

Web Service Composition Verification of Safety
Properties Based on Predicate Abstraction

Yuying Wang

Science School, Xi’an University of Architecture and Technology, Xi’an 710055, China
Email: yinyin632@sina.com

Ning Yang

 The School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
Email: ningyang@nwpu.edu.cn

Abstract—State space explosion is one of the biggest problem
in model checking. Predicate abstraction technique is used to
reduce the size of state space of colored Petri net models, and
an algorithm was proposed to obtain the abstracted state
space of a colored Petri net model without its original state
space generated. A method to verify safety properties of Web
service composition by abstracted state space and the
Counterexample-Guided Abstraction Refinement was
proposed. The problem of state space explosion is solved to
some extend by this way. Finally, with an example, an
application of this method is illustrated, which its efficiency
shown.

Index Terms— model checking, web service composition,
safety property, predicate abstraction, colored Petri net

I. INTRODUCTION

A safety property is in the sense of means that “nothing
bad” can happen in a system, which assert that the system
always stays within some allowed region.

Model checking[1-5] is an automatic formal
verification technique which is widely used in a variety of
fields since 1980’s. Given a state transition system and a
property, It explores the state space of the system
exhaustively to determine whether the system satisfies the
property. State space explosion remains a large of
obstacle to use of model checking.

Abstraction[6] is a kind of efficient ways to overcome
the state space explosion problem. During the verification
process, irrelevant information is removed from the
original system and a simplified model, called abstract
model, is obtained. In general, the abstract model has less
states than the original. So the verification is higher
efficient while we do it under the abstract model. By this
verification method, we can deal with lager-scale designs
to a certain degree.

For web service composition, there are some research
works employed varieties of methods, which includes
Petri net, process algebra, abstract state machine, SPIN,
and automaton methods, etc[6-8]. Some researches
employed more than one method, so we can not classify
them accurately.

Based on Colored Petri Net (CP-net for short) models of
Web service composition, a new algorithm is presented to
verify safety properties of the web service composition in
this paper. Predicate abstraction technique is employed in
it.

II. COUNTER-EXAMPLE-GUIDED ABSTRACTION
REFINEMENT

Program analysis must be precise and scalable for
verification. Precision is required so that the analysis does
not be fooled by spurious errors and dose not overlook
genuine errors. Scalability is necessary so that the method
is suitable for large software systems which demands most
accurate analysis. These two features are often mutually
exclusive and need a trade-off between them. Flow-based
analyses[10,11] achieve scalability. It fixes a small
domain of dataflow facts which are tracked, and computes
flow functions over the abstract semantics of the program
on this fixed set. For complicated properties, the set of
facts that are tracked is too small and will lead to a high
rate of false positives, i.e., a large number of bugs reported
which never arise during the program execution. Some
model checking methods, precise or path-sensitive, often
end up tracking too many facts and lead to state explosion
in the way of scalability.

To avoid the pitfalls arising from using a fixed set of
facts, much recent interest has focused on analyses that
automatically tune the precision of the analysis using false
positives. It is called Counterexample-Guided Abstraction
Refinement(CEGAR for short). It is a loop[6,12-15] with
3 steps as follows.

Step 1 (“Abstraction”) A finite set of predicates is
chosen, and an abstract model is built automatically as a
finite or push-down automaton for the given program.
States of the automaton represent truth assignments of the
chosen predicates.

Step 2 (“Verification”) For the desired property, The
abstract model is checked automatically. If error-free the
abstract model is, then so is the original program (return
“program correct”); otherwise, an abstract
counter-example is produced automatically which
demonstrates how the model violates the property.

Step 3 (“Counter-example-driven refinement”)
Whether the abstract counter-example corresponds to a
concrete counter-example in the original program, it is
checked automatically. If so, then a program error has
been found (return “program incorrect”); otherwise, the
chosen set of predicates does not contain enough
information to prove program correctness and new
predicates required to be added into the set. The selection

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 793

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.793-799

of such predicates is automated, or at least guided, by the
failure to concretize the abstract counter-example.

Goto Step 1.

III. PREDICATE ABSTRACTION ON CP-NET MODELS

Predicate abstraction was presented by S.Graf and
H.Saidi firstly [17]. It is a kind of abstraction with keeping
properties. It defines an equivalence relation on the initial
model by predicates, and changes the concrete model
which is large or contains infinite states, into an abstract
model which has finite states and is easy to manipulate.
Predicate abstraction can be seem as a special conservative
abstraction.

