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Abstract—As an essential basis of relational database theory, 
integrity constraints such as functional dependency provide 
a basis for well-designed databases. Integrity constraints are 
also useful for the normalization of the XML schema design 
in the expensive applications of XML data. As a semi-
structure feature, XML data are usually located by a path 
expression and multiple data items may be represented by 
the same path. Thus, functional dependencies for XML 
should be constraints between sets of XML data items if the 
path expression is used. These constraints also result in data 
redundancy. Same as functional dependency, this kind of 
data redundancy for XML can lead to update anomalies too. 
This paper proposes a kind of XML integrity constraint to 
describe the dependent relationship between different sets of 
XML data items, and defines a general functional depend-
ency based on XML node sets. Moreover, this paper propos-
es a group of inference rules for the implication problem of 
the XML functional dependency, and proves that they are 
sound and complete. 

 
Index Terms—Integrity constraints, XML, Functional de-
pendencies, Database semantics 

 

I.  INTRODUCTION 

In database systems, redundant data would result in the 
anomalies of data updating. It is well-known that this 
phenomenon comes from the poorly designed data 
schema, and data should be organized according to 
functional dependencies between data items. Functional 
dependency is the basic theory of relational databases 
design. For similar reasons, the well-designed XML 
schema also needs the integrity constraint theory such as 
XML functional dependency. Due to the expensive 
applications of XML data and its unique characteristics, 
many research focus on the XML integrity constraint 
problem, including key of XML data[1], path 
constraint[2][3], functional dependency[4][5], multi-
valued dependency[6], inclusion dependency[7], and so 
on. Functional dependency has been of great concern for 
many years and the definition of it has been considered to 
be an open problem in XML research. The researches 

nowadays on XML functional dependency commonly 
follow the concepts of functional dependency in 
relational databases, and study the functional  
dependencies between different XML data items. A 
problem is that if path expressions are used to locate the 
XML data items, the functional dependencies for XML 
should be constraints between sets of XML data items, 
since multiple items can be located by the single path. 
But most works on functional dependency for XML are 
based on the assumption that only one XML data item 
can be located for every path in their definitions. 

Compared with relational databases, XML data is of 
tree structure and every XML element may have multiple 
child elements. In relational datebase, a relation is made 
up of tuples, and a tuple is made up of a list of attributes, 
each attribute is supposed to be diffirent with each other 
and only appear once, but in XML document data 
elements with the same label may be sibling node. 
Therefore, they may be located by the same path 
expression. It should be noted that there are some 
dependent relationships between these data item sets 
represented by the different path expressions. This kind 
of constraints may also bring data redundancy which 
results in update anomalies. Therefore, in this paper we 
call this constraint as functional dependency based on 
XML node sets, FDXS for short, and we propose a group 
of integrity constraint definitions to describe the XML 
functional dependencies. 

An XML document example is given to explain FDXS. 
The XML document is used to store the information of 
different type of point of sale (pos) for publications. A 
sale network has various types of pos, a pos may be a 
bookstore, a book vending machine or a newsstand and 
every pos has its unique name. Pos with different type 
have different business scope, for example, the business 
scope for bookstore includes book, magazine and audio 
video, newsstand is restricted the sale of book and maga-
zine, and only book can be saled by book vending ma-
chine, as shown in Fig.1. Suppose this sale network has 
several pos, so the root of this XML tree is the 
sale_network element, it has several child nodes labeled 
with pos. Each pos element includes an attribute name, an 
attribute type, several business_scope elements which 
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stands for the business scope of the pos and should 
appear at least once, and a sequence of publication 
elements for the information of publications. Each 
publication has a unique num attribute and a details 
element to store the specifications of the publication. The 
structures of details elements are different because three 
kinds of publications can be sold: books, magazines and 
audio video products. Hence, specification information of 
the different publications is different from each other. For 
books, it stores ISBN number and book name. For 
magazines, it includes ISSN number and name. For the 
audio video products, it stores ISCR number and name. 
The structure of the XML tree is described by the regular 
expression types [8] in Table 1. 

XML functional dependency is a kind of constraints 
between the values of the reachable nodes via different 
paths. For example, suppose the point of sale with 
different type has different business scope. For an 
element pos, if the set of values of its child element 
labeled by business_scope is { book, magazine, 
audio_video} , then the value of its type attribute must be 
bookstore. If the set of values of the business_scope 
elements is either { book } or { book, magazine }, then 
the value of its type attribute must be either  
book_vending_machine or newsstand respectively. This 
constraint is that the set of values of the business_scope 
element determines the value of its type attribute for 
every pos element in the XML tree. In other words, for 
every pos element, if the sets of values of its 
business_scope children are different, its type attributes 
must have different value. In this paper, the constraint is 
expressed as: 

sale_network/pos: business_ scope→ type 
It means that for any two nodes in the reachable nodes 

via path sale_network/pos, if the sets of values that their 
child element labeled by business_scope are same, the 
values of their type attributes are same, too. Similarly, 
another FDXS for the XML tree is that name attribute 
determines the set of values of business_scope element 
for these points of sale, which is represented by the fol-
lowing form: 

sale_network/pos: name→ business_scope 
It means that in different pos elements, if the values of 

the name attribute are same, the sets of values of busi-
ness_scope element must be same. These FDXS may also 
lead to data redundancy: the value of type attribute will 
be stored repeatedly for pos elements with the same set of 
values of business_scope elements. 

