updating. It is well-known that this
phenomenon comes from the poorly designed data
schema, and data should be organized according to
functional dependencies between data items. Functional
dependency is the basic theory of relational databases
design. For similar reasons, the well-designed XML
schema also needs the integrity constraint theory such as
XML functional dependency. Due to the expensive
applications of XML data and its unique characteristics,
many research focus on the XML integrity constraint
problem, including key of XML data[1], path
constraint[2][3], functional dependency[4][5], multi-
valued dependency[6], inclusion dependency[7], and so
on. Functional dependency has been of great concern for
many years and the definition of it has been considered to
be an open problem in XML research. The researches

nowadays on XML functional dependency commonly
follow the concepts of functional dependency in
relational databases, and study the functional
dependencies between different XML data items. A
problem is that if path expressions are used to locate the
XML data items, the functional dependencies for XML
should be constraints between sets of XML data items,
since multiple items can be located by the single path.
But most works on functional dependency for XML are
based on the assumption that only one XML data item
can be located for every path in their definitions.

Compared with relational databases, XML data is of
tree structure and every XML element may have multiple
child elements. In relational datebase, a relation is made
up of tuples, and a tuple is made up of a list of attributes,
each attribute is supposed to be diffirent with each other
and only appear once, but in XML document data
elements with the same label may be sibling node.
Therefore, they may be located by the same path
expression. It should be noted that there are some
dependent relationships between these data item sets
represented by the different path expressions. This kind
of constraints may also bring data redundancy which
results in update anomalies. Therefore, in this paper we
call this constraint as functional dependency based on
XML node sets, FDXS for short, and we propose a group
of integrity constraint definitions to describe the XML
functional dependencies.

An XML document example is given to explain FDXS.
The XML document is used to store the information of
different type of point of sale (pos) for publications. A
sale network has various types of pos, a pos may be a
bookstore, a book vending machine or a newsstand and
every pos has its unique name. Pos with different type
have different business scope, for example, the business
scope for bookstore includes book, magazine and audio
video, newsstand is restricted the sale of book and maga-
zine, and only book can be saled by book vending ma-
chine, as shown in Fig.1. Suppose this sale network has
several pos, so the root of this XML tree is the
sale_network element, it has several child nodes labeled
with pos. Each pos element includes an attribute name, an
attribute type, several business_scope elements which

Manuscript received June 29, 2013; accepted August 2, 2013.

1036 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.1036-1044

stands for the business scope of the pos and should
appear at least once, and a sequence of publication
elements for the information of publications. Each
publication has a unique num attribute and a details
element to store the specifications of the publication. The
structures of details elements are different because three
kinds of publications can be sold: books, magazines and
audio video products. Hence, specification information of
the different publications is different from each other. For
books, it stores ISBN number and book name. For
magazines, it includes ISSN number and name. For the
audio video products, it stores ISCR number and name.
The structure of the XML tree is described by the regular
expression types [8] in Table 1.

XML functional dependency is a kind of constraints
between the values of the reachable nodes via different
paths. For example, suppose the point of sale with
different type has different business scope. For an
element pos, if the set of values of its child element
labeled by business_scope is { book, magazine,
audio_video} , then the value of its type attribute must be
bookstore. If the set of values of the business_scope
elements is either { book } or { book, magazine }, then
the value of its type attribute must be either
book_vending_machine or newsstand respectively. This
constraint is that the set of values of the business_scope
element determines the value of its type attribute for
every pos element in the XML tree. In other words, for
every pos element, if the sets of values of its
business_scope children are different, its type attributes
must have different value. In this paper, the constraint is
expressed as:

sale_network/pos: business_ scope→ type
It means that for any two nodes in the reachable nodes

via path sale_network/pos, if the sets of values that their
child element labeled by business_scope are same, the
values of their type attributes are same, too. Similarly,
another FDXS for the XML tree is that name attribute
determines the set of values of business_scope element
for these points of sale, which is represented by the fol-
lowing form:

sale_network/pos: name→ business_scope
It means that in different pos elements, if the values of

the name attribute are same, the sets of values of busi-
ness_scope element must be same. These FDXS may also
lead to data redundancy: the value of type attribute will
be stored repeatedly for pos elements with the same set of
values of business_scope elements.

On the other hand, based on the two FDXS above, an-
other FDXS can be obtained:

sale_network/pos: name→ type
It means that there are some kinds of inference rules on

FDXS and implication relations. Therefore, implication
checking needs to be considered when reasoning about
the XML functional dependencies.

In this paper, we study functional dependency based on
XML node sets and its inference rules. Main contribu-
tions are as follows:

1. According to the integrity constraints between the
sets of XML data items, we propose the concept
of functional dependency based on XML node
sets.

2. We give a formal definitions of functional de-
pendencies based on XML node sets by the path-
based notation. In the reachable nodes via a spe-
cific path (context path), they express a kind of in-
tegrity constraints between the set of reachable
nodes via different relative paths.

3. For the FDXSs with the same context path, we
propose a sound and complete set of FDXS infer-
ence rules which can be used for the judgment of
the logical implication for various FDXSs. We al-
so define an equivalent relation between FDXSs
with different context paths and rewriting rules.
The FDXS inference rules and rewriting rules
forms an inference system called FDXS system.

TABLE 1.
 REGULAR EXPRESSION TYPES FOR THE XML TREE IN FIG.1.

