
Real-time Multiresolution Rendering for
Dynamic Terrain

Dong Wang

Chongqing Key Laboratory of Software Theory & Technology, Chongqing University, Chongqing China
Wuhan Ordnance Noncommissioned Officers Academy, Wuhan, China

Email: wangdong@cqu.edu.cn

Qing-sheng Zhu
Chongqing Key Laboratory of Software Theory & Technology, Chongqing University, Chongqing China

Email: qszhu@cqu.edu.cn

Yi Xia
Chongqing Aerospace Polytechnic College, Chongqing, China

Email: xiayi_840128@126.com

Abstract—This paper presents a novel dynamic terrain
multiresolution rendering method by utilizing the
capabilities of current generation GPUs. Firstly, the terrain
depth offset map texture that represents the appropriate
offset values is generated through rendering to texture,
which is used to deform terrain in vertex shader. Then in
order to accurately represent the fine terrain detail created
by deformation, an adaptive geometry tessellation technique
is implemented in geometry shader. Moreover, to update
deformation area texture, we apply procedural texturing
based on constraint conditions in fragment shader. In the
end, the experiments prove that our method is feasible and
efficient.

Index Terms—dynamic terrain, geometry tessellation,
multiresolution, GPU

I. INTRODUCTION

The real-time visualization of the terrain plays an
important role in computer graphics, three-dimensional
geographic information systems, virtual reality and 3D
games. Many excellent algorithms are proposed to realize
the large scale terrain rendering. Along with the terrain
visualization technology progressing, high quality and
reality deformable terrain systems is more desired than
before. Deformable terrain or dynamic terrain has
become an increasingly important requirement for
ground-based simulation systems. When it comes to
virtual battlefield, the dynamic terrain techniques are
essential to the visualization of crater resulting from
explosion.

In this paper, we present a real-time GPU-based multi-
resolution dynamic terrain visualization method to
simulate crater in virtual battlefield. we develop a novel
terrain deformation algorithm based on the programmable
Graphical Processing Unit (GPU). The core of this
algorithm is using frame buffer object(FBO) render to
texture functionality to store terrain deformation process.

To ensure efficient rendering of deformed terrain mesh,
we introduce a new adaptive tessellation scheme for
dynamic extension of resolution in deformation area that
works completely on the GPU. To synthesize crater
texture, the procedural texturing method based on
constraint conditions that totally implemented on the
GPU is proposed. The tests prove that our method is
feasible and high performance. Our method can be used
in dynamic terrain systems, such as war games with
bomb explosions, animation with terrain deformation, etc.

The rest of the paper is structured as follows. Section 2
reviews some related work by previous researchers.
Section 3 presents a terrain deformation algorithm.
Section 4 describes dynamic extension of resolution
technique. The texturing of the deformed area is
explained in section 5. In section 6, we implement our
method and show the result. Section 7 presents some
conclusions on the techniques developed and outlines
future work.

II. RELATED WORK

Although many existing terrain visualization algorithm
focus on static terrain rending, there are still a few
methods used for dynamic terrain.

Sumner et al. [1] proposed an appearance-based
solution for the display of dynamic terrains. They used a
four step execution cycle to create a visually-convincing
depiction of terrain surface interactivity. Their method
needed to manually adjust rendering parameters to
produce a visually-convincing image. The need for
manual adjustments suggests that this technique may not
be suited for an interactive system.

He et al. [2] extended the ROAM (Real-Time
Optimally Adapting Mesh) algorithm to render dynamic
terrain mesh. Their method known as Dynamic Extension
of Resolution(DEXTER), dynamically extended the
geometry hierarchy only where necessary. This method

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 889

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.889-894

was a milestone in the dynamic terrain visualization.
Wang et al. [3] proofed the maximum extension of
transition region based on DEXTER. The ROAM
algorithm was also extended to offer preservation of
vertex properties and relationships with the use of a
Direct Acyclic Graph (DAG).

Cai et al [4]. provided a multi-samples texture
synthesis method for dynamic terrain texturing. However
the main shortcoming was that they did not make use of
GPU.

