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Abstract—QoS constraint based workflow scheduling 
described by Directed Acyclic Graph (DAG) has been 
proved to be a NP-hard problem in Cloud Computing 
Services, especially for cost minimization under deadline 
constraint. Due to Deadline Bottom Level (DBL) hasn’t 
considered the concurrence during the real executing 
process that cause much more shatter time to solve such 
problem, this paper proposes a novel heuristics approach of 
Concurrent Level based Workflow Scheduling (CLWS). It 
stratifies all the tasks according to the concurrence among 
tasks in the actual workflow execution. Then, CLWS 
distributes the total redundancy time into every level 
according to their concurrent degree. The simulation 
experiments show that CLWS makes a better improvement 
than DBL.  
 
Index Terms—workflow scheduling, cost/time tradeoff, 
heuristics, concurrent level 

I. INTRODUCTION 

With the rapid development of information technology, 
Cloud Computing is applying to heterogeneous and 
distributed environment that covers Software as a Service 
(SaaS), Platform as a Service (PaaS), and Infrastructure 
as a Service (IaaS) [1], which support computers’ 
cooperative work with great efficiency. Workflow, which 
is regard as an abstract model in computers’ cooperative 
work, plays a more important role in pipeline production 
of enterprises, office automation, researching and so on. 
Thus, workflow scheduling is becoming a hot topic. It 
deals with the allocation of tasks to suitable resources so 
that the object function can be minimized or maximized 
while satisfying users’ QoS requirements [2]. QoS 
constraint based workflow scheduling currently includes 
time minimization under cost constraints and cost 
minimization under time constraints [3]. This paper 
focuses on discussion about latter. 

To date, many algorithms or strategies, such as 
Simulated Annealing Algorithm [4], Genetic Algorithm [5] 
and Hybrid Particle Swarm Algorithm [6], have been 
proposed to address the problem of QoS constraint 
workflow scheduling. Although these algorithms can 
bring an optimized result, time-consuming is still a 
none-neglected shortage. Thus, many researchers turn to 
heuristic workflow scheduling [7, 8, 9, 13, 14], and the 
strategy of workflow task stratifying according to 

workflow structure and the characteristic of service 
resources has been got a great attention. 

The remainder of this paper is organized as follows. 
Section II introduces the related work of task stratifying 
based workflow scheduling. After the problem 
description in Section III, Section IV explains the 
proposed workflow scheduling approach. The simulation 
results are presented in Section V, followed by the 
conclusion and the future work of this paper. 

II. RELATED WORK 

Yu et al. proposed a deadline division strategy named 
Deadline Min-Cost for scheduling workflow applications 
with deadline constraints [7]. It divides all the workflow 
tasks into several levels according to the structure of 
workflow, and then distributes the deadline into every 
level. If every level could be completed within the 
sub-deadline, the entire workflow could also be 
completed within the overall deadline. Although such 
approach is simple and can be executed efficiently, some 
deficiencies still exist: firstly, tasks that can be executed 
concurrently are not always in the same level; secondly, 
fixing the time interval of every level will bring much 
more time pieces. To address above problems of 
Deadline Min-Cost, Yuan et al. proposed the Deadline 
Bottom Level denoted as DBL [8]. Diffident with 
Deadline Min-Cost, DBL stratifies all the tasks by the 
value of maximal steps to the exit task, and every task’s 
start executing time can be dynamically determined by 
the actual complete execution time of its parent tasks. 
From this sense, every task can choose a better service 
within the extended time interval. Compared with 
Deadline Min-Cost, although DBL can improve the 
execution performance of workflow scheduling, some 
deficiencies are also worthy of paying attention: First, 
DBL does not stratify tasks under the actual executing 
situation that more levels are generated, which brings 
much more time pieces; Second, DBL distributes the 
overall time float equally to every level, and ignores the 
differences among levels; Third, when the given deadline 
is lower than the lower-complete time of workflow for 
DBL, this algorithm is not suitable. 