T_SALENETWORK = sale_network[T_POS*]
T_POS =pos[business_scope[text]+, @name, @type, publica-
tion[@num, T_DETAILS]*]
T_DETAILS = details[T_BOOK | T_MAGAZINE | T_AUDIO_VIDEO]
T_BOOK =@isbn, title[text]
T_MAGAZINE = @issn, name[text]
T_AUDIO_VIDEO = @isrc, name[text]

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1037

© 2014 ACADEMY PUBLISHER

In the following sections, preliminary definitions are
introduced in Section II. Formal definitions of FDXS are
presented in Section III. In Section IV, FDXS logical
implication is studied and a sound and complete set of
FDXS inference rules and rewriting rules is proposed.
Some related works are discussed in Section V.
Conclusion and some future works are presented in
Section VI.

II. PRELIMINARY DEFINITIONS

In this section, some basic definitions are given for the
rest of the paper. Suppose that Ele is a finite set of XML
labels, Att is a finite set of attributes and text is the
symbol representing text in the following definitions.

Definition 2.1. (XML tree) An XML tree is defined to
be Tr=(V, lab, val, root), where V is a finite set of XML
nodes; lab is a mapping from V to Ele ∪ Att∪ {text}; a
node v is called an element node if lab(v) ∈ Ele, an
attribute node if lab(v) ∈ Att, and a text node if
lab(v)=text; the function val is defined as:

val(v) = value of the attribute node if lab(v) ∈Att
content of the text node if lab(v)=text
a sequence of its child nodes<v1, ..., vn>
 if lab(v) ∈Ele

Definition 2.2. (path and path instance) A path is
either an expression in the form of s1 /s2 /.../sn(n>0) where
si∈Ele∪ Att (1≤i≤n) or self. A path instance w defined
over a path in an XML tree (V, lab, val, root) is a
sequence of nodes in the form of <v1, v2, ..., vn> where vi
is a child of vi-1 for all vi∈V(1<i≤n). Any path instance w
can be said to be defined over the path if lab(vi)=si

(0<i≤n). Moreover, no path instance is defined over self.
For example, in the XML tree shown in Fig.1, six path

instances are defined over the path
sale_network/pos/publication, and every path includes a
sale_network node, a pos node and a publication node
sequentially.

Definition 2.3. (Prefix of path) Every path in the form
of s /s2/.../si (0<i<n) is said to be the prefix of the path
s1/s2/.../sn. Path self is the prefix of any path.

For example, paths self and sale_network are both the
prefixes of the path sale_network/pos.

Definition 2.4. (Reachable node and function Nodes)
Given a node v in an XML tree and a path instance w in
the form of <v1,v2, ...,vn> defined over a path, if v1 is a
child node of v, we say w is the path instance relative to
the node v. All the path instances, which are defined over
a given path p and relative to a given node v, consist a
path instance set denoted by paths(v,p). The last node of
every path instance is called the reachable node relative
to node v via path p. For path self, paths(v, self) = {<v>}.
The function Nodes is a set of reachable nodes relative to
v via the path p defined by:
 Nodes(v, p)= { vn |<v1,v2, ...,vn>∈paths(v, p) }

For example, from the root of the XML tree in Fig.1,
paths(pos/publication/num) returns six path instances and
each of them is composed of an sale_network element, an
pos element, an publication element and a num attribute
node in turn. Nodes(sale_network, pos/publication/num)

will return six reachable nodes labeled with num.
Since FDXS are based on the value comparison be-

tween XML nodes, the definitions of value equality
equality for XML nodes are given as follows:

Definition 2.5. (Node value equality) Let u and w be
nodes in an XML tree, they are value equal, denoted by
u=valw, if and only if the following conditions are satisfied:

1. lab(u) = lab(w)
2. if lab(u),lab(w) ∈Att, then val(u)=val(w)
3. if lab(u)=lab(w)=text, then val(u)=val(w)
4. if lab(u),lab(w) ∈Ele, and let val(u)= <v1, ..., vn>,

val(w)=<v’
1, ...,v’

m>, then m=n and vi=val v’
i(1≤i≤n).

If nodes u and w are not value equal, we denote it by
u≠valw.

Definition 2.6. (Value equality for reachable nodes)
Let x and y be nodes in an XML tree, p a path, we say that
x and y are value equal for the reachable nodes via the
path p, denoted by x.p =val y.p, if and only if the following
conditions are satisfied:

1. if Nodes(x,p) is empty, then Nodes(y,p) is empty
too, and vice versa.

2. for every u∈Nodes(x,p), there is w∈Nodes(y,p)
that satisfies u=val w.

3. for every w∈Nodes(y,p), there is u∈Nodes(x,p)
that satisfies u=val w.

If x and y are not value equal on the reachable nodes
via the path p, we denote it by x.p≠val y.p.

For example, the first two pos elements in Fig.1 are not
value equal for reachable nodes via the path
business_scope, because the business_scope element with
the value audio_vedio is the reachable node via the path
related to the first pos element and no business_scope
element with the same value exists under the second pos
element. In fact, any two pos elements are not value equal
for reachable nodes via the path business_scope.

It should be noted that Definition 2.6 is based on the
comparisons between XML node sets. This definition is
different from the definitions on value equality of XML
nodes adopted in the definitions of XML function
dependencies [4][5][11].

Definition 2.7. (Effective path set) Let Trs be an XML
tree set which always ranges over all possible XML tree,
s and p be paths, the effective path set of s in Trs is
defined as U(s)={ p | (V,lab,val,root) ∈ Trs,
x∈Nodes(root,s), paths(x,p)≠Φ } and for an XML tree Tr,
its effective path set of s is defined as E(s,Tr) = { p |
x∈Nodes(root,s), paths(x,p)≠Φ, (V,lab,val,root)=Tr }.

