
Modeling and Description of
Organization-Oriented Architecture

Munan Li
School of Business Administration, South China University of Technology, Guangzhou, China

Guangdong Province Key Laboratory of Innovation & Decision Management System, Guangzhou, China
Email: limn@scut.edu.cn

Junfeng Zhou and Xinyi Liang

School of Business Administration, South China University of Technology, Guangzhou, China
Email: {359226375, 605062514}@qq.com

Abstract—Traditional software architecture models, such as:
Object-oriented, Service-oriented, Agent-oriented, have
been confronting the challenges in more and more complex
distributed computing situations, e.g. pervasive computing,
Internet of things, smart-city, etc. Organization-oriented
architecture model is proposed to attempt to improve the
abstraction and design capability of software architecture in
the pervasive computing environment, and then enhance the
efficiency of architecture model reuse. The description
language of organization-oriented architecture is based on
the WRIGHT * and CSP.

Index terms—Software Architecture, Pervasive Computing,
WRIGHT, ADL

I. INTRODUCTION

With the development of cloud computing and the
pervasive computing technology, as well as some
pervasive computing applications, the concept of
traditional information systems has undergone some
changes. Especially with the emergency of Internet of
things, there is higher demand for the environment of
pervasive computer because the space and information
are sharply expanded by users [1]. Traditional
information systems are used by human, therefore, an
important design idea of information system architecture
is needed to cover a basic utility paradigm: 1) how to
improve the friendly “human-machine” dialogue to
enhance the efficient use of information systems; 2) how
to improve the reuse of code and architecture of software,
so as to improve the production efficiency of information
system.

For the technology promotion of Internet, smart sensor,
multi-agent system etc, in some pervasive computing
applications, human has no longer existed as pure user
role, but become a part of the information system [2]. For
example: in the medical care system located in the suburb
of metropolis, the patients in need of medical care, and
the elderly who cannot take care of themselves, have
become parts of the information system. Information of
these people, e.g. body temperature, blood pressure, heart
signs, respiration etc, is an important part of the

information system. In such human-machine symbiosis
system, there are a variety of heterogeneous system and
organization structure; system architecture modeling and
the formal description of complex computing applications
for this type of system, have a lack of enough relevant
research [3][4]. But as can be expected, with the
development of virtual reality, artificial intelligence and
information technology, the applications of multi-agent
system will become more and more popular because of its
advanced sociality, adaptability, autonomy and mentality
[5].

II. COMPARISONS AMONG THE MAIN ARCHITECTURE

MODEL

The architecture model of software or information
system is about the abstraction, modeling and description
of the goal, vision and design specification of the system,
which are used to guide the construction of the
information system. When talking about service-oriented
architecture, for instance, a manufacturing platform
integrates different modules like the platform of
management and maintenance, the self-designed system
for industry and the e-business service system to provide
better services which meet higher demand, it is difficult
to integrate these systems because there are a great
variety of term names, definitions and data format among
them. Even with the development of network, it is
possible for these applications to run on different
computers and communicate between each other; there
still remain problems such as network information
congestions and inability of applications being online at
the same time [6]. In the pervasive computing
environment, such as: Smart-City, Internet of things,
more complex cooperative solving system and so on, the
granularity of traditional modeling element seems too
small, so that it is difficult to provide the overall
abstraction and modeling on architecture. As more macro
and strategic aspects of the information system are
concerned, for example: a remote health care system
consists of multiple independent database application

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 867

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.867-872

system (E-government, E-medical system, hospital expert
system, etc.), monitoring and sensor system (patient vital
life-signs monitoring, indoor environment monitoring
etc.), coordinated control system, induction calculation
unit, communication control unit and so on, and involves
many different types of the terminals, which have the
different operating system, data format, control unit, even
the protocol of communication. For the emergence of the
problems of interaction, cooperation, communication and
coordination, the traditional modeling elements: object,
component, service, modeling element are incapable to
cover the design problems of whole system, such as:
interaction, collaboration, overall structure of composite
event and service composite. Although the “Agent” can
accommodate part of the interaction, coordination and
response characteristics of the environment, but the
existing Agent-oriented software engineering lacks of
openness, especially the compatibility with the traditional
computing unit and information application, the
interoperability among multiple Agent platforms, and
communication standardization of multi-agent system, etc
[7].

