
A Formal Transformation Approach for
Embedded Software Modeling

Haiyang Xu

Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing
Department of Science and Information Science, Qingdao Agricultural University, Qingdao, China

Email: xhy@nuaa.edu.cn

Yi Zhuang
Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Email: zhuangyi@nuaa.edu.cn

Abstract—Formal specification can enhance the reliability of
the embedded system and verify the system properties at the
design stage. This paper presents a formal transformation
approach for MARTE(Modeling and Analysis of Real Time
and Embedded systems) model based on MDA(Model
Driven Architecture), and defines the transformation rules
of static and dynamic semantic between MARTE model and
Object-Z model in term of the formal meta-model. The
approach can produce a precise specification and verify the
correctness of the system properties before implementing.
The paper reports a case study to illustrate formal
transformation of MARTE model. It demonstrates that the
approach improves the accuracy of system model by
transforming it into formal specification and enhances the
reliability of software system.

Index Terms—Reliability, Meta-Model, Formal modeling,
Formal transformation rules

I. INTRODUCTION

With the development of electronic technology,
embedded system has been widely used in control,
communication, aerospace and other fields. As the
increasing heterogeneity and complexity of system
components, the development of embedded system was
confronted with major difficulties[1]. In order to enhance
the system reliability, we need to develop an effective
design method to provide language and tool support for
embedded system. So we could analyze and predict the
reliability and safety performance of system in the early
stage of system design.

UML is a standard object-oriented modeling language,
it uses graphical notion to model the static and dynamic
features of the system[2]. The Object Management Group
(OMG) proposes to build the domain-specific modeling
language by refining existing modeling language.
MARTE is a new UML profile [3], it supports real-time
and embedded systems specification. In the functional
design, it adds model packages to describe the hardware
and software resources, and defines a specific set of
attributes for designer, which could be used to analyze
the time and energy performance in the early design stage.
For the non-functional requirement, it adds the definition

of clock. But MARTE is short of precise semantic, and
cannot describe and analyze in the strict formal way. So it
cannot be used to automatic reasoning the properties of
the system.

Formal specification lay a solid foundation for the
syntax and semantic of UML/MARTE modeling
language, and provide a precise reasoning mechanism[4].
It can transform design model of system into reliability
analytical model by formal method. So it can find out the
design fault in the design stage, and facilitate the system
reliability.

The paper advances an Object-Z meta-model by
analyzing MARTE and Object-Z, which is the foundation
of model transformation. And we define a transformation
framework from MARTE to Object-Z based on MDA. In
the framework, we propose the transformation rules of
the static and dynamic semantic between MARTE and
Object-Z. In particular, according to the Object-Z
specification and its reasoning technology, in the design
stage, we could formally verify the system models which
are built using MARTE. This method provides a general
transformation framework, which can transform MARTE
model into Object-Z model. For the characteristic of
embedded system, the paper focuses mainly on reliability.
The paper reports a case study involving the formal
specification of Josefil, and illustrates the transformation
from MARTE model to Object-Z model.

The rest of this paper is organized as follows. Section
II outlines related work and associated problems. Section
III describes the transformation framework based on
MDA. Section IV gives the detailed semantic
transformation rules of our approach at meta-model level.
Section V reports a case study of the formal specification.
Finally, Section VI concludes the paper.

II. RELATED WORK

In the model-driven framework, there are two
questions needed to be solved. The first is modeling the
software model correctly; the second is the valid
transformation between heterogeneous models. For the
first question, it uses UML and its extensions as modeling

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 807

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.807-813

language. For the transformation, it is still being
researched.

Kim Soon-Kyeong et al. [6,7] present a formal
description for UML class constructs, and a formal meta-
modeling approach to transform UML to Object-Z. They
utilize MDA for automated transformations between
models defined in different languages at different
abstraction levels [8].

Ahmed M.Mostafa et al. [9] use Z specification to
increase the safety and reliability of the system, and
present a set of formalism models for Use Case diagram,
Class diagram, and State Machine diagram, which
transforms a UML model to Z specifications. In the
integrated framework, it can achieve a model that is
unambiguous, verifiable and traceable.

Michael Möller et al. [10] describe a formal method
CSP-OZ, which combines the process algebra CSP with
the specification language Object-Z. It can verify
properties of models in the early design phases and check
adherence of implementations to models.