On the other hand, based on the two FDXS above, an-
other FDXS can be obtained: 

sale_network/pos: name→ type 
It means that there are some kinds of inference rules on 

FDXS and implication relations. Therefore, implication 
checking needs to be considered when reasoning about 
the XML functional dependencies.  

In this paper, we study functional dependency based on 
XML node sets and its inference rules. Main contribu-
tions are as follows: 

1. According to the integrity constraints between the 
sets of XML data items, we propose the concept 
of functional dependency based on XML node 
sets. 

2. We give a formal definitions of functional de-
pendencies based on XML node sets by the path-
based notation. In the reachable nodes via a spe-
cific path (context path), they express a kind of in-
tegrity constraints between the set of reachable 
nodes via different relative paths. 

3. For the FDXSs with the same context path, we 
propose a sound and complete set of FDXS infer-
ence rules which can be used for the judgment of 
the logical implication for various FDXSs. We al-
so define an equivalent relation between FDXSs 
with different context paths and rewriting rules. 
The FDXS inference rules and rewriting rules 
forms an inference system   called FDXS system. 

TABLE 1.  
 REGULAR EXPRESSION TYPES FOR THE XML TREE IN FIG.1. 

T_SALENETWORK = sale_network[T_POS*] 
T_POS =pos[business_scope[text]+, @name, @type, publica-
tion[@num, T_DETAILS]*] 
T_DETAILS = details[T_BOOK | T_MAGAZINE | T_AUDIO_VIDEO]
T_BOOK =@isbn, title[text] 
T_MAGAZINE = @issn, name[text] 
T_AUDIO_VIDEO = @isrc, name[text] 
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In the following sections, preliminary definitions are 
introduced in Section II. Formal definitions of FDXS are 
presented in Section III. In Section IV, FDXS logical 
implication is studied and a sound and complete set of 
FDXS inference rules and rewriting rules is proposed. 
Some related works are discussed in Section V. 
Conclusion and some future works are presented in 
Section VI. 

II.  PRELIMINARY DEFINITIONS 

In this section, some basic definitions are given for the 
rest of the paper. Suppose that Ele is a finite set of XML 
labels, Att is a finite set of attributes and text is the 
symbol representing text in the following definitions. 

Definition 2.1. (XML tree) An XML tree is defined to 
be Tr=(V, lab, val, root), where V is a finite set of XML 
nodes; lab is a mapping from V to Ele ∪ Att∪ {text}; a 
node v is called an element node if lab(v) ∈ Ele, an 
attribute node if lab(v) ∈ Att, and  a text node if 
lab(v)=text; the function val is defined as: 

val( v ) = value of the attribute node if  lab(v) ∈Att 
content of the text node if lab(v)=text 
a sequence of its child nodes<v1, ..., vn> 
                                                   if   lab(v) ∈Ele 

Definition 2.2. (path and path instance) A path is 
either an expression in the form of s1 /s2 /.../sn(n>0) where 
si∈Ele∪ Att (1≤i≤n) or self. A path instance w defined 
over a path in an XML tree (V, lab, val, root) is a 
sequence of nodes in the form of <v1, v2, ..., vn> where vi 
is a child of vi-1 for all vi∈V(1<i≤n). Any path instance w 
can be said to be defined over the path if lab(vi)=si 

(0<i≤n). Moreover, no path instance is defined over self. 
For example, in the XML tree shown in Fig.1, six path 

instances are defined over the path 
sale_network/pos/publication, and every path includes a 
sale_network node, a pos node and a publication node 
sequentially. 

Definition 2.3. (Prefix of path) Every path in the form 
of s /s2/.../si (0<i<n) is said to be the prefix of the path 
s1/s2/.../sn. Path self is the prefix of any path. 

For example, paths self and sale_network are both the 
prefixes of the path sale_network/pos. 

Definition 2.4. (Reachable node and function Nodes) 
Given a node v in an XML tree and a path instance w in 
the form of <v1,v2, ...,vn> defined over a path, if v1 is a 
child node of v, we say w is the path instance relative to 
the node v. All the path instances, which are defined over 
a given path p and relative to a given node v, consist a 
path instance set denoted by paths(v,p). The last node of 
every path instance is called the reachable node relative 
to node v via path p. For path self, paths(v, self) = {<v>}. 
The function Nodes is a set of reachable nodes relative to 
v via the path p defined by:  
   Nodes(v, p)= { vn |<v1,v2, ...,vn>∈paths(v, p) } 

For example, from the root of the XML tree in Fig.1, 
paths(pos/publication/num) returns six path instances and 
each of them is composed of an sale_network element, an 
pos element, an publication element and a num attribute 
node in turn. Nodes(sale_network, pos/publication/num) 

will return six reachable nodes labeled with num.  
Since FDXS are based on the value comparison be-

tween XML nodes, the definitions of value equality 
equality for XML nodes are given as follows: 

Definition 2.5. (Node value equality) Let u and w be 
nodes in an XML tree, they are value equal, denoted by 
u=valw, if and only if the following conditions are satisfied: 

1. lab(u) = lab(w) 
2. if lab(u),lab(w) ∈Att, then val(u)=val(w) 
3. if lab(u)=lab(w)=text, then val(u)=val(w) 
4. if lab(u),lab(w) ∈Ele, and let val(u)= <v1, ..., vn>, 

val(w)=<v’
1, ...,v’

m>, then m=n and vi=val v’
i(1≤i≤n). 

