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Abstract—Formal specification can enhance the reliability of 
the embedded system and verify the system properties at the 
design stage. This paper presents a formal transformation 
approach for MARTE(Modeling and Analysis of Real Time 
and Embedded systems) model based on MDA(Model 
Driven Architecture), and defines the transformation rules 
of static and dynamic semantic between MARTE model and 
Object-Z model in term of the formal meta-model. The 
approach can produce a precise specification and verify the 
correctness of the system properties before implementing. 
The paper reports a case study to illustrate formal 
transformation of MARTE model. It demonstrates that the 
approach improves the accuracy of system model by 
transforming it into formal specification and enhances the 
reliability of software system.  
 
Index Terms—Reliability, Meta-Model, Formal modeling, 
Formal transformation rules 
 

I.  INTRODUCTION 

With the development of electronic technology, 
embedded system has been widely used in control, 
communication, aerospace and other fields. As the 
increasing heterogeneity and complexity of system 
components, the development of embedded system was 
confronted with major difficulties[1]. In order to enhance 
the system reliability, we need to develop an effective 
design method to provide language and tool support for 
embedded system. So we could analyze and predict the 
reliability and safety performance of system in the early 
stage of system design. 

UML is a standard object-oriented modeling language, 
it uses graphical notion to model the static and dynamic 
features of the system[2]. The Object Management Group 
(OMG) proposes to build the domain-specific modeling 
language by refining existing modeling language. 
MARTE is a new UML profile [3], it supports real-time 
and embedded systems specification. In the functional 
design, it adds model packages to describe the hardware 
and software resources, and defines a specific set of 
attributes for designer, which could be used to analyze 
the time and energy performance in the early design stage. 
For the non-functional requirement, it adds the definition 

of clock. But MARTE is short of precise semantic, and 
cannot describe and analyze in the strict formal way. So it 
cannot be used to automatic reasoning the properties of 
the system. 

Formal specification lay a solid foundation for the 
syntax and semantic of UML/MARTE modeling 
language, and provide a precise reasoning mechanism[4]. 
It can transform design model of system into reliability 
analytical model by formal method. So it can find out the 
design fault in the design stage, and facilitate the system 
reliability. 

The paper advances an Object-Z meta-model by 
analyzing MARTE and Object-Z, which is the foundation 
of model transformation. And we define a transformation 
framework from MARTE to Object-Z based on MDA. In 
the framework, we propose the transformation rules of 
the static and dynamic semantic between MARTE and 
Object-Z. In particular, according to the Object-Z 
specification and its reasoning technology, in the design 
stage, we could formally verify the system models which 
are built using MARTE. This method provides a general 
transformation framework, which can transform MARTE 
model into Object-Z model. For the characteristic of 
embedded system, the paper focuses mainly on reliability. 
The paper reports a case study involving the formal 
specification of Josefil, and illustrates the transformation 
from MARTE model to Object-Z model. 

The rest of this paper is organized as follows. Section 
II outlines related work and associated problems. Section 
III describes the transformation framework based on 
MDA. Section IV gives the detailed semantic 
transformation rules of our approach at meta-model level. 
Section V reports a case study of the formal specification. 
Finally, Section VI concludes the paper. 

II.  RELATED WORK 

In the model-driven framework, there are two 
questions needed to be solved. The first is modeling the 
software model correctly; the second is the valid 
transformation between heterogeneous models. For the 
first question, it uses UML and its extensions as modeling 
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language. For the transformation, it is still being 
researched. 

Kim Soon-Kyeong et al. [6,7] present a formal 
description for UML class constructs, and a formal meta-
modeling approach to transform UML to Object-Z. They 
utilize MDA for automated transformations between 
models defined in different languages at different 
abstraction levels [8]. 

Ahmed M.Mostafa et al. [9] use Z specification to 
increase the safety and reliability of the system, and 
present a set of formalism models for Use Case diagram, 
Class diagram, and State Machine diagram, which 
transforms a UML model to Z specifications. In the 
integrated framework, it can achieve a model that is 
unambiguous, verifiable and traceable. 

Michael Möller et al. [10] describe a formal method 
CSP-OZ, which combines the process algebra CSP with 
the specification language Object-Z. It can verify 
properties of models in the early design phases and check 
adherence of implementations to models. 