According to this definition, there must be some
reachable nodes via any path in U(s) from some reachable
nodes via the path s in the XML trees. And no reachable
node exists via any path if it is not a member of U(s). In
general, the effective path set of any path can be found
according to the given DTD, XML Schema or regular
expression types for XML dataset.

In this paper, FDXS is defined over the relationships
between XML node sets and the effective path set of a
context path in XML trees.

III. FUNCTIONAL DEPENDENCY BASED ON XML DATA
SET

1038 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

For clear representation, a preliminary definition is
given as follows:

Definition 3.1. Given two distinct nodes x, y in an
XML tree and a path set A, x and y are said to be value
equal for the reachable nodes via the path set A, denoted
by A::x =val y, if x.p =val y.p for every path p in A. If they
are not value equal, we denote it by A::x≠val y.

Based on Definition 3.1, formal definition of
functional dependency based on XML data set is given as
follows:

Definition 3.2. A functional dependency based on
XML node set (FDXS) is a proposition in the form
s:A→B where s is a path represeting the context; A, B
are subsets of U(s). The XML tree Tr satisfies FDXS if
and only if for any two distinct nodes x, y∈Nodes(root, s),
if B::x≠val y then there exists A::x≠val y.

For example, for any point of sale, suppose that its
name determines its type, and its name also determines its
bussiness scope in the XML tree shown in Fig.1, the
following FDXSs hold:

sale_network/pos: name→ type
sale_network/pos: name→ business_scope
sale_network/pos: business_scope→ type
These dependencies are also characterized by their

transitivity. The first FDXS may be derived from other
FDXSs. This situation causes new problems to emerge in
the design theory of XML schema, such as logical
implication for FDXSs and normalization with FDXSs.

Moreover, according to the FDXS definition, there is a
FDXS hold in any XML trees. For any context path s and
any path q and its prefix p, the following FDXS always
holds:

s: p→ q
In the XML tree shown in Fig.1, sale_network:

pos → pos/name holds. Although such XML
dependencies do not lead to data redundancy, they have
effect on the logical implication of FDXSs.

IV. LOGICAL IMPLICATION AND INFERENCE RULES
FOR FDXS

Like functional dependencies for relational databases,
the FDXSs for XML trees are often not independent, so
that it is necessary to address the implication problem of
FDXSs. To decide whether an XML tree satisfies a given
set of FDXSs, such implication should be checked to
reduce the cost of the computation. In the design of an
XML schema, every FDXS which holds in the
corresponding XML trees should be also taken into
account. Therefore, it is necessary to derive other FDXSs
satisfied by the XML tree from the given FDXSs.

Definition 4.1. (FDXS logical implication) Given an
FDXS set Σ and an FDXS σ, if σ holds for the XML trees
that satisfy all FDXSs in Σ, then we say that Σ implies σ,
denoted by Σ╞σ.

By extending the Armstrong axioms of relational
databases for the analysis of the logical implication on
FDXSs, we propose a group of inference rules for the
derivation between the FDXSs. Since the notation based
on the context path is used in the definition of FDXSs,

these inference rules involve not only the derivation with
the same context path but also ones with different context
paths.

A. FDXS Inference Rules with the Same Context Paths
In order to judge the implication, the inference rules

between the different FDXSs should be taken into
account. The inference rules for any context path s are
given as follows:

Rule X1. (Prefix-path value-dependency rule) If path p
is the prefix of path q, then s: p→ q.

Proof. Suppose that path q is concatenated by its
prefix p and path q’ (q=p/q’). FDXS s:p→ q means that
y.p≠val z.p can be derived from y.q≠val z.q for any two
distinct nodes y and z obtained from Nodes(root, s). By
the reduction to absurdity, we assume that y.p=val z.p if
y.q≠val z.q. Let M = Nodes(y, p) and N = Nodes(z, p), it
means that either both M and N must be empty sets, or for
every node y' ∈M there is a node z' in N that satisfy y’ =val
z’ and vice versa. We prove Rule X1 for the three cases as
follows:

1. If both M and N are empty, then Nodes(y,q) and
Nodes(z,q) must return empty sets since path p is
the prefix of path q. It contradicts the assumption
y.q≠val z.q.

2. Consider the case that for every node y’ ∈M,
there is a node z’ in N that satisfies y’=val z’. Ac-
cording to Definition 2.6, the corresponding de-
scendants of y’ and z’ should be value equal.
Hence, there are the two cases for every node y’ in
M:
a) If Nodes(y’,q’)=Φ, then Nodes(z’,q’)=Φ. Since

path q is concatenated by p and q’ (q=p/q’),
both of Nodes(y,q) and Nodes(z,q) should be Φ
and it contradicts the assumption y.q≠val z.q.

b) If Nodes(y’,q’)≠Φ, then for every node y’’ ob-
tained from Nodes(y’,q’), which is the descend-
ant of y’, there must be a node z” obtained from
Nodes(z’,q’) that satisfies y”=val z” according to
Definition 2.6, since y’=val z’ and z” is the de-
scendant of z’. Since q=p/q’, there are y”
∈Nodes(y,q) and z” ∈Nodes(z,q). It means for
every node y” there is a node z” that satisfies
y”=val z”.