With the development of the graphic hardware, in
order to make use of the feature of the latest graphic
process unit, in 2006 Anthony et al. [5] presented a new
GPU-based terrain deformation algorithm for dynamic
terrain simulation. However, their approach did not
dynamically extend the resolution in deformed area;
moreover, the algorithm was relatively complicated that
made it suboptimal.

In 2011, Wang et al. [6] presented a real-time physics-
based method to simulate crater in virtual battlefield.
Their crater model took account of the crater direction,
and they used dynamically-displaced height map(DDHM)
and crater offset map to simulate the crater deformation.
However, the crater offset map was generated offline at
the initialization of the whole system, so their method
could not generate arbitrary position and shaped crater on
the fly. Moreover they used the procedural texture
technique to generate crater texture on the CPU, which
was deprecated, meanwhile, the dynamic extension of
resolution in crater was also absent.

In 2011, Justin Crause et al. [7] presented a new terrain
deformation framework which was able to produce
persistent, real-time deformation by utilizing the
capabilities of current generation GPUs. Their method
utilized texture storage, a terrain level-of-detail scheme
and a tile-based terrain representation to achieve high
frame rates. To accommodate a range of hardware, they
developed two deformation schemes: one based on
fragment shader, and another based on geometry shader
tessellation.

III. GPU-BASED TERRAIN DEFORMATION ALGORITHM

In virtual battlefield, explosions of ammunition on soft
terrain would change the topology of terrain surface and
then create craters. To simulate the crater, the
deformation algorithm must be presented. The core of the
algorithm is using 3 framebuffer objects to generate
initial terrain depth texture, crater depth texture, and
depth offset map individually.

First of all, translate the height-map texture that every
pixel representing the original terrain height to the initial
terrain depth texture using FBO render to color texture
method(Fig. 1 (a)).

Secondly, to generate crater depth texture, we need to
draw a solid surface to represent crater shape, such as
sphere for simplicity. Then the crater depth texture is
generated through a special modelview and projection
transformation using FBO render to depth texture(Fig. 1
(b)).

Upon completion of the upper two render steps, we
subtract crater depth texture from initial terrain depth
texture in fragment shader, and the result is rendered to
depth offset map texture using FBO render to color
texture method(Fig.1(c)). The depth offset map represents
the vertical elevation offsets for vertices in the terrain
depth texture that are impacted due to external force.

Upon completion of upper three steps, in vertex shader
program we sample the initial terrain depth texture and
then subtract depth offset map texture sample values to
obtain the final vertices height value before further
subdivision described in next section(Fig. 1 (d))

The pseudo-code of our GPU-based dynamic terrain
visualization algorithm is as follows:

begin
initialize terrain depth texture
while no exit signal do
begin

generate crater depth texture
generate terrain depth offset map
generate deformed terrain

end
end

IV DYNAMIC EXTENSION OF RESOLUTION

In static terrain rendering, the highest detail available
to approximate any part of the surface is pre-determined.
However in dynamic terrain applications, greater interest
may be put on the deformed regions, requiring higher
resolution there than on untouched regions. The dynamic
extension of resolution provides additional levels of detail
at the modified regions without wasting memory space

x

Figure 1. The dynamic terrain deforming algorithm

(a)

y

Terrain Depth Texture

(c)
x

y

Depth Offset Map

(d)
x

y

Deformed Terrain Depth
Texture

(b)

Far Clipping Plane

Near Clipping Plane

y

x

Depth Render Buffer

890 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

representing untouched terrain at unnecessarily high
resolution. Through dynamic extension of resolution we
can integrate a high detail crater into a coarse terrain
mesh.

In order to realize dynamic extension of resolution, a
geometry tessellation technique is required after terrain
deformation implemented in vertex shader. There are two
tessellation technique, one is basic tessellation using the
geometry shader [8], the other is hardware tessellation
using the tessellation shader [9]. Since the terrain
deformation area is local to the whole terrain, the
geometry shader is adequate to small-scale amplification
of vertex data [10].