If nodes u and w are not value equal, we denote it by 
u≠valw. 

Definition 2.6. (Value equality for reachable nodes) 
Let x and y be nodes in an XML tree, p a path, we say that 
x and y are value equal for the reachable nodes via the 
path p, denoted by x.p =val y.p, if and only if the following 
conditions are satisfied: 

1. if Nodes(x,p) is empty, then Nodes(y,p) is empty 
too, and vice versa. 

2. for every u∈Nodes(x,p), there is w∈Nodes(y,p) 
that satisfies u=val w. 

3. for every w∈Nodes(y,p), there is u∈Nodes(x,p) 
that satisfies u=val w. 

If x and y are not value equal on the reachable nodes 
via the path p, we denote it by x.p≠val y.p. 

For example, the first two pos elements in Fig.1 are not 
value equal for reachable nodes via the path 
business_scope, because the business_scope element with 
the value audio_vedio is the reachable node via the path 
related to the first pos element and no business_scope 
element with the same value exists under the second pos 
element. In fact, any two pos elements are not value equal 
for reachable nodes via the path business_scope. 

It should be noted that Definition 2.6 is based on the 
comparisons between XML node sets. This definition is 
different from the definitions on value equality of XML 
nodes adopted in the definitions of XML function 
dependencies [4][5][11]. 

Definition 2.7. (Effective path set) Let Trs be an XML 
tree set which always ranges over all possible XML tree, 
s and p be paths, the effective path set of s in Trs is 
defined as U(s)={ p | (V,lab,val,root) ∈ Trs, 
x∈Nodes(root,s), paths(x,p)≠Φ } and for an XML tree Tr, 
its effective path set of s is defined as E(s,Tr) = { p | 
x∈Nodes(root,s), paths(x,p)≠Φ, (V,lab,val,root)=Tr }. 

According to this definition, there must be some 
reachable nodes via any path in U(s) from some reachable 
nodes via the path s in the XML trees. And no reachable 
node exists via any path if it is not a member of U(s). In 
general, the effective path set of any path can be found 
according to the given DTD, XML Schema or regular 
expression types for XML dataset. 

In this paper, FDXS is defined over the relationships 
between XML node sets and the effective path set of a 
context path in XML trees. 

III.  FUNCTIONAL DEPENDENCY BASED ON XML DATA 
SET 
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For clear representation, a preliminary definition is 
given as follows: 

Definition 3.1. Given two distinct nodes x, y in an 
XML tree and a path set A, x and y are said to be value 
equal for the reachable nodes via the path set A, denoted 
by A::x =val y, if x.p =val y.p for every path p in A. If they 
are not value equal, we denote it by A::x≠val y. 

Based on Definition 3.1, formal definition of 
functional dependency based on XML data set is given as 
follows: 

Definition 3.2. A functional dependency based on 
XML node set (FDXS) is a proposition in the form 
s:A→B where s is a path represeting the context; A, B 
are subsets of U(s). The XML tree Tr satisfies FDXS if 
and only if for any two distinct nodes x, y∈Nodes(root, s), 
if B::x≠val y then there exists A::x≠val y. 

For example, for any point of sale, suppose that its 
name determines its type, and its name also determines its 
bussiness scope in the XML tree shown in Fig.1, the 
following FDXSs hold: 

sale_network/pos:  name→ type 
sale_network/pos:  name→ business_scope 
sale_network/pos:  business_scope→ type 
These dependencies are also characterized by their 

transitivity. The first FDXS may be derived from other 
FDXSs. This situation causes new problems to emerge in 
the design theory of XML schema, such as logical 
implication for FDXSs and normalization with FDXSs. 

Moreover, according to the FDXS definition, there is a 
FDXS hold in any XML trees. For any context path s and 
any path q and its prefix p, the following FDXS always 
holds: 

s: p→ q 
In the XML tree shown in Fig.1, sale_network: 

pos → pos/name holds. Although such XML 
dependencies do not lead to data redundancy, they have 
effect on the logical implication of FDXSs. 

IV.  LOGICAL IMPLICATION AND INFERENCE RULES 
FOR FDXS 

Like functional dependencies for relational databases, 
the FDXSs for XML trees are often not independent, so 
that it is necessary to address the implication problem of 
FDXSs. To decide whether an XML tree satisfies a given 
set of FDXSs, such implication should be checked to 
reduce the cost of the computation. In the design of an 
XML schema, every FDXS which holds in the 
corresponding XML trees should be also taken into 
account. Therefore, it is necessary to derive other FDXSs 
satisfied by the XML tree from the given FDXSs. 