III. ORGANIZATION-ORIENTED PHILOSOPHY

Attempt to be compatible with the current mainstream
software architectures; "organization" is taken as one of
basic modeling elements in a macro information system.
Firstly, the element of organization is defined as the
aggregation or assembly of Agents with different tasks;
Secondly, the traditional “component” and “service” are
the instantiations of organization in the framework of
object-oriented programming. Although the
Agent-oriented design pattern can meet part of the
requirements on initiative, autonomy, collaboration, but
there still exist such problems as: the lack of the
standards among different agent-computing platform, the
lack of interaction and fusion mechanism with the large
number of non-Agent systems. Therefore, he
Agent-oriented design pattern is unable to wholly satisfy
the design requirements of pervasive computing,
distributed computing, smart-city, etc [7, 8].

Recently, organization-oriented philosophy began to
get more attentions. The discussion on the openness of
organization computing between Olivier and Fred [9], the
organization computational models provided by Huib and
Virginia based on Organization Theory [10] and the
organization theory that Esther and Chimay attempted to
make use of in construction of supply chain [11] are all
typical examples.

Organization-oriented architecture is proposed to
improve the capabilities of abstraction and modeling on
more complex and huger information system, such as:
smart city, Internet of things, smart sensor network, etc.
Currently, the mainstream architecture models seem
difficult to cover the overall design of such giant
information system, so that the cooperation,
synchronization and coordination among a large number
of independent computing units and applications cannot
be integrated efficiently, and the risk of giant information

system will increase. In the organization-oriented
architecture, “organization” is defined as the facet,
meta-element of modeling architecture, which is
compatible with non-agent systems including
object-oriented systems, service-oriented applications.

The current mainstream architectural patterns are
generally described as triples: <components, connectors,
architecture configuration>, and now most of the
architecture description languages are expanded around
the components [12].

Although collaboration and synchronization are in the
scope of object-oriented thinking, from the perspective of
designing complex distributed collaboration systems, the
particle sizes of classes and components are still small.
Some researches might think the components (services)
equal to the agents, but the biggest difference lies not in
whether it can move (such as: object-oriented concept of
the moving objects), but in targeting and specific
modeling. Components are the results of code reuse,
which are used to improve the scalability and
maintainability of software systems. Essentially agents
can be considered as the package and reuse of
responsibilities and objectives, direct goals and
mission-oriented. Although a single agent only has
limited computing power, but complex functions and
objectives can be completed through consultation,
coordination and collaboration.

In general, a typical component is a business logic
package, focusing on the generic function package, such
as EJB and COM+, web services and SOAP,
cross-platform protocols are derived for communication
between these heterogeneous components, as the results
of packaging the business functional components.
Obviously, service can be combined into components
with larger particle size. But compared with agent,
service lacks autonomy and social characteristics, such as
initiative, goal-oriented, and collaborative, and it hardly
can fully characterize the high-level modeling and design
requirements of complex distributed system.

The typical agent is a package of tasks and objectives,
self-governing body with some smart features of the
(Belief, Desire, Intention, and Motivation) [13, 14], for
example, spiders for Internet searching, simple tasks
performed by mars exploration robots. In general, agent
has "strong" definition and "weak" definition [13]. Here
is a narrow definition: agent is a computer software and
hardware entity with roles and responsibilities,
collaborative willingness and ability, and limited
computing power.

Definition 1: Agent is a triple [14, 15]:
Agent :=< Res, Ω, Φ >
Res :={< Role><Responsibility>}*
Ω :={< Computation><Reasoning><Cooperation>}*
Ф :={< Belief><Desire><Intention><Motivation>}*
Res is the set roles and responsibilities, Ω is the set of

ability, including collaborating, calculating and reasoning
ability, and Ф is a collection of psychological states. And
here the traditional BDI structure is chosen as the
psychological state.

868 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

In reference [16], collaboration is defined as allocating
tasks, information and resources among agents working
together, which are aimed at enhancing the viability,
improve the performance and conflict resolution of the
system. We put Organization as the spontaneous
aggregation of agents, and the collection of behavior
taken by the collaborating entities is for a common goal.