3. Consider the case that for every node z’ ∈N, there
is a node y’ in M that satisfies y’=val z’. According
to Definition 2.6, the corresponding descendants
of y’ and z’ should be value equal. Hence, there are
the two cases for every node z’ in N:
a) If Nodes(z’, q’)= Φ, then Nodes(y’,q’)=Φ. Since

path q is concatenated by p and q’ (q=p/q’),
both of Nodes(y,q) and Nodes(z,q) should be Φ
and it contradicts the assumption y.q≠val z.q.

b) If Nodes(z’,q’) is not empty, then for every node
z’’ obtained from Nodes(z’,q’), which is the de-
scendant of z’, there must be a node y” obtained
from Nodes(y’,q’) that satisfies y”=val z” accord-
ing to Definition 2.6, since y’=val z’ and y” is the
descendant of y’. Since q=p/q’, there are y”

∈Nodes(y,q) and z”
 ∈Nodes(z,q). It means for

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1039

© 2014 ACADEMY PUBLISHER

every node z” there is a node y” that satisfies
y”=valz”.

To sum up 2.b) and 3.b), this means that for node y and
z, y.q=val z.q holds. It also contradicts the assumption
y.q≠val z.q. In conclusion, the original proposition is
proved.

Rule X2. if B⊆ A, then s: A→B.
Proof. For any two distinct nodes x and y obtained

from Nodes(root, s), if B::x≠valy then A::x≠valy since the
path set B is a part of A. As a result, s: A→B.

Rule X3. (augmentation rules)if s: A → B then s: AE
→BE.

Proof. The premise of Rule X3 means that for any two
distinct nodes x and y in Nodes(root,s), if B::x≠val y then
A::x≠val y. Thus, if B::x≠val y, then BE::x≠val y for the
extended path set BE and it also derive AE::x≠valy. As a
result, s: AE→BE.

Rule X4. (Transitivity rule) if s: A→B and s: B→C,
then s: A→C.

Proof. s: B→C means that for any two distinct nodes
x and y in Nodes(root,s), if C::x≠val y, then B::x≠val y; On
the other hand, s:A → B means that if B::x≠val y, then
A::x≠valy. As a result, A::x≠val y since C::x≠val y. In other
words, s: A→C.

Rule X1, X2 are trivial FDXSs since they have been
proven for any XML tree. Thus, these trivial FDXS are
implied by any FDXS set. Other inference rules are non-
trivial FDXSs. The proof above states that if their
premises are implied by a given FDXS set, it also implies
their conclusions.

B. Extended FDXS Inference Rules
On the basis of FDXS inference rules showed above,

we can get the following extended inference rules:
Rule X5. (Union rule) If s: A→B and s: A→C, then

s: A→BC.
Proof. Under augmentation rules X3, if s:A→B, then

AA → BA; In other words, s:A → BA. Similarly, if
s:A → C, then s:BA → BC. According to Rule X4,
s:A→BC.

Rule X6. (Pseudo-reflexivity rule) If s: A→B and s:
DB→C, then s: AD→C, where D is arbitrary path sets.

Proof. According to Rules X3, if s: A→ B, then s:
AD → BD. Using transitivity rule X4, it can derive s:
AD→C and it means Rule X6 is sound.

Rule X7. (Path decomposition rule) When s: A→B
holds, if C⊆B then s: A→C.

Proof. According to Rules X2, s:B → C hodls, and
using transitivity rule X4, s: A→C can be derived from
them. It means Rule X7 is sound.

C. The Equivalence of FDXSs with Different Context
Paths and Rewriting Rules

Due to the notation of the FDXSs above, some of
FDXSs with different context paths may be equivalent.
For example, in the XML tree shown in Fig. 1, the
following two FDXSs are equivalent if they are exist:

sale_network/pos/publication: details → details/isbn

sale_network/pos/publication/details: self → isbn
It is easy to prove that they are equivalent because

there is only one child node with label details for each
publication element in the XML tree.

Definition 4.2. (Equivalent prefix path) Let q be a path
with length n(1<n), if there is only one path instance <u1,

u2, ..., un> in the result for paths(root, q) for each path
instance <v1,v2, ..., vm>(m<n) in the result for paths(root,
p), and vi=ui holds for 0<i<m+1, then we call path p the
equivalent prefix path of path q.

In general, the equivalent prefix paths of a path can be
found according to a given DTD, XML Schema or
regular expression types for XML. For example, we can
find that path sale_network/pos/publication is an
equivalent prefix path of path
sale_network/pos/publication/details, and no equivalent
prefix path exists for path sale_network/pos/publication
itself. Path self may be an equivalent prefix path for any
path, but it does not have any equivalent prefix path.

The equivalence of the FDXSs with different context
paths can be expressed as the two rewriting rules as
follows:

Rule X8. Let σ be a FDXS in the form of s1:p1→ q1
where p1, q1 are paths, if path s2 is an equivalent prefix
path of path s1 and |s2|=|s1|-1, then σ can be rewritten as
s2: p1

’ → q1
’ where p1

’=down(x, p1), q1
’=down(x, q1) and x

is the last label of s1. The function down is used to
transfer a path related to s1 to one related to its
equivalent prefix path s2, and its definition is as follows:

 down(x, p) = x if p = self
 x/p otherwise

Rule X9. Let σ be a FDXS in the form of s1: p1→ q1
where p1, q1 are paths except self, if path s1 is an
equivalent prefix path of s2 and, |s1|=|s2|-1, then σ can be
rewritten as s2:p1

’ → q1
’ if p1=x/p1

’, q1= x/q1
’ where x is

the last label of path s2.
According to the definition of the equivalent prefix

path above, the correctness of Rule X8 and Rule X9 are
straightforward.

D. Soundnesss of FDXS system
The FDXS inference rules and FDXS rewriting rules

above have formed an inference system, which is called
FDXS system. In this section, we prove that the FDXS
system is sound.