Deformed terrain mesh vertices generated in the vertex
shader program are then assembled into triangles in
graphic rendering pipeline, which go to the next shader
stage–geometry shader. If the triangle located in
deformed area it need to be tessellated according to some
refinement pattern. Refinement patterns define how a
triangle will be tessellated into sub-triangles. Each pattern
can be defined as a set of barycentric coordinates. The
difference between these patterns is based on the
tessellation states of three vertices that make up a triangle.
Each vertex can be tessellated(represented as 1) or
not(represented as 0), therefore there are 8 different
patterns. The pattern index ρ can be calculated from the
tessellation states ti of the three vertices v0, v1 and v2 in
the following formula.

0 1 22 4t t tρ = + ∗ + ∗ (1)
If t0=1,t1=1,t2 =0,then ρ=3, means the edge formed of

v0 and v1 need to be subdivided.
If t0=1,t1=0,t2 =1,then ρ=5, means the edge formed of

v0 and v2 need to be subdivided.
If t0=0,t1=1,t2 =1,then ρ=6, means the edge formed of

v1 and v2 need to be subdivided.
If t0=1,t1=1,t2 =1,then ρ=7, means all edges need to be

subdivided.
In other cases, ρ=0,1,2,4, means there are no two

vertices that need to be subdivided simultaneously, so the
triangle remains unchangeable.

Fig. 2 presents, on the left side, an initial rectangular
triangle whose vertices are labeled as t0, t1, and t2
respectively. Next, the 8 tessellation patterns are
presented, with the edges of the original triangle that need
refinement depicted in red.

Having different patterns is essential to combine
tessellated and non-tessellated triangles, removing the
occurrence of cracks and holes between triangles in
different resolution.

Suppose we have an original triangle mesh that is
composed of 3 triangle strips, and each triangle strip has
6 triangles. Fig. 3 presents one adaptive tessellation result
to the original mesh using upper defined tessellation
patterns. In fig. 3 the vertex, whose tessellation state ti is
equal to 1, is described as red character T, otherwise the
vertex is described as blue character F, meanwhile the
edge that need to be subdivided is drawn in red.

Furthermore, to draw a plane terrain mesh, which has a
local deformed area in it, the vertex height value can be
used to calculate it’s tessellation state. If the height value
of a vertex is larger or less than the original terrain height
value, then its tessellation state ti will be set to 1,
otherwise will be set to 0. In addition, the subdivision
level that represent how many segment an a edge was
divided into can be set to other value according to system
requirement. We just use 4 for illustrative purposes.

V DYNAMIC TERRAIN TEXTURING

After subdivision, it is time to texture the deformed
area. Aimed at restrict of the traditional dynamic terrain
procedural texture generation [4, 6], a new dynamic
terrain procedural texturing method based on GPU is
proposed. The algorithm sampled multiple sample
textures in the fragment shader, then use functions as
constraint condition and terrain depth offset map as alpha
map to synthesize crater texture [11].

We observe and study the craters on the grass.
Considering a simple cases, the crater texture can be
defined as 3 rings, the center of rings is the bomb point
[12]. Each ring includes a smooth blending with two
sample textures. The innermost ring is generated by
blending charring texture with adustion texture, the
middle ring is a blend of adustion texture and soil texture,
the outermost ring is a blend of soil texture and grass
texture, and the rest area is grass texture, just as fig. 4.

Figure 2. Tessellation pattern. The red color indicates the edges
that need refinement.

Figure 3. Example of adaptive tessellation. If vertex tessellation
state=1, then represent as T. Otherwise represent as F.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 891

© 2014 ACADEMY PUBLISHER

To generate the crater texture, the 4 sample textures
are blended together in the fragment shader according to
the distance between texture coordinate and the center of
rings. So each crater texel is the result of the mix of two
of them according to the following scheme(fig. 5).