Definition 2: Organization is combined by agents and
other functions or service units, is a triple.

Organization :=< G, A, R, E>
G :={< Goal>}*
A :={< Agent>}*
R :={< Relation><Behavior>}*
E :={< Constraint><Evaluation>}*
G is the set of organization missions and goals, A is the

collection of agents, R is the set of behaviors and
relations, and E is the environmental constraints and
interactions, including the function and service unit of
non-agent part. Here the organization is considered as
collective aggregation of multiple agents, by behavior
planning, reasoning based on the BDI, completing the
assigned task (target), and interacting with the
constrained environment. Wooldridge and Jennings [13]
formally described the collaborative process of the main
body by using quantitative multi-modal logic. They
proposed that agent collaboration process includes four
phases: finding potential synergy, forming a team,
building plans and taking team action. From Definition 2,
O can be considered as a prerequisite to find potential
synergy, and the common tasks and goals lead to the
possible collaboration. After reasoning the possibility of
collaboration, an organization based on agent is generated,
this is A, the set of agents. After the organization team,
behavior queue B will be produced through local and
global planning. And, the interaction with the constraint
environment will come after taking action. Besides the
participating agents, organization collaborative tasks also
require third-party collaborative supporting mechanisms,
for example, environment for agent migration, arbitration
for collaborating conflict resolution, discharge of process
resource contention, maintenance of sharing information
and knowledge sources, so organization-oriented
applications need to consider the collaborative support
mechanisms. A formalized definition of
cooperation/collaboration support is given in this paper.

Definition 3: Cooperation support is the service
provider of the mechanisms and services, communication,
arbitration, coordination, etc, required by organization
collaboration. Collaborative support can simply be
attributed to a triple [15]:

Cooperation_support := <Services, Customers,
Constraints>

Services := {<Port><Content>}*
Customers := {<Agent>}*
Constraints := {<Rule><Specification>}*
In IEEE1471, passed in 2000, architecture is defined as

the basic structure of a system, including the various
components, the mutual relations, and the relationship
with the environment, design guidelines and evolution

principles. Here we propose an architecture model for
collaboration-oriented system [16].

Definition 4: The architecture model for
organization-oriented system is defined as:

SA_OgM := {Organization, Supporters,
Configurations}

The organization is the design element, as defined in
Definition 2. And supporter is the collaboration support
unit, providing mechanisms and services needed for
collaboration, such as communication, interaction
protocol analysis and coordination. Configuration means
the architecture configuration, including environmental
constraints and complex rules, and can support more
advanced abstraction and reuse, like architecture style.
Essentially, SA_OgM is based on agent theory and
methods, and it is the generalized package of agents.

This package is conducive to design application
systems where collaboration is the main form, for
example, pervasive computing applications, virtual
manufacturing, operational command simulation, and
other distributed collaborative applications. From the
practical application viewpoint, it can achieve the smooth
transition from requirements process to architecture
design process by taking organization as the main
description and design elements of this type of system.
After clarifying requirements specification, the task and
role of the system and the participating body can be
organized together organically, and the domain analysis
and system analysis can be separated maximally, thus the
domain experts can participate to complete software
system design genuinely.

IV. ORGANIZATION-ORIENTED ARCHITECTURE

DESCRIPTION AND DESCRIPTION LANGUAGE

Currently, the architecture description is divided into
non-formalization and formalization. Standard IEEE
1471 defined the architecture and the architecture
description as two different concepts [17]. As to
non-formalized description, block diagram as represented,
there is still a relatively large gap in the amount of
information provided, compared with formalized
description, like ADL. Today, architecture design is
mainly based on ADL, and the codes and presentation
systems are generated from the formalized results. In the
research of architecture, there have been some excessive
expectations and requirements trying to establish a
unified framework which is versatile, easy to understand,
adaptable to environmental changes, and even able to
generate systems that can run directly.