A. Predicate Abstraction
In what follows, logic predicates shall be used to

represent sets. If a predicate P represents a set, then an
element, x , is a member of the set if and only if ()P x is
true.

Elements of a concrete system (a system without
abstraction) are described as follows.

1. The set of concrete sates, denoted by C ;
2. The concrete transition relations which are described

by an initial state predicate :CI C bool→ , and a concrete
transition relation predicate :CR C C bool× → .

3. A state x is an initial state, iff ()CI x is true; state
y is a concrete successor of x iff (,)CR x y is true.

Let 1 2 Nϕ ϕ ϕ，， ， be the abstraction predicates defined
on the concrete system M , M is partitioned by these
predicates equivalently, and each concrete state is mapped
to an equivalent class which called abstract state. An
abstract state can be represented by a vector of length N .
The abstract set of states, A ,can be defined as :

1 2 N{(b b) | is a bool expression}iA b b= ，， ，
The correspondence exists between a concrete state and

an abstract state. A concrete state corresponds to only one
abstract state, and an abstract state to a set of concrete
states. This relationship can be described by abstraction
and concretization functions. The abstraction function
α maps each concrete state to an abstract state, and the
concretization is the inverse of an abstraction. The
concretization function γ maps each abstract state to the
set of all concrete states it represents.

Definition 1. (Abstraction and concretization
functions)[16]. Let 1 2 Nϕ ϕ ϕ，， ， be the abstraction
predicates defined on the concrete system M .

1 2 NB B B， ， ， are boolean variables where each

iB represents all concrete states satisfying the predicated

iϕ . Abstract states are represented by a boolean
expression 1 2 Nexp (B B B)A ， ， ， . That means that the set of
concrete states represented by the abstract state can easily
be computed by substituting each occurrence of each
variable iB by the concrete predicate iϕ which it
represents:

whereas the implicitly defined abstraction function as
bellow.

1 2 N() {exp (B B B) | exp [/]}A A Bα ϕ ϕ ϕ= ∧ ⇒， ， ，
where ϕ represents a vector which consists of

1 2 Nϕ ϕ ϕ，， ， , and B represents a vector which consists of

1 2 NB B B， ， ， , [/]Bϕ represents substitution of iϕ for iB ,
for each i .

For each concrete state ϕ , ()α ϕ is a conjunctive
normal form of all formulas 1 2 Nexp (B B B)A ， ， ， which

satisfying exp [/]A Bϕ ϕ⇒ . In general it is not easy to
compute this conjunction, so an upper approximation of
the function α , 'α is used by Graf and Saidi[17] to
substitute for it . 'α is less expensive to compute and
results in a monomial on 1 2 NB B B， ， ， .

'
i() {B | , 1 }i i nα ϕ ϕ ϕ= ∧ ⇒ ≤ ≤

(Notice: a monomial on 1 2 NB B B， ， ， means a
conjunction of iB and iB¬ , in which iB occurs at most
one time, and the predicate false is seemed as a
monomial.)

A method of abstract state computation from a concrete
state was given out by S.Graf and H.. An abstract state is a
certain assignment of N boolean variables, and is
presented by atomic formula false or a conjuctive normal
form 1 2 Nc c c∧ ∧ ∧ where (1)ic i N≤ ≤ takes on value

i iB B¬, or true.
If the current concrete state satisfies the predicate iϕ ,

ic takes on vlaue iB . Otherwise it satisfies predicate iϕ¬ ,

ic takes on vlaue iB¬ . If neither iϕ nor iϕ¬ it satisfies,

ic takes value true.
As we described previously, A is the set of states of the

abstract system. Abstract initial states and abstract
transition relations are complete to define an abstract
system.

Definition 2. (Initial state). The abstract initial states
:AI A bool→ is defined to be ()Cα I .
It may be shown that the concrete and abstract initial

states satisfy the inclusion relation ()C AI Iγ⇒ .
Definition 3. (Abstract transition relation). The abstract

transition relation is represented by a predicate
:AR A A bool× → with two states, ,s t A∈ , as argments.

The transition relation is defined as
(,) , . ()() ()() (,)A CR s t x y C s x t y R x yγ γ= ∃ ∈ ∧ ∧ .

