

Test Case Generation of Web Service
Composition based on CP-nets

Yuying Wang

Science School, Xi’an University of Architecture and Technology, Xi'an, Shaanxi, China
Email: yinyin632@sina.com

Ning Yang

 The School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
Email: ningyang@nwpu.edu.cn

Abstract—Web service composition is an error prone task.
Based on CP-nets (colored petri net) models, an approach of
test case generation is proposed for web service compositions
coded in BPEL. In this approach the semantic of BPEL
concurrence and some special features are well dealt. Firstly,
BPEL processes of a web service composition is translated
into CP-nets models, then depth-first traversal works on the
models immediately, and results in some sequence test paths.
Secondly, after these sequence test paths merged into
program executable units (PEU for short), the constraint set
of these units is solved and filtered and formed into test cases.
Finally, an application of the approach is illustrated with an
example, which more efficiency shown with 7 test units less
than 9 test paths appeared in a reference for same example, 3
test cases far less than formal works.

Index Terms—web service composition, test case generation,
CP-nets, state space explosion, BPEL.

I. INTRODUCTION

Web service composition is an error prone task in which
service candidates interact complexly. The Business
Process Execution Language for Web Services
(BPEL4WS or BPEL for short) was proposed by BEA,
IBM and Microsoft, which represents a convergence of
two languages: the Web Services Flow Language (WSFL)
of IBM and XLANG of Microsoft. BPEL often acts as a
description language of web service compositions. As a
concurrent program language, BPEL has some special
features that raise special challenges for testing[1], such as
compensation handling, correlation and
death-path-elimination.

Most works of concurrent program testing are based on
analysis of the program reachability[2,3], that is,
construction and analysis of reachability graph(RG) of the
program under test. RG presents all possible states of
which the program uncertainly execution reaches. But RG
generation suffers from the problem of state space
explosion.

Some test generation methods based on path analysis
are also proposed for testing sequential and concurrent[5,6]
programs. These methods firstly select local paths for
individual tasks, then compose global paths with these
local paths. They are applicable to programs consisting of

communication processes or tasks, like those coded in Ada
or CSP, but inappropriate for BPEL, which has neither
explicit separation of individual processes nor
synchronization via rendezvous.

Furthermore, with unique features in both syntax (e.g.
flow with activity synchronization, join condition) and
semantics (e.g. dead-path-elimination), BPEL needs
special treatments in testing.

This paper proposes an approach to BPEL test case
generation, which effectively deals with BPEL special
features. To avoid state space explosion, this approach
will not construct a RG and not cover all serialized paths
of the program under test. Instead, this approach is based
on CP-nets models, and only covers the program
executable units, into which some serialized paths merged.
For a program with complicated variables sharing and
process interaction, this method is suitable and meets
requirements of BPEL practices.

This paper is organized as follows. The modeling and
analysis of a web service composition are presented in the
next 2 sections, while the definition of program executable
unit are given out in them. Coverage criteria for testing
BPEL programs are introduced in section 4. Some
algorithms which will be employed in test case generation
are given in section 5. A new algorithm of BPEL test case
generation is expressed in section 6. Section 7 follows
with an example to illustrate our method. Section 8
concludes the paper with the compare to our formal work
and the future work predictions.

II. MODELING WEB SEVICE COMPOSITION

To avoid ambiguity in comprehension of web service
compositions coded by BPEL, we should model web
service compositions, in other words, model BPEL
program and analyze it. By comparison with some model
ways, CP-net is employed in our works.

A. CP-nets
CP-net extends the Petri net in definition of data types

and manipulation of data values. For a same system, its
CP-net model should be simpler and more compact than its
Petri net model in general. CP-net has been used to
describe some properties, for example, security

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 589

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.3.589-595

property[7]. Petri net to analyze web service compositions
[8].

B. Modeling BPEL Program with CP-nets
Based on CP-net, processes of Web service

composition described by BPEL are translated into timed
CP-net models in this paper, which has given in our other
papers[9, 10]. Atomic activities of BPEL are seem as
atomic operation in transitions, their execution
successfully or not is the only factor under considered,
which means the factor results in errors in not under

considered, because we focus verification on web service
compositions.

All CP-net models appear in this paper are generated by
CPN tools[11] developed by Danish Aarhus university.
The color set "STATE'' has bool type. Symbol "t"
represents a bool constant "true", which denotes resources
movement by representing a state of an activity. "MSG" is
a color set of string type, "msg" is a variable of MSG.
Details see Fig.1.