Essentially, architecture is the embodiment of system
design experience and knowledge, both the architectural
pattern and style. In the practical project environment, if
the experience and knowledge of experts can be well
transferred and reused, the efficiency of system design
and development can be greatly improved. And the
efficiency of software system development can be
enhanced significantly by providing consistent and
comprehensive supporting tools and platforms for
architecture design. In essence, architecture wants to

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 869

© 2014 ACADEMY PUBLISHER

achieve reuse in the highest level of system design. So,
what’s the fact of reuse? This question has been
ambiguous; actually, what is to be reused is the design
experience and knowledge. Therefore, the architecture is
thought to be the carrier of design experience and
knowledge. And through extraction and reuse of the
design experience, the highest level of reuse can be
achieved in the software engineering field, which
improves the efficiency and success rate of the complex
systems construction. Higher level of abstraction
modeling is needed to extract design experience and
knowledge, for example, using ontology to express
knowledge is an intuitive and composite knowledge
modeling method. In fact, as one of the modeling
elements, collaboration implies the experience and
knowledge for a successful collaboration unit, so the
experience and knowledge contained in the architecture
designing can be retained and delivered more completely.

A. Description of Organization-Oriented Architecture

The formalized description should be considered when
proposing and researching the architecture. In the
standard IEEE1471, mentioned above, there are no
inevitable relations between architecture and components,
but, the mature architecture description languages are
now based on components commonly. Architecture
description languages are generally sorted to
Implementation Independent Language and
Implementation Constraining Language.

The representative languages for IIL include such
traditional framework as: WRGHT [18, 19], Rapide,
Unicon and MetaH for ICL. Rigorous presentation logic
and operation rule for syntax and semantic are necessary
for architecture description language. A mature and
completed architecture description language should
support the description of the architecture configuration,
the description of the architecture style, property analysis
and practical application.

Here, WRIGHT is chosen as the architecture
description language of collaboration-oriented system,
which is one of the implementation independent
languages. The traditional WRIGHT is good at
formalized description and design for distributed systems,
but lack timestamp describing mechanism. Under the
pervasive computing environment, most of the events are
timestamp-based timing events, so appropriate extension
is necessary based on WRIGHT. The formalized
description, by using time extended CSP in the basic
semantic model, is to correspondingly expand the
semantics operating part of WRIGHT by TCSP [20]. In
order to distinguish it from the original WRIGHT, this
new language is called as WRIGHT*, which is based on
CSP semantic operation, with some grammar expansion.

(1)SpecList := Spec | SpecList Spec ;
(2)Spec := Configuration | Style ;
(3)Style := “Style”Name
 TypeList
 “Constraints”
 ConstraintList
 “End Style”;

(4)TypeList := Type | TypeList Type | null ;
(5)Type := Component | Connector | InterfaceType |

Organization | Supporter | TaskType | AgentType ;
(6)Component := “Component ”
SimpleName [‘(‘ FormalParams ’) ’] PortList
 “Computation = ”ProcessDescription ;
(7)Connector :=“Connector”
SimpleName [‘(‘ FormalParams’) ’]
 RoleList
 “Glue = ”ProcessDescription ;
(8) Organization := “Organization”
SimpleName [‘(‘ FormalParams ’) ’]
 TaskList
 AgentList
 “Behavior = ”ProcessDescription
(9)Supporter := “Supporter”
SimpleName [‘(‘ FormalParams ’) ’]
 ServiceList
 CustomerList
 “Support=”ProcessDescritpion
(10)ConstraintList : = Constraint Expression |

ConstraintList ; Constraint Expression | null ;
(11)Configuration :=“Configuration”Name
 “Style”Name
 TypeList
 “Instances”
 InstanceList
 “Attachments”
 AttachmentList
 “End Configuration”;
(12)InstanceList := Instance | InstanceList Instance |

null ;
From the description of grammar above, there is just a

little number of expansions in order to keep the original
grammar structure of WRIGHT: adding Organization and
Supporter in the Architecture modeling elements, and the
syntax description of these two elements refers to the
Definition 2 and Definition 3. In order to better describe
the unified pattern of behavior in the style description, the
meaning of InterfaceType is expanded to support
properties like Task and Service. Besides, Set operators
related to Organization and Supporter need to be added,
such as Tasks(c), Agents(c), Services(s), and Customers
(s).