Definition 4.1. (FDXS logical implication) Given an 
FDXS set Σ and an FDXS σ, if σ holds for the XML trees 
that satisfy all FDXSs in Σ, then we say that Σ implies σ, 
denoted by Σ╞σ. 

By extending the Armstrong axioms of relational 
databases for the analysis of the logical implication on 
FDXSs, we propose a group of inference rules for the 
derivation between the FDXSs. Since the notation based 
on the context path is used in the definition of FDXSs, 

these inference rules involve not only the derivation with 
the same context path but also ones with different context 
paths. 

A.  FDXS Inference Rules with the Same Context Paths 
In order to judge the implication, the inference rules 

between the different FDXSs should be taken into 
account. The inference rules for any context path s are 
given as follows: 

Rule X1. (Prefix-path value-dependency rule) If path p 
is the prefix of path q, then s: p→ q. 

Proof. Suppose that path q is concatenated by its 
prefix p and path q’ (q=p/q’). FDXS s:p→ q means that 
y.p≠val z.p can be derived from y.q≠val z.q for any two 
distinct nodes y and z obtained from Nodes(root, s). By 
the reduction to absurdity, we assume that y.p=val z.p if 
y.q≠val z.q. Let M = Nodes(y, p) and N = Nodes(z, p), it 
means that either both M and N must be empty sets, or for 
every node y' ∈M there is a node z' in N that satisfy y’ =val 
z’ and vice versa. We prove Rule X1 for the three cases as 
follows: 

1. If both M and N are empty, then Nodes(y,q) and 
Nodes(z,q) must return empty sets since path p is 
the prefix of path q. It contradicts the assumption 
y.q≠val z.q. 

2. Consider the case that for every node y’ ∈M, 
there is a node z’ in N that satisfies y’=val z’. Ac-
cording to Definition 2.6, the corresponding de-
scendants of y’ and z’ should be value equal. 
Hence, there are the two cases for every node y’ in 
M: 
a) If Nodes(y’,q’)=Φ, then Nodes(z’,q’)=Φ. Since 

path q is concatenated by p and q’ (q=p/q’), 
both of Nodes(y,q) and Nodes(z,q) should be Φ 
and it contradicts the assumption y.q≠val z.q. 

b) If Nodes(y’,q’)≠Φ, then for every node y’’ ob-
tained from Nodes(y’,q’), which is the descend-
ant of y’, there must be a node z” obtained from 
Nodes(z’,q’) that satisfies y”=val z” according to 
Definition 2.6, since y’=val z’ and z” is the de-
scendant of z’. Since q=p/q’, there are y” 
∈Nodes(y,q) and z” ∈Nodes(z,q). It means for 
every node y” there is a node z” that satisfies 
y”=val z”. 

3. Consider the case that for every node z’ ∈N, there 
is a node y’ in M that satisfies y’=val z’. According 
to Definition 2.6, the corresponding descendants 
of y’ and z’ should be value equal. Hence, there are 
the two cases for every node z’ in N: 
a) If Nodes(z’, q’)= Φ, then Nodes(y’,q’)=Φ. Since 

path q is concatenated by p and q’ (q=p/q’), 
both of Nodes(y,q) and Nodes(z,q) should be Φ 
and it contradicts the assumption y.q≠val z.q. 

b) If Nodes(z’,q’) is not empty, then for every node 
z’’ obtained from Nodes(z’,q’), which is the de-
scendant of z’, there must be a node y” obtained 
from Nodes(y’,q’) that satisfies y”=val z” accord-
ing to Definition 2.6, since y’=val z’ and y” is the 
descendant of y’. Since q=p/q’, there are y”

 

∈Nodes(y,q) and z”
 ∈Nodes(z,q). It means for 
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every node z” there is a node y” that satisfies 
y”=valz”. 

To sum up 2.b) and 3.b), this means that for node y and 
z, y.q=val z.q holds. It also contradicts the assumption 
y.q≠val z.q. In conclusion, the original proposition is 
proved. 

Rule X2. if B⊆  A, then s: A→B. 
Proof. For any two distinct nodes x and y obtained 

from Nodes(root, s), if B::x≠valy then A::x≠valy since the 
path set B is a part of A. As a result, s: A→B. 

Rule X3. (augmentation rules)if s: A →  B then s: AE 
→BE. 

Proof. The premise of Rule X3 means that for any two 
distinct nodes x and y in Nodes(root,s), if B::x≠val y then 
A::x≠val y. Thus, if B::x≠val y, then BE::x≠val y for the 
extended path set BE and it also derive AE::x≠valy. As a 
result, s: AE→BE. 

Rule X4. (Transitivity rule) if s: A→B and s: B→C, 
then s: A→C. 

Proof. s: B→C means that for any two distinct nodes 
x and y in Nodes(root,s), if C::x≠val y, then B::x≠val y; On 
the other hand, s:A → B means that if B::x≠val y, then 
A::x≠valy. As a result, A::x≠val y since C::x≠val y. In other 
words, s: A→C. 