Huascar Espinoza et al. [11] use UML as the base 
language, and combine the SysML and MARTE profiles 
in a common modeling framework. The framework can 
specify embedded systems at different abstraction levels, 
and provide a convergence and alignment program for the 
two respective technologies. The integration strategy 
offers a better understanding of their conceptual domains, 
and helps avoiding semantic and syntactical mismatches. 

Simona Bernardi et al. [12] propose a dependability 
analysis and modeling profile for MARTE models to 
reuse proposals that derive dependability models from 
UML annotated specifications and to be compliant with 
the recently adopted MARTE profile. They also propose 
to add to MARTE profile for dependability analysis and 
modeling (DAM), and use MARTE-DAM profile to 
derive a stochastic Petri net model for performance and 
dependability assessment [13]. 

Zhang Tian et al. [5] present a representative case 
study of bridging MARTE to FIACRE. They develop the 
semantic mapping rules to implement the transformation 
between meta-models and build the concrete syntax rules 
to generate the textual programs. 

Ling Yin et al. [14] propose a formal state-based 
interpretation of fundamental subset of the Clock 
Constraint Specification Language (CCSL) clock 
constraints to verify CCSL specifications. Through the 
formalism, they translate a CCSL specification into a 
Promela model and check the correctness of model by 
model checker SPIN. 

Some recent research efforts have adapted formal 
method for UML, and also transformed MARTE into 
other embedded system modeling languages, or 
transformed some parts of or the whole MARTE into a 
formal model. So we can validate the correctness of 
MARTE model using existing checker tools for formal 
model. But there is little research on transforming 
MARTE model into Z or Object-Z specification. In our 
approach, we define a general transformation framework, 
and transform the static and dynamic sematic of MARTE 
into Object-Z formal model. 

III.  THE MDA-BASED TRANSFORMATION FRAMEWORK 

There are two core questions that need to be solved: 
formal modeling and formal model transformation. For 
formal modeling, we define modeling notation based on 
Object-Z meta-model. For the latter, we need to 
understand the abstract syntax and semantic between 
source model and target model. We define formal 
functions between MARTE and Object-Z, and present 
transformation rules from informal modeling language to 
formal ones to implement the heterogeneous models 
transformation. All the work is under the MDA 
framework. 

A.  MDA 
MDA was launched by the Object Management Group 

(OMG) in 2001. It bases on models and the automatic 
mappings or transformations between model and code. It 
is a new software design approach, and changes the  
traditional code-centric software development method. 
There are two abstract models in MDA, PIM and PSM. 
Basic MDA model include defining system functionality 
using a PIM, and automatic mapping from PIM to one or 
more PSMs.  

The MDA approach has several advantages. Firstly, 
the separation from domain-specific language to concrete 
implementation improves the portability of the model.  
Secondly, the automatic mapping between PIM and PSM 
increases the productivity. Thirdly, the proved well-
formed patterns are used to model, and improve the 
quality of model. Fourthly, the sufficiently independent 
relationship between PIM and PSM enhances the 
maintainability of the software system. Finally, the 
consistency and the traceability are also defined and 
realized. 

Model transformation is an important part of MDA. If 
the MDA model is related to OMG QVT standards, it can 
increase the application experience of model 
transformation in different fields. Lots of tools have been 
developed to interpret, verify, and transform models or 
meta-models, like Compuware OptimalJ, Borland 
Together, AndroMDA. 

B.  Model Transformation Framework 
Object-Z model is at the model level (M1-level). While 

the definition of the formal model is the abstract of itself, 
formal model needs to obey the definition to describe. So 
the definition is at the meta-model level (M2-level). 
Essentially the formal modeling process is the 
instantiation process of formal meta-model at the M2-
level, that is, the formal method is used to concrete PIM 
modeling [15]. The foundation of formal definition is 
mathematical model, so it must obey to mathematic 
axioms. We manage to identify the interoperability 
between formal model and MARTE, and build them into 
the same architecture. The case is feasible and brings 
certain benefits. 

The meta-model of MARTE formal model is at the 
M2-level of MOF’s [16] hierarchy and it is the pattern 
specification which implements MARTE formal 
modeling and transforming. 
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Fig.1 shows the model transformation process between 
MARTE model and Object-Z model under the meta-to-
meta model architecture. And the processes are: 

–We need to build the meta-model of Object-Z, and 
make sure it can be operated in meta-to-meta model 
architecture. 

–It is necessary to define the mapping function from 
MARTE meta-model to Object-Z meta-model. 

–We implement the transformation at model level 
using the mapping rules defined at the meta-model level. 