In the description of “Organization”, Line 5, Agent is
put as broad, intelligent, autonomous, pro-active
components, although theoretically, here we can use
Component instead. In order to keep the semantics
difference and the integrity of the original formal
language, here the Agent is a default meta-element, just
as the concept of object of object-oriented is implied in
component / service.

In the process algebra (such as: CSP, PEPA, and CCS,
etc.), process is always described as an entity and as an
agent in some cases, therefore, there are collaborative
operators in process algebra [18, 19]. So the original
synchronization operations have been expanded to
support collaboration in ordinary sense. The collaboration
here can be understood as a type of Super-event or
Composite event. In order to describe the collaborations

870 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

between processes, collaborative operator Θ is introduced
into CSP representing Organization collaboration services
between Agents (Processes).

Definition 5: Organization collaboration is an event
composition, which means multiple agents taking
cooperative actions for the common goal of the system.

Let A is the collection of Agent or processes;
Event-coop= ∀Ai, Aj∈A| i, j =1…n, i≠j, (Ai Θ Aj) is a
composite process event; and the collaborative operator
Θ has the following properties:

Atomicity. Same as other common event, a
collaborative event is an atomic event, which is an
integration that cannot be divided into two or several
fragments.

Terminable. If i=j, then (Ai Θ Aj) = (Ai || Aj) √, where
Ai, Aj∈A

Symmetry. ∀Ai, Aj∈A| i, j =1…n, i≠j, (Ai Θ Aj) = (Aj
Θ Ai)

Inner Commutative –law. ∀Ai, Aj, Al∈A| i, j, l=1…n,
i≠j≠l, (Ai Θ Aj Θ Al) = (Ai Θ Al Θ Aj).

Goal-consistency. ∀Ai, Aj, Ak∈A | i, j, k =1…n, i≠j≠k.
If event Ai Θ Aj has the same goal as Aj Θ Ak, then (Ai Θ
Aj) ≅ (Aj Θ Ak), which means Ai Θ Aj is equal to Aj Θ Ak.

Theorem1. ∀Ai, Aj, Ak∈A|i, j, k =1…n, i≠j≠k. ((Aj Θ
Aj) || Ak) = ((Aj Θ Ai) || Ak)

Proof: Clearly, it can be proved by the properties:
Atomicity and Symmetry.

Theorem2. ∀Ai, Aj, Ak, Al∈A|i, j, k, l=1…n, i≠j≠k≠l,
If(Ai Θ Aj) is equal to (Aj Θ Ak), then (Ai Θ Aj) || Al is
equal to (Aj Θ Ak)|| Al.

Proof: It can be derived from Definition 1 and
Definition 5. This theorem means that there are two
separated collaboration events with a consistent goal, and
they have same effect on the next event of the system.
But this theorem is irreversible, and you cannot derive
events equivalent from the same effect. Goal congruence
lays the foundation for higher-level events composition.

Theorem3. ∀Ai, Aj, Al∈A|i, j, l=1…n, i≠j≠l, (Ai Θ Aj)
Θ Al ≠ Ai Θ (Aj Θ Al).

Proof: Apparently, this can be proved from the
atomicity of the collaboration operator Θ. And theorem3
means that process composited or aggregated from
several atomic events is specific goal-driven, which is not
conflicted with Property 4. Here is a simple example: in a
remote medical diagnostic system, which means the
collaboration between temperature detection event Ai and
blood test event Aj is necessary for a detailed laboratory
and testing report, in which maybe Ai is just a remote data
transmission. Generally speaking, it is more complete and
efficient to transport the summary of test results than data
of each detected event combined with Ai. In fact, when
the doctor in the remote terminal only gets the testing
data about some special parts of the body, maybe he
cannot do anything.