Definition 4.(Predicate transformer) Let R be a binary
relation on a set Q , and ()P Qϕ ∈ represent a subset of
Q ,then

' ' '

' ' '

[]() . ((,) ())
[]() . (,) ()

pre R q R q q q
post R q R q q q

ϕ ϕ
ϕ ϕ

= ∀ ⇒

= ∃ ∧

[]()pre R ϕ defines the largest set of states such that all
its successors satisfy ϕ (the weakest precondition);

[]()post R ϕ defines the set of successors of ϕ by R (the
1 2 N(exp (B B B)) exp [/]A A Bγ ϕ=， ， ，

794 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

strongest postcondition). Let AR denote the set of
transitions in an abstract system, and CR denote the set of
transitions in the corresponding concrete system, then AR
and CR have such relevance: For each concrete transition

jτ , we use A
jτ to denote a transition in the abstract system

which comes from 1 2 Nexp (B B B)A ， ， ， and corresponds

to jτ , that is, A
jτ is a transition from a set of abstract states

1 2 Nexp (B B B)A ， ， ， to another set of abstract states which
represents all successors of the concrete states represented
by 1 2 Nexp (B B B)A ， ， ， . A

jτ can be determined by

In this formula, jg is a boolean expression and is the

condition of jτ occurrence. A transition occurs only when
the system current state meets jg . while

exp [/]A
jB gϕ ⇒ ¬ is satisfied

1 2(exp (, , ,))A A
j NB B B falseτ = . It means the abstract

state 1 2exp (, , ,)A
NB B B has no successor.

exp [/]A
jB gϕ ⇒ means the transition condition satisfied,

post[](exp [/])A
j Bτ ϕ determines the value of ic takes.

In conclusion, given a concrete model with its set of
initial states CI and set of transitions CR , an abstract
model can be computed with the abstract initial states set

AI and transitions set AR , using abstract function 'α and
abstract transition A

jτ .
Theory 1. For any concrete state x , ((x))(x)γ α holds.
Theory 2. For any abstract states x, y ,and an abstract

state s , ()() (,) . (,) ()()C As x R x y t R s t t yγ γ∧ ⇒ ∃ ∧ holds.
Above theories have been proved in reference [16].
The abstract model given in this section is conservative.

That is, if a property holds in an abstract system, it also
holds in the corresponding concrete system.

Theory 3.(Conservation of abstraction) if a
*CTL universal property holds in an abstract model, it also

holds in the corresponding concrete model.
This theory was presented by CLARKE, et.al. [18]. A

universal property means no path quantifier “ ∃ ” existing
in the negative normal form it translated.

B. CP-net Models
CP-net extends the Petri net in definition of data types

and manipulation of data values. For a same system, its
CP-net model should be simpler and more compact than its
Petri net model in general. CP-net has been used to
describe some properties, for example, security
property[19].

All CP-net models appear in this paper are generated by
CPN tools[20] developed by Danish Aarhus university.
The color set "STATE'' has bool type. Symbol "t"
represents a bool constant "true", which denotes resources

movement by representing a state of an activity. "MSG" is
a color set of string type, "msg" is a variable of MSG.

C. Predicate Abstraction on CP-net Models
In essence, predicate abstraction is a method of

partitions of equivalent classes. All applications of
predicate abstract technique authors found in references,
work on state diagram of systems. The biggest problem for
a state diagram is states explosion.

To avoid analysis of big scale sate diagram, a new
algorithm of the predicate abstraction is given in this paper.
In this algorithm, the generation of a state diagram is
combined with the abstraction of the same states diagram,
the abstract states diagram was built during the state
diagram generation. This new algorithm is based on
CP-net algorithms of states diagram generation [21] and
abstract states diagram generation[15] from concrete
states diagram. Compared with algorithms available, this
new one need not deal with concrete states diagram, so
states explosion of the concrete states diagram is avoided.

Formulas of relations between transitions in a concrete
system model and that in the abstract system model are
employed in this algorithm. A system abstract states
diagram will be obtained directly without the generation of
the concrete states diagram, if we move some steps out this
algorithm. So the explosion problem of the concrete state
space is solved to a certain degree.

Algorithm 1. (Generations of CP-net states diagram and
abstract states diagram)

symbols:
cpn:the CP-net model of a given system S

0M :a initial mark of cpn；

1 2{ , , , }nϕ ϕ ϕ ϕ= : set of predicates；
Input:cpn
OutPut:an abstract states diagram of cpn based on the

set of predicates ϕ , which composes of a set of
nodes, Nodes ,and a set of arcs, Arcs ;

Steps:
 1. initialize the state diagram:

0{ }; ;Nodes M Arcs φ= =
 2. initialize the data: 0{ }Unprocessed M= ;

1 2

[1,]

 if exp [/]

, if post[](exp [/])
(exp (, , ,)) otherwise.