Definition 4.3. Let Σ be a set of FDXSs and σ be
another FDXS, we call σ derivable from Σ , denoted by
Σ├ σ, if there is a finite sequence of FDXSs <σ1, σ2, ...,
σn>,σ=σn and σi (1≤i≤n) satisfies any one of the following
conditions:

1. σi is a trivial FDXS.
2. σi is a member of Σ.
3. σi is produced from union of Σ, trivial FDXSs and

{ σ1, σ2, ..., σi-1 } by the application of any rule in
the FDXS system.

The soundness of the FDXS system is represented by
the following theorem:

1040 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

Theorem 4.1. Let Σ be a set of FDXSs and σ be
another FDXS, Σ logically implies σ if σ derivable from Σ
by the FDXS system, that is, if Σ├ σ then Σ╞σ .

Proof. Let Σ be a set of FDXSs and σ be any FDXS, if
Σ├σ, σ is the last element of the FDXS sequence in
Definition 4.3. For any XML tree which satisfies every
FDXS in Σ, suppose that the length of the FDXS
sequence is n. We use inductive reasoning to prove that
the tree also satisfy σ. In case of n=1, the only FDXS σ in
the sequence holds in the XML tree since it is either an
element in Σ or a trivial FDXS in Rule X1 and X2.
Suppose that the first n-1 elements in the FDXS sequence
are satisfied in the XML tree, there are three cases for the
last element σ:

1. σ is trivial FDXS. It holds for any XML trees.
2. σ is a member of Σ. It has been satisfied by the

XML tree.
3. σ is produced from them by applying one of the

FDXS inference rules and the FDXS rewriting
rules except X1 and X2. Since these rules have
been proved to be sound and their premises come
from first n-1 elements, trivial FDXSs or Σ, the
XML tree satisfies σ too.

As a result, σ holds for the XML trees which satisfy
every FDXS in Σ. Thus, Σ╞σ is proved to be sound.

E. Constructing a Counterexample XML Tree
In this section, we introduce the definitions of XML

path closures and an algorithm for constructing an XML
tree, which will be used as a counterexample for proving
the completeness of the FDXS system.

Definition 4.4. Given a FDXS set Σ, let σ be a FDXS
in the form of s: X→A, the XML value path closure X+(s)
in Σ for FDXS σ is defined as following:

X+(s) = { p |Σ├s: X→ p }
Lemma 4.1. Let σ be a FDXS in the form of s:X→A,

Σ a given FDXS set, Σ├σ if and only if A ⊆ X+(s).
Proof. Let A={a1, ..., an} where ai is a path for i=1, ...,

n. First, we prove it is necessary. According to the
definition of X+(s), ai∈ X+(s) (i=1, ..., n). It leads to
A⊆ X+(s). Next, we prove its sufficiency. According to
Definition 4.4, A⊆X+(s) means that Σ├ s: X→ ai (i=1, ...,
n). It leads to Σ├ s: X → A by applying union rule X5 to
them. The sufficiency of Lemma 4.1 is proven.

For example, the following FDXS holds for the XML
tree shown in Fig. 1:

sale_network/pos/publication: num → details
For a FDXS set with the single FDXS, according to

Lemma 4.1, by applying the FDXS inference rules and
FDXS rewriting rules, we can get its XML value path
closure as follows:

X+(sale_network/pos/publication) =
{ num, details }∪ { p |details is prefix path of p,
 p∈U(sale_network/pos/publication) }
It should be noted that Rule X5 and X7 have been used

in th proof of Lemma 4.1 and they are proven to be sound
by Rule X2, X3 and X4. It has covered every trivial
FDXSs in the FDXS systems.

Algorithm 4.1 Given a FDXS set Σ, let σ be a FDXS
in the form of s:X →A, a counterexample XML tree Tr
can be constructed by their X+(s). The algorithm is as
follows:

1. For the context path s in the form of s1/s2 /.../sn, we
construct an XML tree with a root node labeled
with r and its two child nodes labeled with s1.
Then, we create one child node labeled with si
under the si-1 nodes for i=2, ..., n respectively.

2. For every path in the form of t1/t2/.../tm in X+(s), we
create a child node labeled with t1 under every
existing sn node, and create one child node labeled
with ti under the ti-1 nodes for i=2, ..., m
respectively, if no child node with the same label
exists. The same integer is assigned to the content
of every tm node. No node is created for self in
X+(s).

3. Let Tr’ be the XML tree constructed by the two
steps above, for every path in the form of t1/t2/.../tm
in E(s,Tr’)-X+(s), we create a child node labeled
with t1 for every node sn and create one child node
labeled with ti under the ti-1 nodes for i=2, ..., m
respectively, if no child node with the same label
exists. A text node with distinct integer is created
as the child node of each tm node. For self, a text
node with distinct integer is created as its child
node of every node sn.

In the three steps above, whenever we are about to
create a child for any element node, the existing child
with the same label should be used instead of creating a
new child node. As a result, all child nodes of each
element node except the root node should be labeled with
the distinct labels. For the XML tree Tr constructed by
the algorithm above, there is the following lemma.

Lemma 4.2 Given a FDXS set Σ, let σ be a FDXS
in the form of s:X →A , the following propositions are
true in the XML tree Tr:

1. Any two distinct nodes reachable via the same
path in X+(s) are value equal.

2. Any two distinct nodes reachable via the same
path in E(s,Tr’)-X+(s) are not value equal.

From step 2 and step 3 in the algorithm above, the
correctness of Lemma 4.2 is straightforward.