Meta-Model 
Specification

MM Model

MARTE 
Model

MARTE 
Meta-Model

Formal Model

Mathematics
Axiomatics

Formal 
Specification 

Notation 

Object-Z

Meta-Modeling

Text transformingModel Transformation

Meta-Model Mapping

M3

M2

M1

MM Model Architecture Formal Reasoning 
System

conform to
projection

transformation  
Figure.1 Transformation relationship 

C.  Object-Z Meta-model 
Object-Z uses the Object-Oriented (OO) paradigm, that 

is similar to UML, and their underlying concepts are also 
the same. For example, an Object-Z class can 
encapsulates its attributes and operations. Using the OO 
formal specification has fewer complex problems than 
using the non-OO formal specification in the 
transformation process. Semantically, a class maps to a 
set of object identifiers [17]. 

We use class diagram to describe the structural 
features of Object-Z core model elements[7], as show in 
Fig.2. OZModelElement is the most top meta-class, and it 
can be instantiated into concrete classes. OZClass, 
OZParameter, OZSpecification, OZPredicate and 
OZFeature inherit from OZModelElement. The Object-Z 
class OZClass composes of OZAttribute, OZOperation 
and Invariant et al. 

OZAttribute

Multiplicity:Integer
initialValue:OZExpression

OZFeature

name:OZName
visibility:VisibilityKind

OZClass

name:OZName

OZOperation

Invariant OZPredicate

OZSpecification OZPredicate

body:BooleanExp

OZParameter

name:OZName
role:ParRoleKind

OZModelElement

0...1 *
*

*

0...1 0...1

0...1

0...1
0...1

* *
pre-

*

*
post-

*
pre-

*
post-

subclass
superclass*

*

 
Figure.2  Object-Z core model elements 

Meta-Class OZPredicate is used to define the condition 
of class or operation. The condition defined in class is 
invariant. The condition defined in operation is either the 
pre-condition, or the post-condition. OZAttribute and 
OZOperation define static and dynamic behaviors of the 
class instances. The semantic details of Object-Z can 
refer to literature [12]. 

IV. THE SEMANTIC TRANSFORMATION AT META-MODEL 
LEVEL 

A. Abstract Syntax of MARTE 
We first define the domain of models in an abstract 

syntax using Graphical Extension of Backus Normal 
Form (GEBNF)[18], and then use it to define some 
transformation rules of class and association. A MARTE 
class is composed of name, attributes, and operations. An 
attribute has name, type, multiplicity and other tags. An 
operation has name, parameters, and other tags. 

Definition 1. (MARTE class’s abstract syntax) 
Class::=name:String,[attributes:Property*],[operations: 

Operation*] 
Property::=name: String, type:Type, visibility: 

[VisibilityKind], multiplicity:[Multiplicity] 
Operation::=name:String,parameters:[Parameter*], 

visibility:[VisibilityKind],isAbstract:[Bool], 
isQuery:[Bool],isLeaf:[Bool],isNew:[Bool] 

Parameter::=name:[String],type:[Type],direction: 
[ParaDirKind],multiplicity:[Multiplicity] 

VisibilityKind::=private|public|protected 
Multiplicity::=lower:[Natural],upper:[Natural|*] 
ParaDirKind::=in|inout|out|return 
Definition 2. (Association’s abstract syntax) 
MARTEAssociation::=name:String, 

vars:AssociationEnd+ 

AssociationEnd::= name:String, attachedClass: Class+,  
multiplicity:[Multiplicity], aggregation:  
[AggregationKind],navigability:Boolean 

AggregationKind::=none|aggregate|composite 
Definition 3. (State’s abstract syntax) 
State::=name:String, attributes:Property+,  

associations: MARTEAssociation* 

Definition 4. (Actions’s abstract syntax) 
Actions::=name:String, operations:Operation Kind,  

isAsnchronous:Boolean 
OperationKind::=entry|exit|doActivity|effect:Operation 
Definition 5. (Event’s abstract syntax) 
Event::=name:String, attributes:Property*, 
Definition 6. (Transition’s abstract syntax) 
Transition::=name:String,source: State,target: State,  

trigger:Event,guard: State,effect:Action 
Definition 7. (StateMachine’s abstract syntax) 
StateMachine::=states:State,transitions:Transition, 

 statetop:State 

B. Static Semantic Transforming 
In MDA, the semantic and abstract syntax of a 

language are defined in terms of its meta-model [5]. 
According to the meta-model of MARTE and Object-Z, 
we propose transformation rules in the context of class 
and class association to show the static and dynamic 
sematic relationships between heterogeneous model built 
by its respective meta-model[7, 10]. 