B. Organization-Oriented Architecture Style

Sometimes, it is possible for the system designers to
care more about the style of software architecture. One
style of architecture defines that the configurations can

share the attribute set of the information systems [21]. As
the granularity of model element in organization-oriented
modeling is bigger than the traditional, it can reduce the
complexity of architecture description. A simple
description of the “organization–supporter” style is:

Style Organization- Supporter
 Organization Org (nt: 1…; na: 1…)
 Task task1…nt
 Agent agent1…na
 Supporter Supp (ns: 1…; nc: 1…)
 Service Serv1…ns
 Customer cus1…nc

Interface Type taskType = (read? x→ xrecognize? →

taskType ∏ read? x→ xrefuse! →taskType) (close→§);

Interface Type agentType = (get?x → xresponse! →

agentType)∏get?x → xrefuse! →agentType ∏ xrequest?
→agentType) (idle→§);

Interface Type serviceType= (request?x→(xserviceUp?

→servieType ∏ xrefuse! →serviceType)) close→§;

Interface Type customerType= (register?x→(xaccept?

→customerType ∏ xreject ? →customerType)) close→§.
Constraints
∀c: Organization • Type(c) = Org; ∀i:1...nt • ti:Task| ti

∈ Tasks(c)•Type(ti) = taskType;∀j:1...na • aj:Agent| aj
∈Agents(c) = agentType • Type(aj) = agentType ∧
∀s:Supporter • Type(s) = Supp;∀k:1...ns • sek:Service|
sek ∈Services(s) • Type(sek) = serviceType;∀m: ...nc •
cum: Customer| cum ∈Customers(s) • Type(cum) =
customerType.

WRIGHT language is taken as the ADL blueprint, for
the consideration to the high-level abstraction ability of
WRIGHT, and the scalability of CSP is so basic that it
can simply describe the architecture of
organization-oriented system. As the CSP does not
support the factor of time, some scholars put forward
time based on an extension of CSP [19, 20], but that the
interaction has the time characteristic in the formulation
of the problem still exists.

V. CONCLUSION

With the development of computing system and the
related theory, especially, such as the cloud computing,
pervasive computing, smart city, and service-supermarket
etc, we advanced a novel modeling of computing
architecture whose meta-element is the “Organization”.
Through justified expanding of the traditional WRIGTH
language, this novel model of computing architecture can
be described rationally. From the development of the
software and computing architecture, the popular models
of architecture are difficult to solve those problems about
more and more complex applications of pervasive
computing. In essence, the traditional object-oriented
methodology is not intuitionistic or efficient enough.
Therefore, the novel element of modeling on the software

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 871

© 2014 ACADEMY PUBLISHER

architecture may be a valuable attempt on the modeling
of pervasive computing.

As for the traditional architecture models based on the
component-oriented or object-oriented method, it is
designed to encapsulate the function and the reuse of
software code. But, in the pervasive computing systems
(Cloud-Computing, Smart City, Internet of Things), the
organization, cooperation, interaction, rationality of agent
and adaption of software agents are all the important
goals of architecture designing, and the Organization (just
like the component to the object-oriented method) is the
aggregation of agents, which is the solution to the real
requirement of application. Therefore, the Organization is
the reuse of solution, which is a higher level reuse with
the task solving and the computing entity.

About the formal description of the novel
architecture-COA, we choose the WRIGHT as the
cornerstone, which is irrelevant to the implementation,
and supports the higher level modeling of requirement.
Through the justified expanding of the traditional
WRIGHT, we provided a framework of architecture
description. But the behavior modeling of WRIGHT is
based on the CSP, which is limited in the time sequence
or time sensible events. Therefore, the novel modeling
element-Organization and WRIGHT* should be further
discussed. In our future works, we will focus on such
aspects as: formal description of Organization-oriented
architecture, the design philosophy of
Organization-oriented system, the style of architecture,
the design pattern of Organization-oriented system etc.

ACKNOWLEDGEMENT

This work was supported in part by a grant from Open
Foundation of Guangdong Province Key Lab
(No.2011A060901001), Fundamental Research Funds for
the National Universities of China (No. 2013XMS03),
Major Program of the National Social Science Fund (No.
11&ZD154).

REFERENCE

[1] Benjun Guo, Jianhong Gan, Jingwen Su, Yuewen Hu, Jun
Lu. A Pervasive Computing Model of Internet of Things
based on Computing Area Network. Journal of Computers,
2012, vol. 7, no. 7, pp. 1647-1654.