For example, assumed that a:b/c→ e/x is only FDXS
in a given FDXS set Σ, we can get the following XML
value path closure:

X+(a) = { b/c, e/x }
Following Algorithim 4.1, for path b/c in X+(a), two b

node and two c node are created with same content, for
path e/x in X+(a), two e node and two x node are created
with same content. After step 1 and step 2, the XML tree
is shown in Fig.2(a). In step 3, since paths b and e are in
E(a,Tr’)-X+(a), two text node with different integers are
created as the child nodes of b nodes, and two text nodes
with different integers are created as the child nodes of e
nodes, as shown in Fig.2(b). Two text nodes with
different integers are created since path self in E(a,Tr’)-
X+(a). According to Definition 2.7, the effective path set
for the XML tree is as follows:

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1041

© 2014 ACADEMY PUBLISHER

E(a, Tr) = { self, b, b/c, e, e/x }
The final XML tree Tr is shown in Fig.2(c).
Table 2 show the reachable nodes for every path in

E(a,Tr). It should be noted that the nodes reachable via
any path in X+(a) are value equal, such as the nodes
reachable via e/x have the same value. And the nodes
reachable via any path in E(a, Tr)-X+(a) are not value

equal, such as two e nodes have different values.

F. Completeness of the FDXS System
The completeness of the FDXS system is represented

as the following theoroem.
Theorem 4.2. For any FDXS σ and any FDXS set Σ, if

Σ logically implies σ, then σ can be derived from Σ by the
FDXS system, that is, if Σ╞ σ then Σ├ σ.

According to Definition 4.3, since all trivial FDXSs
are derivable from Σ, only non-trivial FDXS should be
take into account in the following proof.

Proof. Let Σ be a FDXS set, according to the reduction
to absurdity, suppose that σ is an arbitrary FDXS which
cannot be derived from Σ by the FDXS system and Σ╞ σ,
we will show that there is an XML tree such that FDXS σ
does not hold and every FDXS in Σ holds in the XML
tree. Following Algorithm 4.1, from Σ and FDXS σ, an
XML tree Tr is built as the counterexample which is used
to prove 1) the XML tree does not satisfy FDXS σ, and 2)
the XML tree satisfies every FDXS in Σ . It means that Σ
does not logically imply σ.

1) To prove that Tr does not satisfy FDXS σ in the
assumption above, consider σ is in the form of s:X
→K. Since σ cannot be derived from Σ by the
FDXS system, then K is not a subset of its X+(s)
according to Lemma 4.1. Thus for XML tree Tr,
some paths in K must belong to E(s,Tr)-X+(s).
According to Lemma 4.2, the nodes in Tr
reachable via the paths in E(s,Tr)-X+(s) have

different values, including the nodes reachable via
those paths in K, but the reachable nodes via every
path in X are value equal, since X ⊆X+(s). Hence,
Tr violates s:X→K.

2) To prove that XML tree Tr satisfies every FDXS
in Σ, considering every FDXS in Σ in the form of
s':A→ C, if s' is the same as s, there are three
cases:
a) According to Lemma 4.1, if A⊆X+(s), then

Σ├s':X →A, where X+(s) comes from FDXS
σ in the assumption above. Following Rule
X4, s':X → C. Thus, we have C ⊆ X+(s).
According to Lemma 4.2, all reachable nodes
via each path in X+(s) are value equal in Tr.
Since both A and C are subsets of X+(s),
s':A→C is tenable.

b) If A is not a subset of X+(s), then A must
include some paths in E(s,Tr)-X+(s).
According to Lemma 4.2, the reachable
nodes via any path in E(s,Tr)-X+(s) are not
value equal in Tr. Therefore s’:A→C holds
for any path sets C.

Now, we have proven that the XML tree satisfies every
FDXS in Σ whose context path is the same as σ.

If s' is different from s, its reachable nodes must be in
XML tree Tr. Let root be the root node of Tr, there are
the three cases for the context path s' as follows:

a) For every path s' whose reachable nodes except
root are created at step 1 of Algorithm 4.1, s' must
be an equivalent prefix paths of s, since there is
only one child node for each of them. Hence,
s':A→C can be rewritten into a FDXS with the
context path s by Rule 14 so that it is satisfied by
Tr. If s'=self, s':A → C holds for any A and C,
since only root is a reachable node via self.

b) For every path s' whose reachable nodes are
created at step 2 and step 3 of Algorithm 4.1, s
must be an equivalent prefix path of s' according
Definiton 4.2, since all these nodes are descendent
nodes of the reachable node by s, and every one of
them, which is the last node of the path instance of
s', has a different label from its sibling nodes.
Hence, s':A → C can be rewritten into a FDXS
with the context path s by Rule 13 so that it is also
satisfied by XML tree Tr.

To sum up the descriptions above, XML tree Tr
violates σ and satisfies every FDXS in Σ. It contradicts
with the original assumption Σ╞σ. It means that Σ╞σ

TABLE 2.
THE REACHABLE NODES VIA EVERY PATH IN E(a,Tr).

path set path reachable node sets

X+(a)
b/c { <c>1</c> }
e/x { <x>4</x> }

E(a,Tr)- X+(a)

b { <c>1</c>2 }
{ <c>1</c>3 }

e { <e><x>4</x>5</e> }
{ <e><x>4</x>6</e> }

self { <a>......7}
{ <a>......8}

 Figure 2. A counterexample XML tree.

1042 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

does not hold if σ is not derivable from Σ for the XML
tree. Therefore, for any FDXS σ, it is derivable from Σ by
the FDXS system as long as Σ╞σ. Thus the completeness
of the FDXS system is proven.

It should be noted that Lemma 4.1, Rule X7 and X8
are used in the proof. Since all non-trivial FDXSs has
been used in the proof of Lemma 4.1. The completeness
proof has covered every non-trivial FDXSs and FDXS
rewriting rules in the FDXS system.