Rule X1, X2 are trivial FDXSs since they have been 
proven for any XML tree. Thus, these trivial FDXS are 
implied by any FDXS set. Other inference rules are non-
trivial FDXSs. The proof above states that if their 
premises are implied by a given FDXS set, it also implies 
their conclusions. 

B.  Extended FDXS Inference Rules 
On the basis of FDXS inference rules showed above, 

we can get the following extended inference rules: 
Rule X5. (Union rule) If s: A→B and s: A→C, then 

s: A→BC. 
Proof. Under augmentation rules X3, if s:A→B, then 

AA → BA; In other words, s:A → BA. Similarly, if 
s:A → C, then s:BA → BC. According to Rule X4, 
s:A→BC. 

Rule X6. (Pseudo-reflexivity rule) If s: A→B and s: 
DB→C, then s: AD→C, where D is arbitrary path sets. 

Proof. According to Rules X3, if s: A→ B, then s: 
AD → BD. Using transitivity rule X4, it can derive s: 
AD→C and it means Rule X6 is sound. 

Rule X7. (Path decomposition rule) When s: A→B 
holds, if C⊆B then s: A→C. 

Proof. According to Rules X2, s:B → C hodls, and 
using transitivity rule X4, s: A→C can be derived from 
them. It means Rule X7 is sound.   

C.  The Equivalence of FDXSs with Different Context 
Paths and Rewriting Rules 

Due to the notation of the FDXSs above, some of 
FDXSs with different context paths may be equivalent. 
For example, in the XML tree shown in Fig. 1, the 
following two FDXSs are equivalent if they are exist: 

sale_network/pos/publication: details →  details/isbn 

sale_network/pos/publication/details: self →  isbn 
It is easy to prove that they are equivalent because 

there is only one child node with label details for each 
publication element in the XML tree. 

Definition 4.2. (Equivalent prefix path) Let q be a path 
with length n(1<n), if there is only one path instance <u1, 

u2, ..., un> in the result for paths(root, q) for each path 
instance <v1,v2, ..., vm>(m<n) in the result for paths(root, 
p), and vi=ui holds for 0<i<m+1, then we call path p the 
equivalent prefix path of path q. 

In general, the equivalent prefix paths of a path can be 
found according to a given DTD, XML Schema or 
regular expression types for XML. For example, we can 
find that path sale_network/pos/publication is an 
equivalent prefix path of path 
sale_network/pos/publication/details, and no equivalent 
prefix path exists for path sale_network/pos/publication 
itself. Path self may be an equivalent prefix path for any 
path, but it does not have any equivalent prefix path. 

The equivalence of the FDXSs with different context 
paths can be expressed as the two rewriting rules as 
follows: 

Rule X8. Let σ be a FDXS in the form of s1:p1→ q1 
where p1, q1 are paths, if path s2 is an equivalent prefix 
path of path s1 and |s2|=|s1|-1, then σ can be rewritten as 
s2: p1

’ →  q1
’ where p1

’=down(x, p1), q1
’=down(x, q1) and x 

is the last label of s1. The function down is used to 
transfer a path related to s1 to one related to its 
equivalent prefix path s2, and its definition is as follows:
   
 down( x, p ) =  x if  p = self  
   x/p otherwise 

Rule X9. Let σ be a FDXS in the form of s1: p1→  q1 
where p1, q1 are paths except self, if path s1 is an 
equivalent prefix path of s2 and, |s1|=|s2|-1, then σ can be 
rewritten as s2:p1

’ → q1
’  if p1=x/p1

’, q1= x/q1
’ where x is 

the last label of path s2. 
According to the definition of the equivalent prefix 

path above, the correctness of Rule X8 and Rule X9 are 
straightforward. 

D.  Soundnesss of FDXS system 
The FDXS inference rules and FDXS rewriting rules 

above have formed an inference system, which is called 
FDXS system. In this section, we prove that the FDXS 
system is sound. 

Definition 4.3. Let Σ be a set of FDXSs and σ be 
another FDXS, we call σ derivable from Σ , denoted by 
Σ├ σ, if there is a finite sequence of FDXSs <σ1, σ2, ..., 
σn>,σ=σn and σi (1≤i≤n) satisfies any one of the following 
conditions: 

1. σi is a trivial FDXS. 
2. σi is a member of Σ. 
3. σi is produced from union of Σ, trivial FDXSs and 

{ σ1, σ2, ..., σi-1 } by the application of any rule in 
the FDXS system. 

The soundness of the FDXS system is represented by 
the following theorem: 
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Theorem 4.1. Let Σ be a set of FDXSs and σ be 
another FDXS, Σ logically implies σ if σ derivable from Σ 
by the FDXS system, that is, if Σ├ σ then Σ╞σ . 