Semantically, MARTE class is an abstract type, and it 
can be instantiated to all possible objects. So every 
MARTE class will be transformed into an Object-Z class. 

We define a function mapMARTEClassToOZ to 
formally describe the transformation rules from a 
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MARTE class to an Object-Z class. This function takes a 
MARTE class and returns a corresponding Object-Z class 

Rule 1. (Class transformation rule) The MARTE class 
name is used as the corresponding Object-Z class name. 
Each attribute in the MARTE class is declared as an 
attribute in Object-Z class. Each operation is transformed 
into an operation schema: 

mapMARTEClassToOZ: MARTEClass→ℙOZClass ∀mc: MARTEClass⦁mapMARTEClassToOZ(mc)= 
{oc:OZClass|mc.name=oc.name∧ ∀ma:mc.attributes⦁∃oa:oc.attributes⦁ 
oa.name=ma.name∧oa.multiplicity=ma.multiplicity∧ 

oa.type=convType(ma.type)∧oa.visibility=ma.visibility∧ 
oa.relationship=relNone∧oa.navigability=navNone ∀mo:mc.operations⦁∃oo:oc.operations⦁ 

oo.name=mo.name∧oo.visibility=uo.visibility∧ ∀mp:mo.parameters⦁∃op:oo.parameters⦁op.name=mp.
name∧op.type=convType(mp.type)} 

The attributes types and operation parameters are all 
language-dependent specification in MARTE, but those 
in Object-Z are language-independent. So we utilize an 
abstract function convType that builds the mapping 
relationship between MARTE type and Object-Z type [7]. 

Objects of the class can communicate with each other 
via the link provided by an association. There are three 
types of association: one-to-one, one-to-many, many-to-
many. In Object-Z, instantiation mechanism is used to 
build the communication between objects. So no matter 
which kind of association, it can be instantiated within 
other classes as an attribute. 

Rule 2. (Association transformation rule) For every 
association, if one association end is navigable to the 
opposite end, then the opposite MARTE class transforms 
into an Object-Z class, and the association is instantiated 
as an attribute within this Object-Z class. 

mapAssocToOZ:MARTEAssociation→ℙ(OZClass×OZ
Class) ∀ma:MARTEAssociation⦁mapAssocToOZ(ma) = 
{ soc,toc:OZClass| 

soc∈mapMARTEClassToOZ(ma.e1.attachedClass)∧ 
toc∈mapMARTEClassToOZ(ma.e2.attachedClass)∧ 
ma.e1.navigability=true⇒∃ta:toc.attributes⦁ 
ta.name=ma.e1.name∧ta.type=powerT(soc)∧ 
ta.multiplicity=ma.e1.multiplicity∧ta.navigability= 
convNavigability(ma.e2.navigability)∧ta.relationship=

convRelationship(ma.e2.aggregation,ma.e1.aggregation) 
ma.e2.navigability=true⇒∃sa:soc.attributes⦁ 
sa.name=ma.e2.name∧sa.type=powerT(toc)∧ 
sa.multiplicity=ma.e2.multiplicity∧sa.navigability= 
convNavigability(ma.e1.navigability)∧sa.relationship=

convRelationship(ma.e1.aggregation,ma.e2.aggregation) 

C. Dynamic Semantic Transforming 
The value of attribute represents the object state, and it 

can be changed by its operation. It defines the object 
behavior in term of the attributes and operations. The 
state machine is similar to the object behavior in Object-Z 
semantically, so it is feasible to use a state machine to 
represent the object behavior [7, 8]. We define the 

mapping rules between MARTE state machine and 
Object-Z as follow. 