 Inspired by the above two leveling approaches of 
heuristic workflow scheduling, this paper proposes a 
novel algorithm called Concurrent Level based 
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Workflow Scheduling (denoted as CLWS). This 
proposed algorithm stratifies all the tasks according to 
the concurrence among tasks in the actual executing 
situation, which can decrease the task levels and increase 
the utilization of overall time float. Moreover, CLWS 
distributes the overall time float into every level in the 
light of differences among levels, which can further 
increase the utilization of overall time float.  

III. PROBLEM DESCRIPTION 

Directed Acyclic Graph (DAG) is typically used to 
describe the workflow, while the nodes and arcs 
separately represent the tasks and the relations between 
tasks of the workflow. For a given workflow, let G = <V, 
A> denote the DAG, where the symbol V represents the 
node set, V = {1, 2, … , n}, and the arc set A = {<i, 
j>|i→j, where j is the direct successor of i, and i, j∈V}. 
There exists time dependence in every arc <i, j>∈A, task 
j can’t execute until task i finishes its work. Suppose that 
every workflow has only one entrance node denoted as 
Ventr and only one exit node denoted as Vexit, as shown in 
Fig. 1 [8], task 1 is the Ventr and task 16 is the Vexit. 

Each computing service can provide many service 
levels with differentiated service qualities, i.e., multiple 
services can provide similar functionality but with 
different non-functional properties, such as executing 
time, cost, reliability and so on [2]. Suppose that each task 
owns a service pool to manage all its services, define 
SP(i) as the service pool of task i, that is SP(i) = 
{ k

is =< k
it , c k

i >|1 | ( ) |k SP i≤ ≤ }, where |SP(i)| represents 
the service number of service pool SP(i), k

it  and c k
i  

separately represent the executing time and cost of the 
k-th service of task i. The service pools of tasks in Fig. 1 
are shown in Table 1 [8], to simplify the problem, this 
paper let SP(Ventr)=SP(Vexit)={<0, 0>}. 

 
Figure 1. A simple schematic diagram of workflow 

TABLE 1.  
THE SERVICE POOLS OF TASKS IN FIG. 1 

Task number Service pool 

1 {<0, 0>} 

2 {<10, 6>, <8, 8>, <6, 11>} 

3 {<5, 10>, <4, 12>} 

4 {<6, 5>} 

5 {<4, 10>, <2, 15>} 

6 {<3, 5>, <2, 10>, <1, 20>} 

7 {<15, 25>, <10, 30>} 

8 {<3, 30>} 

9 {<8, 14>, <5, 18>} 

10 {<30, 100>, <20, 150>, <15, 200>} 

11 {<10, 50>, <6, 80>} 

12 {<9, 18>} 

13 {<25, 40>, <20, 50>} 

14 {<30, 80>, <20, 120>, <15, 150>} 

15 {<13, 50>, <10, 60>} 

16 {<0, 0>} 

The problem of cost minimization under time 
constraints for workflow scheduling is to let every task 
select a better service to get the minimal cost according 
to the given deadline: 

1
1 | |

C min

i

n
k

total i
i

k SP

c
=

≤ ≤

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∑                  (1) 

To make sure the workflow can execute correctly, 
several constraint conditions are shown below: 

k
i i jtβ β+ ≤                      (2) 

n deadlinetδ ≤                       (3) 

Where ,i j∀ < >∈ A should satisfy (2), iβ  
represents the start executing time of task i, nδ  
represents the sub-deadline of task n, and 

deadlinet represents the overall deadline of workflow. 
The problem of cost minimization under time 

constraints for workflow scheduling was proved to be 
NP-hard [10], and the more time a service is taken, the 
more cost it should be paid [11]. In order to get the 
optimized result, CLWS tries to extend every task’s time 
interval [ , ]β δ , and then each task can select a better 
service with least cost. 