Proof. Let Σ be a set of FDXSs and σ be any FDXS, if 
Σ├σ, σ is the last element of the FDXS sequence in 
Definition 4.3. For any XML tree which satisfies every 
FDXS in Σ, suppose that the length of the FDXS 
sequence is n. We use inductive reasoning to prove that 
the tree also satisfy σ. In case of n=1, the only FDXS σ in 
the sequence holds in the XML tree since it is either an 
element in Σ or a trivial FDXS in Rule X1 and X2. 
Suppose that the first n-1 elements in the FDXS sequence 
are satisfied in the XML tree, there are three cases for the 
last element σ: 

1. σ is trivial FDXS. It holds for any XML trees. 
2. σ is a member of Σ. It has been satisfied by the 

XML tree. 
3. σ is produced from them by applying one of the 

FDXS inference rules and the FDXS rewriting 
rules except X1 and X2. Since these rules have 
been proved to be sound and their premises come 
from first n-1 elements, trivial FDXSs or Σ, the 
XML tree satisfies σ too. 

As a result, σ holds for the XML trees which satisfy 
every FDXS in Σ. Thus, Σ╞σ is proved to be sound. 

E.  Constructing a Counterexample XML Tree 
In this section, we introduce the definitions of XML 

path closures and an algorithm for constructing an XML 
tree, which will be used as a counterexample for proving 
the completeness of the FDXS system. 

Definition 4.4. Given a FDXS set Σ, let σ be a FDXS 
in the form of s: X→A, the XML value path closure X+(s) 
in Σ for FDXS σ is defined as following: 

X+(s) = { p |Σ├s: X→ p } 
Lemma 4.1. Let σ be a FDXS in the form of s:X→A, 

Σ a given FDXS set, Σ├σ if and only if A ⊆  X+(s). 
Proof. Let A={a1, ..., an} where ai is a path for i=1, ..., 

n. First, we prove it is necessary. According to the 
definition of X+(s), ai∈ X+(s) (i=1, ..., n). It leads to 
A⊆ X+(s). Next, we prove its sufficiency. According to 
Definition 4.4, A⊆X+(s) means that Σ├ s: X→ ai (i=1, ..., 
n). It leads to Σ├ s: X →  A by applying union rule X5 to 
them. The sufficiency of Lemma 4.1 is proven. 

For example, the following FDXS holds for the XML 
tree shown in Fig. 1: 

sale_network/pos/publication: num →  details 
For a FDXS set with the single FDXS, according to 

Lemma 4.1, by applying the FDXS inference rules and 
FDXS rewriting rules, we can get its XML value path 
closure as follows: 

X+( sale_network/pos/publication ) =  
{ num, details }∪ { p |details is prefix path of p, 
                          p∈U(sale_network/pos/publication) } 
It should be noted that Rule X5 and X7 have been used 

in th proof of Lemma 4.1 and they are proven to be sound 
by Rule X2, X3 and X4. It has covered every trivial 
FDXSs in the FDXS systems. 

Algorithm 4.1 Given a FDXS set Σ, let σ be a FDXS 
in the form of s:X →A, a counterexample XML tree Tr 
can be constructed by their X+(s). The algorithm is as 
follows: 

1. For the context path s in the form of s1/s2 /.../sn, we 
construct an XML tree with a root node labeled 
with r and its two child nodes labeled with s1. 
Then, we create one child node labeled with si 
under the si-1 nodes for i=2, ..., n respectively. 

2. For every path in the form of t1/t2/.../tm in X+(s), we 
create a child node labeled with t1 under every 
existing sn node, and create one child node labeled 
with ti under the ti-1 nodes for i=2, ..., m 
respectively, if no child node with the same label 
exists. The same integer is assigned to the content 
of every tm node. No node is created for self in 
X+(s). 

3. Let Tr’ be the XML tree constructed by the two 
steps above, for every path in the form of t1/t2/.../tm 
in E(s,Tr’)-X+(s), we create a child node labeled 
with t1 for every node sn and create one child node 
labeled with ti under the ti-1 nodes for i=2, ..., m 
respectively, if no child node with the same label 
exists. A text node with distinct integer is created 
as the child node of each tm node. For self, a text 
node with distinct integer is created as its child 
node of every node sn. 

In the three steps above, whenever we are about to 
create a child for any element node, the existing child 
with the same label should be used instead of creating a 
new child node. As a result, all child nodes of each 
element node except the root node should be labeled with 
the distinct labels. For the XML tree Tr constructed by 
the algorithm above, there is the following lemma. 

Lemma 4.2 Given a FDXS set Σ, let σ be a FDXS 
in the form of s:X →A , the following propositions are 
true in the XML tree Tr: 

1. Any two distinct nodes reachable via the same 
path in X+(s) are value equal. 

2. Any two distinct nodes reachable via the same 
path in E(s,Tr’)-X+(s) are not value equal. 

From step 2 and step 3 in the algorithm above, the 
correctness of Lemma 4.2 is straightforward. 