Huascar Espinoza et al. [11] use UML as the base
language, and combine the SysML and MARTE profiles
in a common modeling framework. The framework can
specify embedded systems at different abstraction levels,
and provide a convergence and alignment program for the
two respective technologies. The integration strategy
offers a better understanding of their conceptual domains,
and helps avoiding semantic and syntactical mismatches.

Simona Bernardi et al. [12] propose a dependability
analysis and modeling profile for MARTE models to
reuse proposals that derive dependability models from
UML annotated specifications and to be compliant with
the recently adopted MARTE profile. They also propose
to add to MARTE profile for dependability analysis and
modeling (DAM), and use MARTE-DAM profile to
derive a stochastic Petri net model for performance and
dependability assessment [13].

Zhang Tian et al. [5] present a representative case
study of bridging MARTE to FIACRE. They develop the
semantic mapping rules to implement the transformation
between meta-models and build the concrete syntax rules
to generate the textual programs.

Ling Yin et al. [14] propose a formal state-based
interpretation of fundamental subset of the Clock
Constraint Specification Language (CCSL) clock
constraints to verify CCSL specifications. Through the
formalism, they translate a CCSL specification into a
Promela model and check the correctness of model by
model checker SPIN.

Some recent research efforts have adapted formal
method for UML, and also transformed MARTE into
other embedded system modeling languages, or
transformed some parts of or the whole MARTE into a
formal model. So we can validate the correctness of
MARTE model using existing checker tools for formal
model. But there is little research on transforming
MARTE model into Z or Object-Z specification. In our
approach, we define a general transformation framework,
and transform the static and dynamic sematic of MARTE
into Object-Z formal model.

III. THE MDA-BASED TRANSFORMATION FRAMEWORK

There are two core questions that need to be solved:
formal modeling and formal model transformation. For
formal modeling, we define modeling notation based on
Object-Z meta-model. For the latter, we need to
understand the abstract syntax and semantic between
source model and target model. We define formal
functions between MARTE and Object-Z, and present
transformation rules from informal modeling language to
formal ones to implement the heterogeneous models
transformation. All the work is under the MDA
framework.

A. MDA
MDA was launched by the Object Management Group

(OMG) in 2001. It bases on models and the automatic
mappings or transformations between model and code. It
is a new software design approach, and changes the
traditional code-centric software development method.
There are two abstract models in MDA, PIM and PSM.
Basic MDA model include defining system functionality
using a PIM, and automatic mapping from PIM to one or
more PSMs.

The MDA approach has several advantages. Firstly,
the separation from domain-specific language to concrete
implementation improves the portability of the model.
Secondly, the automatic mapping between PIM and PSM
increases the productivity. Thirdly, the proved well-
formed patterns are used to model, and improve the
quality of model. Fourthly, the sufficiently independent
relationship between PIM and PSM enhances the
maintainability of the software system. Finally, the
consistency and the traceability are also defined and
realized.

Model transformation is an important part of MDA. If
the MDA model is related to OMG QVT standards, it can
increase the application experience of model
transformation in different fields. Lots of tools have been
developed to interpret, verify, and transform models or
meta-models, like Compuware OptimalJ, Borland
Together, AndroMDA.

B. Model Transformation Framework
Object-Z model is at the model level (M1-level). While

the definition of the formal model is the abstract of itself,
formal model needs to obey the definition to describe. So
the definition is at the meta-model level (M2-level).
Essentially the formal modeling process is the
instantiation process of formal meta-model at the M2-
level, that is, the formal method is used to concrete PIM
modeling [15]. The foundation of formal definition is
mathematical model, so it must obey to mathematic
axioms. We manage to identify the interoperability
between formal model and MARTE, and build them into
the same architecture. The case is feasible and brings
certain benefits.

The meta-model of MARTE formal model is at the
M2-level of MOF’s [16] hierarchy and it is the pattern
specification which implements MARTE formal
modeling and transforming.

808 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

Fig.1 shows the model transformation process between
MARTE model and Object-Z model under the meta-to-
meta model architecture. And the processes are:

–We need to build the meta-model of Object-Z, and
make sure it can be operated in meta-to-meta model
architecture.

–It is necessary to define the mapping function from
MARTE meta-model to Object-Z meta-model.

–We implement the transformation at model level
using the mapping rules defined at the meta-model level.