[2] ZHOU Chunjie, MENG Xiaofeng. The Researches and
Challenges of Complex Event Detection in Pervasive
Computing. Journal of frontiers of computer science and
technology, 2010, vol. 4, no. 12, pp. 1057-1071.

[3] JIA Chaoguang,WU Qing,WAN Jian. Research on
Dynamic Evolution Software Model for Pervasive
Computing. Journal of Hangzhou Dianzi University, 2010,
vol. 30, no. 1, pp. 38-41.

[4] TANG Lei, ZHOU Xingshe, YU Zhiwen, et al. Research
and Implementation of Adaptive Entity under Ubiquitous

Computing Environment. Journal of Xi’an JiaoTong
University, 2011, vol. 45, no. 2, pp. 102-106.

[5] Weidong Zhao, Haifeng Wu, Weihui Dai, Xuan Li, Fei Yu,
Chen Xu. Multi-agent Middleware for the Integration of
Mobile Supply Chain. Journal of Computers, 2011, vol. 6,
no. 7, pp. 1469-1476.

[6] Pengshou Xie, Zhiyuan Rui. Study on the Integration
Framework and Reliable Information Transmission of
Manufacturing Integrated Services Platform. Journal of
Computers, 2013, vol. 8, no. 1, pp. 146-154.

[7] Shoham Y. Agent-oriented programming. Artificial
Intelligence, 1993, 60(3):51-92.

[8] MEI Hong, SHEN Jun-Rong. Progress of Research on
Software Architecture. Journal of Software, 2006, vol. 17,
no. 6, pp. 1257-1275.

[9] Boissier Olivie, Hübner Jomi Fred, Sichman Jaime Simo.
Organization oriented programming: From closed to open
organizations. Lecture Notes in Computer Science, 2007,
vol. 4457, pp.86-105.

[10] Aldewereld Huib, Dignum Virginia. OperettA:
Organization-oriented development environment. Lecture
Notes in Computer Science, 2011, vol. 6822, pp. 1-18.

[11] Bonyo Esther A, Anumba Chimay J. Organization-oriented
multi-agent systems for construction supply chains.
Electronic Journal of Information Technology in
Construction, 2011, vol.16, pp. 727-744.

[12] LING Xiaodong. A Review of SOA. Computer
applications and software, 2007, vol. 24, no. 10, pp.
122-124.

[13] Wooldridge M, Jennings N. Intelligent Agents: Theory and
Practice. The knowledge engineering review, 1995, vol.
10, no. 2, pp. 115-152.

[14] LI Munan PENG Hong, LI XiangYu, et al, A Novel
Modeling Architecture of Agent. ACTA AUTOMATICA
SINICA, 2007, vol. 33, no. 1, pp. 15-20.

[15] Munan LI, Hong PENG, Jin-song HU. Research on
Modeling and Description of Software Architecture of
Cooperation-Oriented System. Lecture Notes in Artificial
Intelligence (LNAI), 2006, vol. 4088–0546, no. 8, pp:
546-551.

[16] Munan LI, Junxia XIONG. A Novel Method of Model
Composite in Decision Support System. Advances in
information sciences and service sciences, 2012, vol. 4, no.
15, pp. 317-324.

[17] IEEE ARG. IEEE’s Recommended Practice for
Architectural Description, 2000, IEEE P1471-2000.

[18] CUI Xiaole, ZHANG Xing, MIN Jun, et al. An Extension
of Wright for Real-Time Software Applications.
Microelectronics and computer, 2006, vol. 23, no. 3, pp.
11-15.

[19] Medvidovic N, Taylor RN. A Classification and
Comparison Framework for Software Architecture
Description Language. IEEE Transactions on Software
Engineering, 2000, vol. 26, no. 1, pp. 70-93.

[20] Song Jinjing, Shen Jun. Description and Simulation of
Network Protocol based on CSP. Journal of Southeast
University (Natural science edition), 2008, vol.38, no. Sup
(I), pp.29-33

[21] Ma Jun-tao, Fu Shao-yong, Liu,Ji-ren, A-ADL: an ADL
for multi-agent system. Journal of Software, 2000, vol. 11,
no.10, pp. 1382-1389.

872 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