, if post[](exp [/])

A
j

A
i j iA A

j N A
i j i

i N

false B g

B B
B B B

B B

true

ϕ

τ ϕ ϕ
τ

τ ϕ ϕ
∈

⎧ ⇒ ¬
⎪
⎪ ⎧ ⎫⇒⎪ ⎪ ⎪= ⎨ ⎪ ⎪¬ ⇒ ¬⎨ ⎬⎪

⎪ ⎪⎪
⎪ ⎪⎪ ⎩ ⎭⎩

∧

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 795

© 2014 ACADEMY PUBLISHER

 3. compute the abstract function 'α by the set of
predicates ϕ : '

i() {B | , 1 }i i nα ϕ ϕ ϕ= ∧ ⇒ ≤ ≤
 4. initialize the abstract state diagram:
 compute the initial state of the abstract state digram:
 '

0 0 0() , A , { }A A A
touM M Nodes Mα φ= = = ;

 5. while(Unprocessed φ≠)
｛ select a state 1M Unprocessed∈
 1\{ }Unprocessed Unprocessed M=
 caculate the abstract state with which
1M correspond, '

1 1()AM Mα= ；
 if (1

A AM Nodes∉) { 1{ }A A ANodes Nodes M= ∪ ;}
 //treat bindings of 1M

 for (each binding 2(,)b M which satisfies
 1 2[M b M>)
 { if (2M Nodes∉)
 { 2{ }Nodes Nodes M= ∪ .
 2{ }Unprocessed Unprocessed M= ∪
 caculate the abstract state with which
 1M correspond, '

2 2()AM Mα= ;
 if (2

A AM Nodes∉)
 { 2{ }A A ANodes Nodes M= ∪ ;}}
 1 2(, ,)Arcs Arcs M b M= ∪
 seem 1 2(, ,)M b M as a transition jτ of the

concrete system, calculate the abstract transition with
which jτ correspond:

 2
1

2

 , if (M)
()

, if (M)j

A
i iA A

A
i i

B
M

B

ϕ
τ

ϕ
⎧ ⇒⎪= ⎨

¬ ⇒ ¬⎪⎩
.

 1 A A { ()}
j

A A
tou tou Mτ= ∪ } }

6. put out the concrete state diagram, that is, put out the
set Nodes and the set Arcs ;

7. put out the abstract state diagram, that is, put out its
initial state 0

AM , set of transitions touA , and its reachable
states set ANodes .

IV. CP-NET MODEL OF WEB SERVICE COMPOSITION

Web service composition is an error prone task in which
service candidates interact complexly. The Business
Process Execution Language for Web Services
(BPEL4WS or BPEL for short) was proposed by BEA,
IBM and Microsoft. It often is used to describe Web
service compositions. BPEL represents a convergence of
two languages: the Web Services Flow Language (WSFL)
of IBM and XLANG of Microsoft. Like most languages,
(the semantics of) BPEL is defined in English prose. Such
descriptions, although often masterpieces of apparent
clarity, usually suffer from inconsistency, ambiguity and
incompleteness.

Due to the presence of concurrency and intricate
features like compensation handling, correlation and

death-path-elimination, BPEL processes are also error
prone.

Based on CP-net, processes of Web service
composition described by BPEL are translated into timed
CP-net models in this paper, which have given in our other
papers[22, 23]. Atomic activities of BPEL are seem as
atomic operation in transitions, their execution
successfully or not is the only factor under considered,
which means the factor results in errors in not under
considered, because we focus verification on web service
compositions.

V. WEB SERVICE COMPOSITION VERIFICATION OF SAFETY
PROPERTIES BY PREDICATE ABSTRACTION

In this sector, the predicate abstraction technique and
CEGAR are employed to verify safety properties of web
service compositions. The algorithm 1 is used to generate
the states diagram from the system's CP-net model, the
abstract state diagram or the concrete state diagram.

A. System Description
The system which was discussed in the BPEL

specification[24] is used to demonstrate our work in this
section. It is a Shopping Service, which presents a BPEL
Abstract Process for a rudimentary shipping service.

This service handles the shipment of orders, and orders
are composed of a number of items. The shipping service
offers two options, one for partial shipments where the
items are shipped in groups until the order is fulfilled, and
another for shipments where the items are shipped all
together.

B. System Model
The CP-net model derived from this Abstract Process’s

instantiation is shown in fig.1. It presents the Shopping
Service, a web service composition.