IV. CONCURRENT LEVEL BASED WORKFLOW 
SCHEDULING 

A. Relevant Definition 
Definition 1. For a given workflow G = <V, A>, 

distributing the minimal time service to each task. By 
adopting the algorithm of Critical Path to get the critical 
path, we denote the total executing time of this path as 

mint , which is the lower-complete time of G. 
Definition 2. For a given workflow G = <V, A>, 

denote CP as the node set of critical path computed by 
Definition 1. Assigning the actual start executing time of 
every task in CP as the earliest start executing time, and 
allocating tasks, which can be executed concurrently with 
one critical task (or several critical tasks that have time 
dependence), into the same level. And make sure that 
every task’s time interval should be within its level’s 
time interval. Detail description is shown as (4), let the 
concurrent level of G denote as CL, and |CL| represents 
the total number of concurrent levels of the given 
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workflow. 
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Definition 3. For a given workflow G = <V, A>, in 
every level, let every single task or tasks that have time 
dependence defined as subPath. 

If the last task in one subPath hasn’t a direct successor 
in the corresponding level, then define this subPath’s 
sub-deadline as:   

,
j isubPath CL j isubPath CLδ δ= ∀ ∈         (5) 

If the last task denoted as V* in one subPath exists 
direct successor, then define this subPath’s sub-deadline 
as:  

{ }*

*
( )

1 | ( )|

min ,
j k

k i

i

subPath V j i
V CL succ V

k CL succ V

subPath CLδ β
∈

≤ ≤

= ∀ ∈
∩
∩

  (6) 

Where *( )succ V  represents the set of direct 
successors of task V*. 

For all the subPaths of the given workflow, if subPathj 
has unique task V*, then its time interval is set as:  
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Where *( )pred V  represents the set of direct 
predecessors of task V*. 

In the same with Deadline Min-Cost [7], if a subPath 
has several tasks, CLWS also uses Markov Decision 
Process (MDP) [12] to deal with the sequential tasks. It 
tries to extend every task’s time interval, and then each 
task can select the better service with least cost. The 
detail description of MDP is shown as below: 

Definition 4. For a given workflow G = <V, A>, if a 
subPath has several tasks, let subPath = {1, 2, …, r}, 
function ( , , )k

i i jf V S V  represents the process that task i 
selects the k-th service and turn to the next task j (j<i). 
The result value of this function represents the cost of the 
k-th service. 

,
( , , )

,
i

k
i V subPathk

i i j

c
f V S V

others

β β⎧ ≥⎪= ⎨
∞⎪⎩

      (8) 

Definition 5. For the subPath in the definition 4, MDP 
uses the equation below to achieve that task iV  
selects k

iS , which can make the local cost optimum. 

{ }
1 | |

( ) min ( , , ) ( )
i

k
i i i j jk SP

F V f V S V F V
≤ ≤

= +     (9) 

B. The Description of CLWS 
Definition 6. For a given workflow G = <V, A>, if the 

overall deadline is more than the lower-complete time, 
let their difference as time float denoted as TF, 

 mindeadlineTF t t= −             (10) 

Distributing the overall time float into every levels 
under the difference among levels, and every level’s sub 
time float can computed as below, 

* | |
| | 2iCL i

TFTF CL
V

=
−

         (11) 

From Table 1, it’s not useful to distribute time float to 
both entrance task and exit task. It is obvious that (11) 
can get a better performance than that of DBL.  

After distributing the overall time float, (4) can be 
modified as below, 
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Above all, CLWS is explained as below: 
Algorithm 1.  CLWS 
1) Initializing the workflow and allocating services to 

every task; 
2) Computing mint  according to definition 1; 
3) Computing the concurrent levels according to 

definition 2; 
4) Computing every level’s subPaths according to 

definition 3; 
5) If the given overall deadline is more than the 

upper-complete time, then turn to step 8) and print error 
message; Otherwise, compute overall time float and 
distribute them into every level by (12), then compute 
every level’s time interval and its subPaths’ time interval 
again; 

6) Scanning every subPath, if it has unique task, 
computing its time interval according to (7); Otherwise, 
adopting MDP to compute this task’s time interval; 

7) Computing the total cost of this workflow; 
8) End. 

C. An illustrative Experiment 
In order to validate the proposed CLWS, this section 

adopts data from Fig. 1 and Table 1 to give an illustrative 
experiment. We suppose that the given overall deadline 
is 100. After distributing the minimal cost service to 
every task, the critical path is computed as CP = {1, 2, 6, 
7, 9, 12, 13, 15, 16} and this workflow’s lower-complete 
time mint = 61.  