For example, assumed that a:b/c→  e/x is only FDXS 
in a given FDXS set Σ, we can get the following XML 
value path closure: 

X+(a) = { b/c, e/x } 
Following Algorithim 4.1, for path b/c in X+(a), two b 

node and two c node are created with same content, for 
path e/x in X+(a), two e node and two x node are created 
with same content. After step 1 and step 2, the XML tree 
is shown in Fig.2(a). In step 3, since paths b and e are in 
E(a,Tr’)-X+(a), two text node with different integers are 
created as the child nodes of b nodes, and two text nodes 
with different integers are created as the child nodes of e 
nodes, as shown in Fig.2(b). Two text nodes with 
different integers are created since path self in E(a,Tr’)-
X+(a). According to Definition 2.7, the effective path set 
for the XML tree is as follows: 
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E(a, Tr) = { self, b, b/c, e, e/x } 
The final XML tree Tr is shown in Fig.2(c). 
Table 2 show the reachable nodes for every path in 

E(a,Tr). It should be noted that the nodes reachable via 
any path in X+(a) are value equal, such as the nodes 
reachable via e/x have the same value. And the nodes 
reachable via any path in E(a, Tr)-X+(a) are not value 

equal, such as two e nodes have different values. 

F.  Completeness of the FDXS System 
The completeness of the FDXS system is represented 

as the following theoroem. 
Theorem 4.2. For any FDXS σ and any FDXS set Σ, if 

Σ logically implies σ, then σ can be derived from Σ by the 
FDXS system, that is, if Σ╞ σ then Σ├ σ. 

According to Definition 4.3, since all trivial FDXSs 
are derivable from Σ, only non-trivial FDXS should be 
take into account in the following proof. 

Proof. Let Σ be a FDXS set, according to the reduction 
to absurdity, suppose that σ is an arbitrary FDXS which 
cannot be derived from Σ by the FDXS system and Σ╞ σ, 
we will show that there is an XML tree such that FDXS σ 
does not hold and every FDXS in Σ holds in the XML 
tree. Following Algorithm 4.1, from Σ and FDXS σ, an 
XML tree Tr is built as the counterexample which is used 
to prove 1) the XML tree does not satisfy FDXS σ, and 2) 
the XML tree satisfies every FDXS in Σ . It means that Σ 
does not logically imply σ. 

1) To prove that Tr does not satisfy FDXS σ in the 
assumption above, consider σ is in the form of s:X 
→K. Since σ cannot be derived from Σ by the 
FDXS system, then K is not a subset of its X+(s) 
according to Lemma 4.1. Thus for XML tree Tr, 
some paths in K must belong to E(s,Tr)-X+(s). 
According to Lemma 4.2, the nodes in Tr 
reachable via the paths in E(s,Tr)-X+(s) have 

different values, including the nodes reachable via 
those paths in K, but the reachable nodes via every 
path in X are value equal, since X ⊆X+(s). Hence, 
Tr violates s:X→K. 

2) To prove that XML tree Tr satisfies every FDXS 
in Σ, considering every FDXS in Σ in the form of 
s':A→ C, if s' is the same as s, there are three 
cases: 
a) According to Lemma 4.1, if A⊆X+(s), then 

Σ├s':X →A, where X+(s) comes from FDXS 
σ in the assumption above. Following Rule 
X4, s':X → C. Thus, we have C ⊆ X+(s). 
According to Lemma 4.2, all reachable nodes 
via each path in X+(s) are value equal in Tr. 
Since both A and C are subsets of X+(s), 
s':A→C is tenable. 

b) If A is not a subset of X+(s), then A must 
include some paths in E(s,Tr)-X+(s). 
According to Lemma 4.2, the reachable 
nodes via any path in E(s,Tr)-X+(s) are not 
value equal in Tr. Therefore s’:A→C holds 
for any path sets C. 

Now, we have proven that the XML tree satisfies every 
FDXS in Σ whose context path is the same as σ. 

If s' is different from s, its reachable nodes must be in 
XML tree Tr. Let root be the root node of Tr, there are 
the three cases for the context path s' as follows: 

a) For every path s' whose reachable nodes except 
root are created at step 1 of Algorithm 4.1, s' must 
be an equivalent prefix paths of s, since there is 
only one child node for each of them.  Hence, 
s':A→C can be rewritten into a FDXS with the 
context path s by Rule 14 so that it is satisfied by 
Tr. If s'=self, s':A → C holds for any A and C, 
since only root is a reachable node via self. 

b) For every path s' whose reachable nodes are 
created at step 2 and step 3 of Algorithm 4.1, s 
must be an equivalent prefix path of s' according 
Definiton 4.2, since all these nodes are descendent 
nodes of the reachable node by s, and every one of 
them, which is the last node of the path instance of 
s', has a different label from its sibling nodes. 
Hence, s':A → C can be rewritten into a FDXS 
with the context path s by Rule 13 so that it is also 
satisfied by XML tree Tr. 

To sum up the descriptions above, XML tree Tr 
violates σ and satisfies every FDXS in Σ. It contradicts 
with the original assumption Σ╞σ. It means that Σ╞σ 

TABLE 2.  
THE REACHABLE NODES VIA EVERY PATH IN E(a,Tr). 

path set path reachable node sets 

X+( a ) 
b/c { <c>1</c> } 
e/x { <x>4</x> } 

E(a,Tr)- X+(a) 

b { <b><c>1</c>2</b> } 
{ <b><c>1</c>3</b> } 

e { <e><x>4</x>5</e> } 
{ <e><x>4</x>6</e> } 

self { <a>......7</a>} 
{ <a>......8</a>} 

 Figure 2.   A counterexample XML tree. 
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does not hold if σ is not derivable from Σ for the XML 
tree. Therefore, for any FDXS σ, it is derivable from Σ by 
the FDXS system as long as Σ╞σ. Thus the completeness 
of the FDXS system is proven. 