Meta-Model
Specification

MM Model

MARTE
Model

MARTE
Meta-Model

Formal Model

Mathematics
Axiomatics

Formal
Specification

Notation

Object-Z

Meta-Modeling

Text transformingModel Transformation

Meta-Model Mapping

M3

M2

M1

MM Model Architecture Formal Reasoning
System

conform to
projection

transformation
Figure.1 Transformation relationship

C. Object-Z Meta-model
Object-Z uses the Object-Oriented (OO) paradigm, that

is similar to UML, and their underlying concepts are also
the same. For example, an Object-Z class can
encapsulates its attributes and operations. Using the OO
formal specification has fewer complex problems than
using the non-OO formal specification in the
transformation process. Semantically, a class maps to a
set of object identifiers [17].

We use class diagram to describe the structural
features of Object-Z core model elements[7], as show in
Fig.2. OZModelElement is the most top meta-class, and it
can be instantiated into concrete classes. OZClass,
OZParameter, OZSpecification, OZPredicate and
OZFeature inherit from OZModelElement. The Object-Z
class OZClass composes of OZAttribute, OZOperation
and Invariant et al.

OZAttribute

Multiplicity:Integer
initialValue:OZExpression

OZFeature

name:OZName
visibility:VisibilityKind

OZClass

name:OZName

OZOperation

Invariant OZPredicate

OZSpecification OZPredicate

body:BooleanExp

OZParameter

name:OZName
role:ParRoleKind

OZModelElement

0...1 *
*

*

0...1 0...1

0...1

0...1
0...1

* *
pre-

*

*
post-

*
pre-

*
post-

subclass
superclass*

*

Figure.2 Object-Z core model elements

Meta-Class OZPredicate is used to define the condition
of class or operation. The condition defined in class is
invariant. The condition defined in operation is either the
pre-condition, or the post-condition. OZAttribute and
OZOperation define static and dynamic behaviors of the
class instances. The semantic details of Object-Z can
refer to literature [12].

IV. THE SEMANTIC TRANSFORMATION AT META-MODEL
LEVEL

A. Abstract Syntax of MARTE
We first define the domain of models in an abstract

syntax using Graphical Extension of Backus Normal
Form (GEBNF)[18], and then use it to define some
transformation rules of class and association. A MARTE
class is composed of name, attributes, and operations. An
attribute has name, type, multiplicity and other tags. An
operation has name, parameters, and other tags.

Definition 1. (MARTE class’s abstract syntax)
Class::=name:String,[attributes:Property*],[operations:

Operation*]
Property::=name: String, type:Type, visibility:

[VisibilityKind], multiplicity:[Multiplicity]
Operation::=name:String,parameters:[Parameter*],

visibility:[VisibilityKind],isAbstract:[Bool],
isQuery:[Bool],isLeaf:[Bool],isNew:[Bool]

Parameter::=name:[String],type:[Type],direction:
[ParaDirKind],multiplicity:[Multiplicity]

VisibilityKind::=private|public|protected
Multiplicity::=lower:[Natural],upper:[Natural|*]
ParaDirKind::=in|inout|out|return
Definition 2. (Association’s abstract syntax)
MARTEAssociation::=name:String,

vars:AssociationEnd+

AssociationEnd::= name:String, attachedClass: Class+,
multiplicity:[Multiplicity], aggregation:
[AggregationKind],navigability:Boolean

AggregationKind::=none|aggregate|composite
Definition 3. (State’s abstract syntax)
State::=name:String, attributes:Property+,

associations: MARTEAssociation*

Definition 4. (Actions’s abstract syntax)
Actions::=name:String, operations:Operation Kind,

isAsnchronous:Boolean
OperationKind::=entry|exit|doActivity|effect:Operation
Definition 5. (Event’s abstract syntax)
Event::=name:String, attributes:Property*,
Definition 6. (Transition’s abstract syntax)
Transition::=name:String,source: State,target: State,

trigger:Event,guard: State,effect:Action
Definition 7. (StateMachine’s abstract syntax)
StateMachine::=states:State,transitions:Transition,

 statetop:State

B. Static Semantic Transforming
In MDA, the semantic and abstract syntax of a

language are defined in terms of its meta-model [5].
According to the meta-model of MARTE and Object-Z,
we propose transformation rules in the context of class
and class association to show the static and dynamic
sematic relationships between heterogeneous model built
by its respective meta-model[7, 10].