V. RELATED WORK

Functional dependency has been the key concept for
the normalization theory used in the database design
since Codd[9] proposes the relational model.
Armstrong[10] and Beeri[11] propose a set of inference
rules used to derive functional dependencies and prove
those axioms are sound and complete. Their works solve
the implication problem of functional dependencies
perfectly in the relational model. However, since the
attributes of data entities must be atomic and different
with each other according to the first normal form of
relational model, the axioms can not be applied to the
new data models such as XML document. How to resolve
the problems such as integrity constraints and functional
dependencies in such complex data also becomes a
research hotspot.

In order to meet the needs of the exchange and sharing
of information on the World Wide Web, W3C proposes
semi-structured XML data model in 1998. Because XML
data are expressed as a tree structure, so the dependencies
on the XML data are also bound to this hierarchical
structure. Those dependencies are obviously more
complicated than the flat relational model dependencies,
and thus there is no uniform definition for XML
functional dependency so far, and not every definition is
able to cover all kinds of XML function dependencies.
The difference between existing definitions has a
significant influence to the further studies, such as logical
implication and XML normalization.

Arenas[4][19] comprehensively studies the problems
on XML functional dependency and normalization.
Analogy to the relational model, he puts forward the
concept of "tree tuple", and using this concept we can
map the XML documents to relational model. On this
basis, he defines the functional dependency, describes a
kind of normal form called XNF and gives an algorithm
that can convert DTD to comply with the XNF. He also
finds that, in some cases, there exists a sound algorithm
for logic implication problem, but in other cases, that is
an NP-complete problem due to the differences of DTDs.
His work reveals the complexity of XML logic
implication problem. In other words, the definition of
XML functional dependency will have a major impact on
solving the logical implication problem. Due to the
diversity and complexity of XML functional dependency,
to find a definition of better nature becomes one of the
hotspots of academia. Kot and White[20] prove that there
exists a sound and complete axiom system for the
function dependents based on "tree tuple" in some of
DTDs circumstances. Vincent et al. [5][21][22] give a

definition based on the closest attribute value, and prove
that the inference system based on such definition can be
axiomatized. They also illustrates the primary key can
serve as the special case of XML functional dependency
in certain circumstances, although they do not consider
the influence of the schema language. Shahriar [23] has
given a unified representation of XML global functional
dependencies and local functional dependencies.
Expressions in the form of (S, P→Q) are used to express
various kinds of XML functional dependencies while S
represents the scope of local functional dependencies.

Unlike the means shown above, Hartmann [24] gives
another definition based on "subtree", and he extends the
expression of function dependencies through graphic
schemas. Then he proposes a set of inference rules for
functional dependencies with frequency [25], investigates
XML functional dependency based tree homomorphism
and finds an algorithm to solve logical implication
problem based on Horn clause logic [26]. But these
definitions do not cover the dependences between set of
values of XML nodes as our work. In addition, its
inference rules are also different with our work
significantly, because of the difference for XML data
representation.

Those works give various definitions of XML function
dependency with different expressive power. Most of
them study the logical implication problem and normal
form and does not involved integrity constraints related to
XML items which can appear more than once. Yu[27]
extends the representation of XML functional
dependency on the basis of the work of paper[4][19],
making it possible to represent the generalized tree tuples
and element sets. He also gives a normal form and its
normalization algorithm based on his definitions. In our
paper, the function dependence definition based on the
path is closed to the definition in their paper since the
context path in FDXS is similar to the "pivot node". Our
work can cover the reasoning under the different contexts,
and we focus on the integrity constraints between XML
node sets reachable via different path especially.

VI. CONCLUSION

Various XML integrity constraints should be taken into
account for the well-designed databases, in order to keep
data consistency and eliminate update anomalies. We find
that for XML data, the data redundancy may come from
the functional dependencies between XML node sets. In
order to describe this kind of XML integrity constraint,
this paper study the XML functional dependency based
on node sets, gives its formal definitions. Moreover, this
paper studies the logical implication problem for the
functional dependency based on XML node sets,
proposes a set of FDXS inference rules and FDXS
rewriting rules, and proves their soundness and
completeness.

ACKNOWLEDGMENT

This work was both supported in part by the Beijing
Nature Scince Fundation under Grant 4122011 and the

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1043

© 2014 ACADEMY PUBLISHER

National Science Foundation for Young Scientists of
China under Grant 61202074.

REFERENCES

[1] P. Buneman, S. Davidson, W. Fan, C. Hara and W. Tan,
“Reasoning about Keys for XML,” Inform. Syst, vol. 28,
no. 8, pp. 1037-1063, December 2003.

[2] P. Buneman, W. Fan and S. Weinstein, “Path Constraints
in Semistructured Database,” J. Comput. Syst. Sci, vol 61,
no 2, pp. 146-193, October 2000.

[3] W. Fan and J. Simeon, “Integrity Constraints for XML,” J.
Comput. Syst. Sci, vol. 66, no. 1, pp. 254-291, Feb. 2003.

[4] M. Arenas and L. Libkin, “A Normal Form for XML Doc-
uments,” ACM T Database Syst, vol. 29, no. 1, pp. 195-232,
March 2004

[5] M. Vincent, J. Liu and C. Liu, “Strong Functional Depend-
encies and their Application to Normal Forms in XML,”
ACM T Database Syst, vol. 29, no. 3, pp. 445-462, Sep-
tember 2004

[6] M. Vincent and J. Liu, “Multivalued Dependencies and a
4NF for XML,” Proc. Advanced information systems engi-
neering, pp. 14-29, 2003.