Rule 3. (State transformation rule) A state is central to 
the description of a system, and represents as an 
assignment to each variable at a certain moment during 
the period of lifetime. To provide the syntactical mapping 
between the two models, we define a mapping rule from a 
state to the attributes of Object-Z class. Detailed 
transformation rule is implemented through function 
mapStateToOZ, which takes a state and returns attributes 
of Object-Z class. 

mapStateToOZ:State→ℙ OZAttribute ∀ms:State⦁mapStateToOZ (ms)={oa:OZAttribute| ∃oc:OZClass⦁oa∈oc.attributes∧ms.name=oa.name∧ 
ms.type=oa.type∧ms.visibility=oa.visibility} 
Rule 4. (Event transformation rule) A event can be 

classified as internal event and external event, examples 
include receipting a request or invoking an operation. So 
we map every event of state machine to an Object-Z 
operation, each parameters of the event maps to the 
parameters of the corresponding operation. The function 
mapEventToOZ is used to describe this formal mapping 
rule.  

mapEventToOZ:Event→OZOperation ∀me:Event⦁mapEventToOZ(me)={oo:OZOperation| ∃oc:OZClass⦁oo∈oc.operations∧ 
(∀mp:me.parameters⦁∃op:oo.parameters⦁ 

op.name= mp.name∧op.type=convType(mp.type))} 
Rule 5. (Actions transformation rule) Action is a 

named element which represents a single atomic step 
within activity, and is the fundamental unit of executable 
processing or behavior. So we define a transformation 
rule that maps an action to an operation in Object-Z. The 
function mapActionToOZ takes an action and returns an 
operation. 

mapActionToOZ: Actions→OZOperation ∀ma:Action⦁mapActionToOZ(ma)={oo:OZOperation| ∃oc:OZClass⦁oo∈oc.operations∧ma.name=oo.name∧
ma.visibility=oo.visibility 

Rule 6. (Transition transformation rule) A transition 
takes operation from source state to target state, and 
represents the response to a particular event. It can 
connect states with transitions and create internal 
transitions within states. So we transform transition into 
corresponding Object-Z operation, and the states of two 
end map to the attributes of Object-Z class. The rule is 
defined in the function mapTransitionToOZ. 

mapTransitionToOZ:Transition→ℙ OZOperation ∀mt:Transition⦁mapTransitionToOZ(mt)= 
{oo:OZOperation| 
(∃oc:OZClass⦁oo∈oc.operations∧mt.name=oo.name) 
(∃source,target,attrs:oc.attributes⦁source=mapStateTo

OZ(mt.source)∧target=mapStateToOZ(mt.target)∧attrs=
mapStateToOZ(mt.guard)) 

(∃op1,op2:oc.operation⦁op1=mapEventToOZ(mt.trigg
er)∧op2=mapActionToOZ(mt.effect)) 

Rule 7. (State Machine transformation rule) In term of 
the defined transformation rules, we can map state 
machine to Object-Z class. That is, we transform all of 
the states, events, actions, transitions into the attributes 
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and operations of corresponding Object-Z class. The 
function mapStateMachineToOZ formalizes the detailed 
transformation rule. 

mapStateMachineToOZ:StateMachine→OZClass ∀sm:StateMachine⦁mapStateMachineToOZ(sm)={ ∃oc:OZClass|(∀st:sm.states|st∈↓State⦁ 
(∃ba:oc.attributes|ba∈OZAttribute⦁mapStateToOZ(st)

=ba))∧ 
(∃ep:oc.operations|ep∈↓OZOperation⦁{ep}={e:st.entr

y⦁mapActionToOZ(e)})∧ 
(∃xp:oc.operations|xp∈↓OZOperation⦁{xp}={e:st.exit⦁mapActionToOZ (e)})∧ 
(∃ap:oc.operations|ap∈↓OZOperation⦁{ap}={e:st.doA

ctivity⦁mapActionToOZ(e)}) 
(∀t:sm.transition⦁(∃tp:oc.operations|tp∈OZOperation⦁

tp=mapTransitionToOZ(t)∧ 
tp.source∈{ba:oc.attributes|ba∈OZAttribute}∧ 
tp.target⊆{ba:oc.attributes|ba∈OZAttribute}∧ 
tp.stateEntry⊆{ap:oc.operations|ap∈↓OZOperation}∧ 
tp.stateExit⊆{ap:oc.operations|ap∈↓OZOperation}∧ 
tp.stateActivity⊆{ap:oc.operations|ap∈↓OZOperation

}∧ 
(∀e:t.effect⦁mapActionToOZ(e)∈↓OZOperation)∧ 
(∀e:t.trigger⦁(∃ep:oc.operations|ep∈↓OZOperation⦁ep

=mapEventToOZ(e))) 

V. CASE STUDY 

The ability to formally specify the system model is the 
main goal of this paper. We take a case study of Josefil to 
implement the transformation from MARTE model to 
Object-Z model. The Josefil case study is proposed by 
Ensieta, and it consists in developing a robotics system 
following model-driven engineering practices. Its goal is 
to provide a framework for testing the MDA approaches 
in case of specification changes to distributed real-time 
and embedded systems [19].  