It should be noted that Lemma 4.1, Rule X7 and X8 
are used in the proof. Since all non-trivial FDXSs has 
been used in the proof of Lemma 4.1. The completeness 
proof has covered every non-trivial FDXSs and FDXS 
rewriting rules in the FDXS system. 

V.  RELATED WORK 

Functional dependency has been the key concept for 
the normalization theory used in the database design 
since Codd[9] proposes the relational model. 
Armstrong[10] and Beeri[11] propose a set of inference 
rules used to derive functional dependencies and prove 
those axioms are sound and complete. Their works solve 
the implication problem of functional dependencies 
perfectly in the relational model. However, since the 
attributes of data entities must be atomic and different 
with each other according to the first normal form of 
relational model, the axioms can not be applied to the 
new data models such as XML document. How to resolve 
the problems such as integrity constraints and functional 
dependencies in such complex data also becomes a 
research hotspot. 

In order to meet the needs of the exchange and sharing 
of information on the World Wide Web, W3C proposes 
semi-structured XML data model in 1998. Because XML 
data are expressed as a tree structure, so the dependencies 
on the XML data are also bound to this hierarchical 
structure. Those dependencies are obviously more 
complicated than the flat relational model dependencies, 
and thus there is no uniform definition for XML 
functional dependency so far, and not every definition is 
able to cover all kinds of XML function dependencies. 
The difference between existing definitions has a 
significant influence to the further studies, such as logical 
implication and XML normalization. 

Arenas[4][19] comprehensively studies the problems 
on XML functional dependency and normalization. 
Analogy to the relational model, he puts forward the 
concept of "tree tuple", and using this concept we can 
map the XML documents to relational model. On this 
basis, he defines the functional dependency, describes a 
kind of normal form called XNF and gives an algorithm 
that can convert DTD to comply with the XNF. He also 
finds that, in some cases, there exists a sound algorithm 
for logic implication problem, but in other cases, that is 
an NP-complete problem due to the differences of DTDs. 
His work reveals the complexity of XML logic 
implication problem. In other words, the definition of 
XML functional dependency will have a major impact on 
solving the logical implication problem. Due to the 
diversity and complexity of XML functional dependency, 
to find a definition of better nature becomes one of the 
hotspots of academia. Kot and White[20] prove that there 
exists a sound and complete axiom system for the 
function dependents based on "tree tuple" in some of 
DTDs circumstances. Vincent et al. [5][21][22] give a 

definition based on the closest attribute value, and prove 
that the inference system based on such definition can be 
axiomatized. They also illustrates the primary key can 
serve as the special case of XML functional dependency 
in certain circumstances, although they do not consider 
the influence of the schema language.  Shahriar [23] has 
given a unified representation of XML global functional 
dependencies and local functional dependencies. 
Expressions in the form of (S, P→Q) are used to express 
various kinds of XML functional dependencies while S 
represents the scope of local functional dependencies. 

Unlike the means shown above, Hartmann [24] gives 
another definition based on "subtree", and he extends the 
expression of function dependencies through graphic 
schemas. Then he proposes a set of inference rules for 
functional dependencies with frequency [25], investigates 
XML functional dependency based tree homomorphism 
and finds an algorithm to solve logical implication 
problem based on Horn clause logic [26]. But these 
definitions do not cover the dependences between set of 
values of XML nodes as our work. In addition, its 
inference rules are also different with our work 
significantly, because of the difference for XML data 
representation. 

Those works give various definitions of XML function 
dependency with different expressive power. Most of 
them study the logical implication problem and normal 
form and does not involved integrity constraints related to 
XML items which can appear more than once. Yu[27] 
extends the representation of XML functional 
dependency on the basis of the work of paper[4][19], 
making it possible to represent the generalized tree tuples 
and element sets. He also gives a normal form and its 
normalization algorithm based on his definitions. In our 
paper, the function dependence definition based on the 
path is closed to the definition in their paper since the 
context path in FDXS is similar to the "pivot node". Our 
work can cover the reasoning under the different contexts, 
and we focus on the integrity constraints between XML 
node sets reachable via different path especially. 

VI.  CONCLUSION 

Various XML integrity constraints should be taken into 
account for the well-designed databases, in order to keep 
data consistency and eliminate update anomalies. We find 
that for XML data, the data redundancy may come from 
the functional dependencies between XML node sets. In 
order to describe this kind of XML integrity constraint, 
this paper study the XML functional dependency based 
on node sets, gives its formal definitions. Moreover, this 
paper studies the logical implication problem for the 
functional dependency based on XML node sets, 
proposes a set of FDXS inference rules and FDXS 
rewriting rules, and proves their soundness and 
completeness. 
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