Combining with the workflow’s execution, the Gannt 
diagram is drawn in Fig. 2, as well as the bold lines 
represent the executing process of critical task. As shown 
as this Gannt diagram, all the tasks’ actual executing 
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process, the corresponding concurrent levels and 
subPaths are obviously illustrated. 

 
Figure 2. The Gannt diagram of the schematic workflow’s 

executing process  

TABLE 2.  
THE TASKS’ SERVICE SELECTIONS AND ACTUAL TIME INTERVALS 

OF THE SCHEMATIC WORKFLOW 
Task number Service selection Time interval 

1 1
1S  [0, 0] 

2 1
2S  [0, 10] 

3 1
3S  [0, 5] 

4 1
4S  [0, 6] 

5 1
5S  [0, 4] 

6 1
6S  [17.14, 20.14] 

7 1
7S  [20.14, 35.14] 

8 1
8S  [17.14, 20.14] 

9 1
9S [36.5, 44.5] 

10 1
10S [36.5, 66.5] 

11 1
11S [36.5, 46.7] 

12 1
12S [44.5, 53.5] 

13 1
13S [53.5, 78.5] 

14 2
14S [66.5, 86.5] 

15 2
15S [87.20, 97.20] 

16 1
16S [99.98, 99.98] 

The overall time float TF = 100-61 = 39 according to 
(10). From (11), every level’s sub time float is computed, 
and then corresponding tasks’ time interval can be 
determined. Finally, the schematic workflow’s total cost 
is computed as 493, and all the tasks’ service selections 
and actual executing time intervals are shown in Table 2. 

V. SIMULATION RESULTS 

A. Experiment Environment 
All the DAGs are generated by the DAG graph 

random generator, in which the task numbers |V|∈ {10, 
20, 30, 40, 50, 60, 70, 80, 90, 100}, the task numbers of a 
subPath, |subPath| ∈ {1, 2, 3, 4}, the task’s 
outDegree∈ {1, 2, 3, 4}. The length of service pool can 
be randomly generated from the interval [5, 10], while 
the service executing time is randomly generated from 

the interval [5, 30] and the corresponding cost is 
inversely proportional to the time. The overall deadline 
can be computed as min max min* ( )deadlinet t t tμ= + − , where 
μ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, 

m axt is the corresponding upper-complete time with 
lower-complete time of the workflow and each μ  
comprises 10 instances. 

B. Experiment results and Analysis 
This section mainly discusses the executing 

performances of CLWS, DBL, Deadline Min-Cost and 
MCP [8]. Suppose that using algorithm A and algorithm B 
to execute the same workflow, their total costs are 
separately denoted as CA and CB, then the decrease rate 
from algorithm A to algorithm B can be denoted as 

|E ( ) *100%A B B A BC C C= − . Every group adopts the 
average values. 

 
Figure 3. Different algorithms’ performance comparison 

algorithms’ total                
This part computes the decrement from CLWS, DBL 

and Deadline Min-Cost to MCP. Fig. 3 displays the 
compared results. Different with DBL or Deadline 
Min-Cost, CLWS stratifies all the tasks according to the 
concurrence among tasks in the actual execute situation, 
and it can not only decrease the task levels, but also 
increase the utilization of overall time float. And we can 
further increase the utilization of overall time float by 
adopting the approach of distributing the overall time 
float into every level according to the differences among 
levels. From Fig. 3 we can also obviously find that the 
proposed algorithm CLWS can get a better performance 
than DBL or Deadline Min-Cost. 

VI. CONCLUSION 

This paper proposes a novel heuristic workflow 
scheduling algorithm CLWS, which it distributes task 
levels by their concurrence, and adopts the efficiency 
algorithm MDP to optimize the sequential tasks with 
time dependency. The contributions of CLWS are that it 
not only decrease the time pieces, but also can optimize 
the total executing cost. The experiments’ results 
demonstrate that CLWS has better performance than 
DBL and Deadline Min-Cost. The future work of this 
paper is to improve CLWS and address the problem of 
heuristic workflow scheduling more efficiency in the 
dynamic Cloud computing environment. 
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