[7] K. Karlinger, M. Vincent and M. Schrefl, “Inclusion De-
pendencies in XML: Extending Relational Semantics,”
Proc. Database and Expert System Application, pp. 23-37,
2009.

[8] H. Hosoya, J. Vouillon and B.C. Pierce, “Regular Expres-
sion Type for XML,” ACM T Progr Lang Sys, vol. 27, no.
1, pp. 46-90, January 2005.

[9] F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” Commun ACM, vol. 13, no. 6, pp. 377-387,
June 1970.

[10] W. Armstrong, “Dependency Structures of Data Base Re-
lationships,” Proc. IFIP’74, pp. 580-583, 1974.

[11] C. Beeri, R. Fagin and J. Howard, “A Complete Axiomati-
zation for Functional and Multivalued Dependencies in
Database Relations,” Proc. SIGMOD'77. pp. 47-61, 1977.

[12] M. Levene and G. Loizou, “The Nested Universal Relation
Data Model,” J. Comput. Syst. Sci, vol. 49, no. 3, :pp. 683-
717, December 1994.

[13] K. Schewe and B. Thalheim, “Fundamental Concepts of
Object Oriented Databases,” Acta Cybernetica, vol. 11, no.
1, pp. 49-84, 1993.

[14] G. Gardarin, J. Cheiney, G. Kiernan, D. Pastre and H.
Stora, “Managing Complex Objects in an Extensible Rela-
tional DBMS,” Proc. Very Large Data Base, pp. 55-65,
1989.

[15] Z. Peng and Y. Kambayashi, “Deputy Mechanisms for
Object-Oriented Databases,” Proc. Inter. Conf. Database
Engineering, pp. 333-340, 1995.

[16] Z. Tari, J. Stokes and S. Spaccapietra, “Object Normal
Forms and Dependency Constraints for Object-oriented
Schemata,” ACM T Database Syst, vol. 22, no. 4, pp. 513-
569, December 1977.

[17] P. Buneman, “Semistructured Data,” Proc. Symp.
Princples of Database Systems, pp. 117-121, 1997.

[18] P. Buneman, W. Fan and S. Weinstein, “Interaction be-
tween Path and Type Constraints,” ACM T Comput Logic,
vol. 4, no. 4, pp. 530-577, October 2003.

[19] M. Arenas and L. Libkin, “A Normal Form for XML Doc-

uments,” Proc. Symp. Principles of Database Systems, pp.
85-96, 2002.

[20] L. Kot and W. White, “Characterization of the Interaction
of XML Functional Dependencies with DTDs,” Proc. Inter.
Conf. Database Engineering, pp. 119-133, 2007.

[21] M. Vincent and J. Liu, “Functional Dependencies for
XML,” Web Technology and Applications, Lect. Notes
Comput. Sc, vol. 2642, pp. 23-24, 2003.

[22] J. Liu, M. Vincent and C. Liu, “Local XML Functional
Dependencies,” Proc. Fifth ACM International Workshop
on Web Information and Data Management, pp. 23-28,
2003.

[23] M. Shahriar and J. Liu, “On Defining Functional Depend-
ency for XML,” Proc. IEEE Intern. Conf. Semantic Com-
puting, pp. 595-600, 2009.

[24] S. Hartmann and S. Link, “More Functional Dependencies
for XML,” Advances in Databases and Information Sys-
tems, Lect. Notes Comput. Sc, vol. 2798, pp. 355-369,
2003.

[25] S. Hartmann and T. Trinh, “Axiomatising functional de-
pendencies for XML with frequencies,” Fundation of In-
formation and knowledge systems, Lect. Notes Comput. Sc,
vol. 3861, pp. 159-178, 2006.

[26] S. Hartmann, S. Link and T. Trinh, “Solving the Implica-
tion Problem for XML Functional Dependencies with
Properties,” Logic Language Information and Computation,
Lect. Notes Comput. SC, vol. 6188, pp. 161-175, 2010.

[27] C. Yu and H.V. Jagadish, “XML Schema Refinement
through Redundancy Detection and Normalization,” VLDB
Journal, vol. 17, no. 2, pp. 203-223, March 2008.

[28] Husheng Liao, Weifeng Shan and Hongyu Gao, “Automat-
ic Parallelization of XQuery Programs,” Journal of Soft-
ware, vol. 8, no. 4, April 2013.

[29] Xiaojie Yuan, Xiangyu Hu, Dongxing Wu, Haiwei Zhang
and Xin Lian, “XML Data Storage and Query Optimiza-
tion in Relational Database by XPath Processing Model,”
Journal of Software, vol. 8, no. 4, April 2013.

[30] Jianwei Wang and Zhongxiao Hao, “Research on Basic
Operations for Query Probabilistic XML Document Based
on Path Set,” Journal of Software, vol. 8, no. 4, April 2013.

Husheng Liao is a professor of computer science at Beijing
University of Technology in P.R.China. He received his M.S. in
1981 from Tsinghua University. From 1981 until 1993, he was
lecturer and associate professor at Beijing Computer Institute.

He leads the software research group to perform cross-area
research in programming languages and database systems. His
current interests include XML technology, query languages,
program transformation and program analysis.

Prof. Liao is a member of CCF.

Jia Wu is a M.S student in the Colledge of Computer Science at
the Beijing University of Technology in P.R.China.

Her current interests include database theory and XML tech-
nology.

Jia Liu is a Ph.D. student in the Colledge of Computer Science
at the Beijing University of Technology in P.R.China.

His current interests include database theory, XML technolo-
gy and query languages.

1044 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