Semantically, MARTE class is an abstract type, and it
can be instantiated to all possible objects. So every
MARTE class will be transformed into an Object-Z class.

We define a function mapMARTEClassToOZ to
formally describe the transformation rules from a

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 809

© 2014 ACADEMY PUBLISHER

MARTE class to an Object-Z class. This function takes a
MARTE class and returns a corresponding Object-Z class

Rule 1. (Class transformation rule) The MARTE class
name is used as the corresponding Object-Z class name.
Each attribute in the MARTE class is declared as an
attribute in Object-Z class. Each operation is transformed
into an operation schema:

mapMARTEClassToOZ: MARTEClass→ℙOZClass ∀mc: MARTEClass⦁mapMARTEClassToOZ(mc)=
{oc:OZClass|mc.name=oc.name∧ ∀ma:mc.attributes⦁∃oa:oc.attributes⦁
oa.name=ma.name∧oa.multiplicity=ma.multiplicity∧

oa.type=convType(ma.type)∧oa.visibility=ma.visibility∧
oa.relationship=relNone∧oa.navigability=navNone ∀mo:mc.operations⦁∃oo:oc.operations⦁

oo.name=mo.name∧oo.visibility=uo.visibility∧ ∀mp:mo.parameters⦁∃op:oo.parameters⦁op.name=mp.
name∧op.type=convType(mp.type)}

The attributes types and operation parameters are all
language-dependent specification in MARTE, but those
in Object-Z are language-independent. So we utilize an
abstract function convType that builds the mapping
relationship between MARTE type and Object-Z type [7].

Objects of the class can communicate with each other
via the link provided by an association. There are three
types of association: one-to-one, one-to-many, many-to-
many. In Object-Z, instantiation mechanism is used to
build the communication between objects. So no matter
which kind of association, it can be instantiated within
other classes as an attribute.

Rule 2. (Association transformation rule) For every
association, if one association end is navigable to the
opposite end, then the opposite MARTE class transforms
into an Object-Z class, and the association is instantiated
as an attribute within this Object-Z class.

mapAssocToOZ:MARTEAssociation→ℙ(OZClass×OZ
Class) ∀ma:MARTEAssociation⦁mapAssocToOZ(ma) =
{ soc,toc:OZClass|

soc∈mapMARTEClassToOZ(ma.e1.attachedClass)∧
toc∈mapMARTEClassToOZ(ma.e2.attachedClass)∧
ma.e1.navigability=true⇒∃ta:toc.attributes⦁
ta.name=ma.e1.name∧ta.type=powerT(soc)∧
ta.multiplicity=ma.e1.multiplicity∧ta.navigability=
convNavigability(ma.e2.navigability)∧ta.relationship=

convRelationship(ma.e2.aggregation,ma.e1.aggregation)
ma.e2.navigability=true⇒∃sa:soc.attributes⦁
sa.name=ma.e2.name∧sa.type=powerT(toc)∧
sa.multiplicity=ma.e2.multiplicity∧sa.navigability=
convNavigability(ma.e1.navigability)∧sa.relationship=

convRelationship(ma.e1.aggregation,ma.e2.aggregation)

C. Dynamic Semantic Transforming
The value of attribute represents the object state, and it

can be changed by its operation. It defines the object
behavior in term of the attributes and operations. The
state machine is similar to the object behavior in Object-Z
semantically, so it is feasible to use a state machine to
represent the object behavior [7, 8]. We define the

mapping rules between MARTE state machine and
Object-Z as follow.

Rule 3. (State transformation rule) A state is central to
the description of a system, and represents as an
assignment to each variable at a certain moment during
the period of lifetime. To provide the syntactical mapping
between the two models, we define a mapping rule from a
state to the attributes of Object-Z class. Detailed
transformation rule is implemented through function
mapStateToOZ, which takes a state and returns attributes
of Object-Z class.

mapStateToOZ:State→ℙ OZAttribute ∀ms:State⦁mapStateToOZ (ms)={oa:OZAttribute| ∃oc:OZClass⦁oa∈oc.attributes∧ms.name=oa.name∧
ms.type=oa.type∧ms.visibility=oa.visibility}
Rule 4. (Event transformation rule) A event can be

classified as internal event and external event, examples
include receipting a request or invoking an operation. So
we map every event of state machine to an Object-Z
operation, each parameters of the event maps to the
parameters of the corresponding operation. The function
mapEventToOZ is used to describe this formal mapping
rule.