In declarations of this model, the color set "shipOrder"
is of record type and presents order type, its component
"complete" is boolean and presents service options, whole
shipment or partial shipments. The color set "shipOpaqp"
presents a order during partial shipment.

In this CP-net model. The place "input" is of
"shipOrder" type and presents order’s information
transmitted into the system. With initial token 0, the place
"itemshipped" is of integer type and presents the mount of
goods shipped during partial shipments. The place
"opaque" is of "shipOpaq" type and presents all orders of
partial shipments, while "notice" has same type and
presents a order in each shipment. The place "ship" is of
"shipNotice" type, its one component presents the current
amount of goods shipped in a partial shipment and another
presents the total amount of goods need to ship.

In the CP-net model, the transition "receive" presents
the acceptance of orders from the outside system,
"invokSN1" presents the service invocation of whole
shipment and "invokSN2" the service of partial shipments.

Block line parts in fig.1 mean main activities of
services of partial shipments.

796 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

C. System States
Resource movements in the system are presented by

changes of places in CP-net models. At any time, the mark
which consists of states of all tokens presents the system
state. In order to describe the system state, states of tokens
of places need to depict by predicates. The number of
token of a place may be empty or not. If it is not empty,
maybe a further description needed.

With containing information of tokens in CP-nets,
predicates do not only have values "true" or "false" simply,
because sometimes computing its value is impossible. In
this case, we use symbol "-" to denote this situation. In
other words, a predicate will have one of 3 values: "true",
"false" or "-".

D. System Properties Verification
In this section, we demonstrate the method to verify a

safe property of the system by predicate abstractions.
We assume the system holds a property which both

whole shipment and partial shipment will be invoked in
same time. That is, in the CP-net model transitions
"invokSN1" and "invokSN2" will never be triggered at
same time.

Applying the algorithm 1 on the CP-net model, we
obtain the abstract state diagram shown in Fig.2(a), where

0
AM is the initial abstract state, the binary number in a

circle presents a system state under the given predicates set
1 2{ , }ϕ ϕ ,what in a square presents a transition which

causes system states change.

There is a path in the system of Shopping Service,
0 3 0 1 2 0
A A A A A AM M M M M M→ → → → → , as shown in

Fig.2(a). In its sub-path of 3 0
A AM M→ , the transition

"invokSN1" is triggered, while in another sub-path of
2 0
A AM M→ , the transition "invokSN2" triggered also. In

other words, both services of the whole and the partial
shipments are invoked during the system execution. We
guess this conclusion is due to the rough of models and in
predicates no enough information to prove the correction
of the system. So new predicates need to add.

E. Abstraction and Concretization
In this section, 3ϕ : (# 0) (0)shipped ship or total> > ,

a new predicate added to the set of predicates. The current
set of predicates is 1 2 3{ , , }ϕ ϕ ϕ , in which 1ϕ and 2ϕ are the
same as before. The predicate 3ϕ means at lest one of
"invokSN2" and "invokSN1" be triggered.

For this new predicates set, we obtain the abstract state
diagram shown in Fig.2(b).

Fig.2(b) shows none of path through both of 2
AM (or

5
AM) and 7

AM , which means transitions "invokSN2" and
"invokSN1" can be both triggered during once execution
of the system. In other words, it is impossible to invoke the
whole shipment service and the partial shipment services
successively.

From above analysis we know the counter-example:
0 3 0 1 2 0
A A A A A AM M M M M M→ → → → → is a pseudo

counter-example.

Figure 1. CP-net Model of the Service Process

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 797

© 2014 ACADEMY PUBLISHER

VI. CONCLUSION

Web service composition is an error prone task. One of
the biggest problems is state space exploration during
model checking. The predicate abstraction technique is
one of efficient ways to solve the problem of states space
explosion to a certain extent.

To avoid the analysis of a big scale sate diagram, a new
algorithm of the predicate abstraction on CP-net models is
given in this paper. In the algorithm, the generation of a
state diagram is combined with the abstraction of the same
state diagram of CP-net models, the abstract state diagram
was built during the generation.

An example also is given to illustrate the efficient of
the new algorithm.

ACKNOWLEDGEMENTS

This work was financially supported by the Department
of Education of Shaanxi Foundation (2013JK1190).

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[2] N. M. Lin, W. H. Zhang. Model Checking: Theory,
Mothod and Application．Chinese Journal of Electrinics,
2002,12(3):1906-912.