The case study introduces a control system for an 
exploration robot. It consists of a robot and a remote 
control. The robot communicates with a remote control 
station, when it receives a position to reach transmitted 
by the control station, it moves to this position, and waits 
for a new route. 

A.Semantic Transformation 
To enhance the reliability of the embedded system, we 

translate MARTE model into formal model in the design 
stage. For the sake of brevity, we choose two logical 
entities of the Josefil case study: the system supervision 
(Supervisor) and the management of communications 
with the control station (CommunicationLink) (As show 
in Fig.3). 

 
Figure.3 The class diagram of system supervision 

Firstly, we translate the static semantic of the class 
diagram. As discussed in Section IV. We translate the 
Supervisor class into an Object-Z class, the class name, 
attributes, and operations of MARTE model are mapped 
to the class name, attribute, and operations of the Object-
Z class. As class Supervisor is associated with class 
CommunicationLink, which is transformed as an attribute 
in the corresponding Object-Z class. Detailed result is 
below(Fig.4). 

 
Figure.4 Static transformation results 

Secondly, we deal with the dynamic semantic. 
According to states and transitions between states, state 
machine can be used to describe the behavior of a system. 
In state machine, transition is triggered by time. We 
define the duration of a behavior using stereotype 
«timedProcessing», and apply it on the updateTimeOut 
activity. The duration of this time processing is (50, ms). 

 
Figure.5 State diagram of Supervisor 

Fig.5. shows a state machine of Supervisor class, and it 
provides a simple view to describe the behavior of this 
class. The Supervisor state machine has three states: 
Ready, Update, Blocked. Ready state periodically enters 
the Update state for updating the robot sensors values. 
This process has to be done within a period of 50 ms. 
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Then it returns to a Ready state. If a sensor detects an 
obstacle, the Supervisor enters the Blocked state. From 
there, the operator has 50 seconds to enter a new route. If 
no route is received within this time frame, a time out is 
triggered [19]. 

According to the defined dynamic semantic 
transformation rules, the states, events, actions, and 
transitions can be transformed into the attributes and 
operations of corresponding Object-Z class. Thus, we 
have the following schema(Fig.6). 

……
[Behavioral state attributes]
Ready:Boolean
Update:Boolean
Blocked:Boolean

Supervisor
Ready

INIT

↾(updateTimeOut, obstacleDetected,updateRoute)

[Operations derived from the dynamic model]
[Event acceptor operations]
updateTimeOut≙transReadytoUpdate[]
obstacleDetected≙transReadytoBlocked[]
updateRoute≙[route?:RouteCaculator]∧

transBlockedtoReady[]transReadytoReady[]
[Transiton operations]
transReadytoUpdate≙[Δ(Update)|Ready∧Update′]
transReadytoBlocked≙[Δ(Blocked)|Ready∧Blocked′]
transBlockedtoReady≙[Δ(Blocked)|Blocked∧Ready′]
transReadytoReady≙[Δ(Ready)|Ready∧Ready′]

 
Figure.6 dynamic transformation results 

B. Analysis 
We focus on two logical entities of the Josefil case 

study, and present how to formally transform the static 
and dynamic semantic of a model. The transformation 
from a MARTE model to an Object-Z model enables the 
target model to be more precise and to be strictly 
analyzed. So we can use the existing Object-Z analysis 
tools to verify the correctness of the model, and make 
sure the consistency of the model and specification. 
Finally, it can improve the software reliability of the 
system. 

VI. CONCLUSIONS 

Comparing with the traditional computer system, the 
reliability is more important for embedded system. This 
motivates researchers to develop well-formed methods 
and tools to model and analyze the embedded system. 
Formal specification is defined by strict mathematical 
notation and can specify the system properties. It enables 
us to find the inconsistency in the design stage. In the 
paper, we provide a set of formal transformation rules for 
MARTE profile. Our main contributions here are: (a) the 
MDA-based transformation framework between MARTE 
model and Object-Z model, (b) the static semantic 
transformation rules, (c) the dynamic semantic 
transformation rules. 

The MARTE profile also adds constructs to provide 
the Non-Functional Properties (NFPs) modeling 
framework (e.g., throughputs, delays, memory usage). 
For the future work, we will further develop the NFPs 
formal transformation. 
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