mapEventToOZ:Event→OZOperation ∀me:Event⦁mapEventToOZ(me)={oo:OZOperation| ∃oc:OZClass⦁oo∈oc.operations∧
(∀mp:me.parameters⦁∃op:oo.parameters⦁

op.name= mp.name∧op.type=convType(mp.type))}
Rule 5. (Actions transformation rule) Action is a

named element which represents a single atomic step
within activity, and is the fundamental unit of executable
processing or behavior. So we define a transformation
rule that maps an action to an operation in Object-Z. The
function mapActionToOZ takes an action and returns an
operation.

mapActionToOZ: Actions→OZOperation ∀ma:Action⦁mapActionToOZ(ma)={oo:OZOperation| ∃oc:OZClass⦁oo∈oc.operations∧ma.name=oo.name∧
ma.visibility=oo.visibility

Rule 6. (Transition transformation rule) A transition
takes operation from source state to target state, and
represents the response to a particular event. It can
connect states with transitions and create internal
transitions within states. So we transform transition into
corresponding Object-Z operation, and the states of two
end map to the attributes of Object-Z class. The rule is
defined in the function mapTransitionToOZ.

mapTransitionToOZ:Transition→ℙ OZOperation ∀mt:Transition⦁mapTransitionToOZ(mt)=
{oo:OZOperation|
(∃oc:OZClass⦁oo∈oc.operations∧mt.name=oo.name)
(∃source,target,attrs:oc.attributes⦁source=mapStateTo

OZ(mt.source)∧target=mapStateToOZ(mt.target)∧attrs=
mapStateToOZ(mt.guard))

(∃op1,op2:oc.operation⦁op1=mapEventToOZ(mt.trigg
er)∧op2=mapActionToOZ(mt.effect))

Rule 7. (State Machine transformation rule) In term of
the defined transformation rules, we can map state
machine to Object-Z class. That is, we transform all of
the states, events, actions, transitions into the attributes

810 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

and operations of corresponding Object-Z class. The
function mapStateMachineToOZ formalizes the detailed
transformation rule.

mapStateMachineToOZ:StateMachine→OZClass ∀sm:StateMachine⦁mapStateMachineToOZ(sm)={ ∃oc:OZClass|(∀st:sm.states|st∈↓State⦁
(∃ba:oc.attributes|ba∈OZAttribute⦁mapStateToOZ(st)

=ba))∧
(∃ep:oc.operations|ep∈↓OZOperation⦁{ep}={e:st.entr

y⦁mapActionToOZ(e)})∧
(∃xp:oc.operations|xp∈↓OZOperation⦁{xp}={e:st.exit⦁mapActionToOZ (e)})∧
(∃ap:oc.operations|ap∈↓OZOperation⦁{ap}={e:st.doA

ctivity⦁mapActionToOZ(e)})
(∀t:sm.transition⦁(∃tp:oc.operations|tp∈OZOperation⦁

tp=mapTransitionToOZ(t)∧
tp.source∈{ba:oc.attributes|ba∈OZAttribute}∧
tp.target⊆{ba:oc.attributes|ba∈OZAttribute}∧
tp.stateEntry⊆{ap:oc.operations|ap∈↓OZOperation}∧
tp.stateExit⊆{ap:oc.operations|ap∈↓OZOperation}∧
tp.stateActivity⊆{ap:oc.operations|ap∈↓OZOperation

}∧
(∀e:t.effect⦁mapActionToOZ(e)∈↓OZOperation)∧
(∀e:t.trigger⦁(∃ep:oc.operations|ep∈↓OZOperation⦁ep

=mapEventToOZ(e)))

V. CASE STUDY

The ability to formally specify the system model is the
main goal of this paper. We take a case study of Josefil to
implement the transformation from MARTE model to
Object-Z model. The Josefil case study is proposed by
Ensieta, and it consists in developing a robotics system
following model-driven engineering practices. Its goal is
to provide a framework for testing the MDA approaches
in case of specification changes to distributed real-time
and embedded systems [19].

The case study introduces a control system for an
exploration robot. It consists of a robot and a remote
control. The robot communicates with a remote control
station, when it receives a position to reach transmitted
by the control station, it moves to this position, and waits
for a new route.