If the distance value is in the range [0.0, 0.17], the mix
is done between charring texture and adustion texture.
The red solid line represents that the charring texture
weight value is 1 in the center of rings, and then decline
following the increase of distance from the center. While
in the same distance range, the green dot line explains
that the adustion texture weight increases from 0 to 1.

Similarly, if the distance value is in the range [0.17,
0.34], the mix is done using adustion and soil textures. If
the distance value is in the range [0.34, 0.5], the mix is
done between soil and grass textures.

The formula used to compute the weight of a texture in
the texel is the following:

weight=(dist - mindist) / (maxdist - mindist) (2)
where dist is the distance from texture coordinate to

the center of rings, mindist is the minimum distance
related to the first texture and maxdist is the maximum
distance related to the second texture in the blending
range.

For example, if the distance value is below the limit
value 0.17, the weight of the adustion texture is
computed use following formula:

weight = (dist - 0.0) / (0.17- 0.0) (3)
The weight of the charring texture will be (1.0 -

weight). In fragment shader program it’s computed by the
mix function in the following line of code that returns the
final color of the crater texel:

crater_color = mix(charring_texel, adustion_texel,
weight);

When texturing a crater in large grass terrain, the depth
offset map calculated in section III can be used as the
alpha map to texture the final deformed terrain.

VI IMPLEMENTATION

We have implemented our method in a simulation of
virtual battlefield. Our implementations are running on a
Intel Core i3 2.9GHz computer with 2GB RAM, and
NVIDIA GT430 graphics card with 1G RAM, under
Windows 7 system, Visual studio 2010 and OpenGL 4.3
environment. Our implementation uses GLSL for shader
programming.

The rendering system has a 1024×768 size view port.
The size of the initial terrain height map and the 3 render
targets are all 256×256. The algorithm is implemented as
a research prototype with no code tuning or low-level
code optimization, and view-frustum culling is also
absent. The frame rate of our system is over 150 fps. Here
is a series of screen shots of our implementation.

In the implementation of the rendering system, we can
change the viewpoint position easily through keyboard
and mouse. The system includes two different rendering
mode, fill or wire frame mode. Moreover, we can change
the subdivision level through keyboard as needed at run
time.

Fig. 6 shows that after generate the vertex of deformed
terrain in vertex shader , 4 different subdivision levels
were used in geometry shader to generate final deformed
terrain mesh. The choice of subdivision level offers the
opportunity to alter the granularity of the deformation,
which can be used to throttle the simulation and visuals
as deemed necessary by the application.

Fig. 7 shows the sphere that is used to generate the
crater depth texture in the scene. From the figure we can
observe that the crater surface envelopes the sphere.

Figure 4. The constitution of crater texture

blend charring
texture with

adustion texture

(0,0)

blend adustion texture
with soil texture

blend soil texture
with grass texture

grass texture

0.17 0.34 0.5

Figure 5. The constraint condition of texture blending

(b) (a)

(d) (c)

Figure 6. Geometry tessellation of deformed terrain mesh.
From left to right and top to bottom, 4 different subdivision

level is 1,2,3 and 4 respectively.

892 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

Fig. 8 shows the craters on the grass terrain. The crater
texture getting from our method enhances the sense of
reality.

VII CONCLUSION AND FUTURE WORK

In this paper we present a multiresolution rendering
method of crater deformation on soft terrain. Firstly, we
present a novel crater deformation algorithm. Our method
uses 3 framebuffer objects to generate initial terrain depth
texture and depth offset texture, then calculate the
deformed vertex height value in the vertex shader
program. Then, the deformed triangles are subdivided
into different patterns in geometry shader according to
the vertex tessellation state, which avoid T- junctions.
Finally, a method of procedural texture based on
constraint conditions is implemented in fragment shader
to generate crater texture. Unlike previous work, the
terrain deformation, multi-resolution rendering and
texturing are all manipulated on the GPU. The
experiments show that our method is feasible and high
performance.

As a future possibility, we are working on using
NURBS surface to generate more realistic crater shape ,
using view dependent method to calculate triangle
subdivision level, and extending our method to realize
large-scale dynamic terrain visualization.