[3] M. Huth, M. Ryan. Logic in Computer Science. Cambridge
University Press: 2005

[4] H. Shi, W. Ma, M. Yang, etc.. A Case Study of Model
Checking Retail Banking System with SPIN. Journal of
Computers. 2012, Vol 7(10):2503-2510

[5] C. Zhou, B. Sun. Abstraction In Model Checking
Real-Time Temporal Logic of Knowledge. Journal of
Computers. 2012,Vol 7(2): 362-370

[6] R. Jhala. Program Verification by Lazy Abstraction. Ph.D.
Thesis. Computer Science, University of Calfornia at
Berkeley. Fall, 2004

[7] M. Khaxar, S. Jalili and N. Khakpour. Monitoring Safety
Properties of Composite Web Services at Runtime Using
CSP. proceeding of: Workshops Proceedings of the 12th
IEEE International Enterprise Distributed Object

Computing Conference, EDOCw 2009, September 2009,
Auckland, New Zealand

[8] F. van Breugel, M. Koshkina. Models and Verification of
BPEL.
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.p
df. September 2006.

[9] G. Q. Zhang, H. J. Shi. Model Checking for Asynchronous
Web Service Composition Based on XYZ/ADL. Web
Information Systems and Mining, Lecture Notes in
Computer Science, 2011, 6988:428-435

[10] J. S. Foster, T. Terauchi, and Aiken A. Flow-sensitive type
qualifiers. In PLDI02: Programming Language Design and
Implementation, ACM,2002:1-12.

[11] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. In PLDI 02:
Programming Language Design and Implementation,
ACM, 2002:57-68.

[12] R. Alur, A. Itai, B. P. Kurshan, et al. Timing verification by
successive approximation. Information and Computation,
1995, 118(1):142-157.

[13] T. Ball, S. K. Rajamani. Automatically validating temporal
safety properties of interfaces.In SPIN 2001: SPIN
Workshop, LNCS 2057, Springer-Verlag, 2001:103-122.

[14] H. Saidi. Model checking guided abstraction and analysis.
In SAS 00: Static-Analysis Symposium,. LNCS 1824,
Springer-Verlag, 2000:377-396.

[15] E. M. Clarke, O. Grumberg, S. Jha, et al.
Counterexample-guided abstraction refinement. In CAV
00: Computer Aided Verification, LNCS 1855,
Springer-Verlag, 2000:154-169.

[16] S. Das. Predicate Abstraction. Ph.D. Thesis.Department of
Electrical Engineering, Stanford University, December
2003.

[17] S. Graf, H. Saidi. Construction of abstract state graphs with
PVS. Proceedings of the 9th Conference on
Computer-Aided Verification (CAV'97), Haifa, Israel,
June 199:72−83.

[18] E. M. Clarke, O. Grumberg, D. E. Long. Model checking
and abstraction. ACM Trans. Program, 1994, 16(5):1512
–1542.

[19] X. Yang, X Xie. Modeling and Analysis of Security
Protocols Using Colored Petri Nets. Journal of Computers.
2011, Vol 6(1):19-27

[20] http://wiki.daimi.au.dk/cpntools/cpntools.wiki. 2009

A
0M

A
3M

A
2M

A
1M

1ϕ
2ϕ

A
0M

A
2MA

1M

1ϕ
2ϕ
3ϕ

A
3M

A
7M

A
4M

A
8M

A
5MA

6M

 (a) (b)
Figure 2. (a) abstract state space of Shipping service;

(b) abstract state space of Shipping Service after new predicate added.

798 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

[21] L. M. Kristensen. State Space Methods for Coloured Petri
Nets. Department of Computer Science,University of
Aarhus, Denmark, 2000.

[22] Y. Wang, P. Chen. Models of BPEL's flow activity based
on color Petri nets. Application Research of
Computers,2011,28(2):631-634.

[23] Y. Wang, P. Chen. Models of Web Services Composition
Based on Timed Color Petri Nets. Computer Science,
2010,37(10):151-155.

[24] OASIS. Web Services Business Process Execution
Language Version 2.0.

 https://www.oasis-open.org/committees/wsbpel/

Yuying Wang was born in Chifeng,
Inner Mongolia, China in 1964. She
awarded a BS degree in mathematics
from Beijing Normal University in 1987,
China. She received the MS and Ph.D
degrees in software engineering from
Xidian University, Xi'an, China in 2003
and 2012. She is an associate professor
of math and software engineering, Xian

University of Architecture and Technology, China. Her research
interests include model checking, data mine and optimization.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 799

© 2014 ACADEMY PUBLISHER