A.Semantic Transformation
To enhance the reliability of the embedded system, we

translate MARTE model into formal model in the design
stage. For the sake of brevity, we choose two logical
entities of the Josefil case study: the system supervision
(Supervisor) and the management of communications
with the control station (CommunicationLink) (As show
in Fig.3).

Figure.3 The class diagram of system supervision

Firstly, we translate the static semantic of the class
diagram. As discussed in Section IV. We translate the
Supervisor class into an Object-Z class, the class name,
attributes, and operations of MARTE model are mapped
to the class name, attribute, and operations of the Object-
Z class. As class Supervisor is associated with class
CommunicationLink, which is transformed as an attribute
in the corresponding Object-Z class. Detailed result is
below(Fig.4).

Figure.4 Static transformation results

Secondly, we deal with the dynamic semantic.
According to states and transitions between states, state
machine can be used to describe the behavior of a system.
In state machine, transition is triggered by time. We
define the duration of a behavior using stereotype
«timedProcessing», and apply it on the updateTimeOut
activity. The duration of this time processing is (50, ms).

Figure.5 State diagram of Supervisor

Fig.5. shows a state machine of Supervisor class, and it
provides a simple view to describe the behavior of this
class. The Supervisor state machine has three states:
Ready, Update, Blocked. Ready state periodically enters
the Update state for updating the robot sensors values.
This process has to be done within a period of 50 ms.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 811

© 2014 ACADEMY PUBLISHER

Then it returns to a Ready state. If a sensor detects an
obstacle, the Supervisor enters the Blocked state. From
there, the operator has 50 seconds to enter a new route. If
no route is received within this time frame, a time out is
triggered [19].

According to the defined dynamic semantic
transformation rules, the states, events, actions, and
transitions can be transformed into the attributes and
operations of corresponding Object-Z class. Thus, we
have the following schema(Fig.6).

……
[Behavioral state attributes]
Ready:Boolean
Update:Boolean
Blocked:Boolean

Supervisor
Ready

INIT

↾(updateTimeOut, obstacleDetected,updateRoute)

[Operations derived from the dynamic model]
[Event acceptor operations]
updateTimeOut≙transReadytoUpdate[]
obstacleDetected≙transReadytoBlocked[]
updateRoute≙[route?:RouteCaculator]∧

transBlockedtoReady[]transReadytoReady[]
[Transiton operations]
transReadytoUpdate≙[Δ(Update)|Ready∧Update′]
transReadytoBlocked≙[Δ(Blocked)|Ready∧Blocked′]
transBlockedtoReady≙[Δ(Blocked)|Blocked∧Ready′]
transReadytoReady≙[Δ(Ready)|Ready∧Ready′]

Figure.6 dynamic transformation results

B. Analysis
We focus on two logical entities of the Josefil case

study, and present how to formally transform the static
and dynamic semantic of a model. The transformation
from a MARTE model to an Object-Z model enables the
target model to be more precise and to be strictly
analyzed. So we can use the existing Object-Z analysis
tools to verify the correctness of the model, and make
sure the consistency of the model and specification.
Finally, it can improve the software reliability of the
system.

VI. CONCLUSIONS

Comparing with the traditional computer system, the
reliability is more important for embedded system. This
motivates researchers to develop well-formed methods
and tools to model and analyze the embedded system.
Formal specification is defined by strict mathematical
notation and can specify the system properties. It enables
us to find the inconsistency in the design stage. In the
paper, we provide a set of formal transformation rules for
MARTE profile. Our main contributions here are: (a) the
MDA-based transformation framework between MARTE
model and Object-Z model, (b) the static semantic
transformation rules, (c) the dynamic semantic
transformation rules.

The MARTE profile also adds constructs to provide
the Non-Functional Properties (NFPs) modeling
framework (e.g., throughputs, delays, memory usage).
For the future work, we will further develop the NFPs
formal transformation.

ACKNOWLEDGMENT

This work was supported by Funding of Jiangsu
Innovation Program for Graduate Education and the
Fundamental Research Funds for the Central Universities
under Grant No.CXLX12_0161.

REFERENCES

[1] Yingjie Song, Rong Chen, Yaqing Liu. A Non-Standard
Approach for the OWL Ontologies Checking and
Reasoning. Journal of Computers. vol. 7, no.10, pp.2454-
2461,2012.