ACKNOWLEDGMENT

This research is supported by the Chongqing
Postdoctoral Science Foundation(No. xm201325) and the
National Natural Science Foundation of China(No.
61073058 and No. 61272194).

REFERENCES
[1] R. W. Sumner, J. F. O'Brien, J. K. Hodgins, “Animating

sand, mud, and snow,” Computer Graphics Forum.
vol.18(1), pp. 3-15, 1999

[2] Y. He, J.Cremer, Y. Papelis, “Real-time extendible-
resolution display of on-line dynamic terrain,” Proceedings
of the 2002 Conference on Graphics Interface, Calgary,
Alberta, Canada, 2002, pp. 151-160

[3] W. Linxu, L. Sikun, P. Xiaohui, “Real Time Visualization
of Dynamic Terrain,” Chinese Journal of Computers,
vol.26(11) , pp. 1524-1531, 2003

[4] X. Cai, J. Li, H. Sun, J. Li, “Multi-samples texture
synthesis for dynamic terrain based on constraint
conditions,” in Transactions on Edutainment VI, Z. Pan,
2012, pp. 188-196

[5] A. S. Aquilio, J. C. Brooks, Y. Zhu, a. G. S. Owen, “Real-
Time GPU-Based Simulation of Dynamic Terrain,” ISVC,
Springer Berlin/ Heidelberg, 2006, pp. 891-900

[6] D. WANG, C. WANG, “Real-time GPU-based Simulation
of Dynamic Terrain in Virtual Battlefield,” Journal of
Computational Information Systems, vol. 7, pp. 1924-1933,
2011

[7] C. Justin, F. Andrew, M. Patrick, “A system for real-time
deformable terrain,” Proceedings of the South African
Institute of Computer Scientists and Information
Technologists Conference on Knowledge, Innovation and
Leadership in a Diverse, Multidisciplinary Environment,
Cape Town, South Africa, 2011, pp. 77-86

[8] O. Ripolles, F. Ramos, AnnaPuig-Centelles, MiguelChover,
“Real-time tessellation of terrain on graphics hardware,”
Computers &Geosciences, vol. 41, pp. 147-155,2012

[9] E. Yusov, M. Shevtsov, “High-Performance Terrain
Rendering Using Hardware Tessellation,” Journal of
WSCG, vol. 19, pp. 85-92, 2011

[10] X. Lai, Z. Han, "High Fidelity DEM Generation Based on
LiDAR Data," Journal of Computers, vol. 7, pp. 2071-
2077,2012

[11] Z. Chen, J. Ji, R. Li, "Asynchronous Parallel Computing
Model of Global Motion Estimation with CUDA", Journal
of Computers, vol. 7, pp. 341-348, 2012

[12] D. Su, et al, "Design and Implementation of Drainage
Network Extraction Algorithm Based on Binary Linear
Regression", Journal of Computers, vol. 8, pp. 2277-2283,
2013

Dong Wang Born in 1981. Received his
M.S. degree and Ph D. degree from
Academy of Armored Force
Engineering, Beijing, China in 2010.
Post-doctoral fellow in computing
science from Chongqing University,
China. His main research interests
include computer graphics, virtual
reality, and computer vision.

Figure 8. Crater on soft grass terrain

Figure 7. The sphere that partially sink into terrain is
used to generate the crater.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 893

© 2014 ACADEMY PUBLISHER

Qingsheng Zhu Born in 1956. He is a Ph D. Professor, Ph D.
supervisor, College of Computer Science, Chongqing
University, Chongqing, China. He was a Visiting Scholar
(1993-1994) at Dept. of Computer, Birkbeck College,
University of London, UK. He was a Visiting Professor (2001-
2002) at Dept. of Computer Science, University of Illinois at
Chicago, USA. His main research interests include business
intelligence and image processing.

Yi Xia Born in 1984. Received her M.S. degree from
Chongqing University, China in 2012. Her main research
interests include computer graphics and computer vision.

894 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