[2] Chunyu Miao. Dynamic Slicing Research of UML
Statechart Specifications. Journal of Computers. vol. 6,
no.4, pp. 792-798,2011.

[3] UML Profile for MARTE: Modeling and Analysis of Real-
time Embedded Systems. 2011 http://www.omg.org/spec/
MARTE/1.1.

[4] Lina Chen. Automatic test cases generation for statechart
specifications from semantics to algorithm. Journal of
Computers. vol. 6, no.4, pp. 769-775,2011.

[5] Zhang Tian, Jouault F,et al. “MDE-Based Model
Transformation: From MARTE Model to FIACRE Model”.
Journal of Software, vol. 20, no.2, pp.214-233,2009.

[6] Kim S-K, Carrington D. “A Formal Mapping between
UML Models and Object-Z Specifications”, In
Proceeding(s) of LNCS 1878, pp. 2-21,2000.

[7] Kim S-K, Carrington D. “A formal metamodeling
approach to a transformation between the UML state
machine and object-Z”, In Proceeding(s) of ICFEM 2002,
LNCS 2495,pp.548-560,2002.

[8] Kim S-K, Burger D, Carrington D. “An MDA Approach
towards Integrating Formal and Informal Modeling
Languages”, Formal Method, LNCS 3582,pp.448-464,
2005.

[9] M.Mostafa A, Ismail MA, EL-Bolok H et al. “Toward a
formalization of uml2. 0 metamodel using z specifications”,
In Proceeding(s) of 8th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, pp.694-701,2007.

[10] Möller M, Olderog E-R, Rasch H et al. “Integrating a
formal method into a software engineering process with
UML and Java”, Formal Aspects of Computing,vol.
20,no.2,pp.161-204,2008.

[11] Espinoza H, Cancila D, Selic B et al. “Challenges in
Combining SysML and MARTE for Model-Based Design
of Embedded Systems”, In Proceeding(s) of the 5th
European Conference on Model Driven Architecture -
Foundations and Applications, LNCS 5562,pp.98-113,
2009.

[12] Bernardi S, Merseguer Je, Petriu DC. “Adding
Dependability Analysis Capabilities to the MARTE
Profile” , In Proceeding(s) of MoDELS 2008, LNCS
5301,pp.736-750,2008.

[13] Bernardi S, Merseguer J, Petriu DC. “A dependability
profile within MARTE”,Software and Systems Modeling,
no.10,pp. 313-336, 2011.

812 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

[14] Yin L, Mallet F. “Verification of MARTE/CCSL Time
Requirements in Promela/SPIN”, In Proceeding(s) of
ICECCS,pp.65-74,2011.

[15] Liu Yaping, Huang Zhiqiu, Zhu Yi. “Research on Model
Transformation Method of Real-time System Based on
Metamodeling”, Journal of Chinese Computer Systems,
vol.31,no.11,pp.2146-2153, 2010.

[16] Meta Object Facility Specification, Version 2.0.
http://www.omg.org/spec/MOF/2.4/Beta2/PDF/

[17] Kim S-K, Carrington D. “Formalizing the UML Class
Diagram Using Object-Z”, In Proceeding(s) of UML’99,
LNCS 1723,1999.

[18] Bayley I, Zhu H. “Formal specification of the variants and
behavioural features of design patterns”, The Journal of
Systems and Software, no.83,pp.209-221,2010.

[19] Demathieu S, Thomas F, André C et al. “First experiments
using the UML profile for MARTE”, In Proceeding(s) of
11th IEEE Symposium on Object Oriented Real-Time
Distributed Computing, pp.50-57,2008.

Haiyang Xu, was born in WeiHai,
Shandong Province, China in 1981. He
received the M.S. degree in Computer
Application Technology from Capital
Normal University in 2006, and he is
currently a Ph. D. candidate of Nanjing
University of Aeronautics and
Astronautics.

He has been a faculty member of
Software Engineering at Qingdao Agriculture University,
Qingdao, China, since 2006, where he is currently a lecturer.
His research interests include trusted computing, model
transformation, model checking.

Yi Zhuang, was born in Juangsu
Province, China in 1957. She is a
professor and Ph. D. supervisor of
Nanjing University of Aeronautics and
Astronautics. Her research interests
include distributed computation,
information security, trusted computing
and model migration et al.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 813

© 2014 ACADEMY PUBLISHER