III. ANALYSIS OF MODEL OF WEB SEVICE COMPOSITION

With all places and transitions of CP-nets seen as
vertexes, a CP-nets model can be seen as a direct graph
which each arc attached an expression. This kind of graph
can be treated as an acyclic one if the 0-1 criterion
employed for loop structures. We do not explicit
distinguish graph and CP-nets model below.

Some elements of CP-nets model M are defined below
for easily description our analysis[12].

Definition 1. (Start Point and End Point) With STATE
type, a place only has output arc is called a start point, the
one only has input arc is called an end point of the model.
Denoted by SP and EP, respectively.

Definition 2. (State point and Data point) A place with
STATE type is called a state point, and the place with
other types is called data point.

Definition 3. (Multiple Entering Edges
Transition,MEET; Multiple Outer Edges
Transition,MOET) MEET means of a transition at which
concurrent paths rendezvous. Similarly, MOET means of
a transition at which concurrent paths scatter. It is the
vertex in the graph has more than one out edges.

Definition 4. (MEET's saturation) The in-degree of the
vertex with a MEET corresponds in the graph, is called the
MEET's saturation of the transition.

Definition 5. (Conditional Paths, Uncompleted Paths)
The conditional paths between vertexes iv and jv is a
sub-graph of the model M . It has sole start point iv and
sole end point jv , and its other vertexes are all on the

Fig.1. the CP-nets model of the Loan process with the bold parts present a PEU

590 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

paths from iv to jv .(the term path has same meaning as
it in the theory of graph). If existing a vertex which
expresses a transition of the CP-nets model and whose
in-degree less than the transition’s saturation in M , we say
this conditional path is uncompleted, in other words, this
path is an uncompleted path.

Definition 6. (Concurrent-able Paths) For paths, 1L
and 2L , if they both come from the start point and stop at
the end point EP, satisfy follows:

(1) 1L is not same as 2L .
(2) There is a transition both in 1L and 2L , its in-degree

in paths less than its saturation in the model M . we
denoted it by tran.

(3) 1L and 2L have a common conditional path from
tran to the EP.

We call 1L and 2L are concurrent-able paths.
Obviously, two concurrent-able paths should

rendezvous at same vertex, tran, then their remainders
merge into a same portion. Here the algorithm of merging
them is given as Algorithm 1.

Algorithm 1(1 2(,)Concurrentable L L ,Check two paths
are concurrent-able or not)

Input: paths 1L and 2L
Output: if 1L and 2L are concurrency, returns true, else

false.
Steps:
(1) With same vertex set and vertex order as those of

model M , present 1L and 2L by their adjacent matrices

1A and 2A , respectively.
(2) Take AND operation on elements which on same

place in matrix 1A and 2A , results in a matrix A .
(3) Find the serial number of vertex with which the EP

correspond, denotes it by p .
(4). check the p th column of A .
 if (existing one and only one t satisfies: at the

location of the t th row the p th column, the element of A
is not zero) {return true . }

 else {return false }.
In the step (4), the condition "existing one and only one

t satisfies: at the location of the t th row the p th column,
the element of A is not zero" means the items (2)and (3)
of definition met.

Algorithm 2(1 2(,)Merge L L ,Merging two
concurrent-able paths)

Input: concurrent-able paths 1L and 2L
Output: path L into which 1L and 2L merged.
Steps:
(1) With same vertex set and vertex order as those of

model M , present 1L and 2L by their adjacent matrices

1A and 2A , respectively.
(2) Take OR operation on elements which on same

place in matrix 1A and 2A , results in a matrix A .

(3) The path expressed by the matrix A is the merged
path L .

Definition 7. (Program Executable Units, PEU) for a
model M , a program executable unit is a sub-model that
satisfy follows:

(1) The SP and EP of M are belong to this sub-model.
(2) Any transition is saturation,, or any vertex

corresponding to a transition has same in-degree than it in
model.

Arcs in a graph are divided into 2 categories: process
control arc and data transmit arc. In follows, PEU we refer
to is the one that generate from the model which all data
flow ignored. In Fig.1, the bold line parts present a PEU of
the model of Loan process[1].

IV. TESTING COVERAGE CRITERION

A good test coverage criterion should meet two aspects.
One is the amount of required synchronous sequences
which reaches the criterion in a reasonable range, and
another is the synchronous sequences selected by this
criterion is benefit to find errors of the concurrent program
under test[13-15].

A. Existing Coverage Criteria for BPEL Program Testing
To measure the quality of software testing, some

coverage criteria are given and some metric tools are
developed. But for the unit test quality of the business
process written in BPEL, there is no uniform measure
criterion up to now.

Existing coverage criteria for BPEL process are divided
into the following five categories: activity coverage,
branch coverage, link coverage, fault handler coverage,
and compensation coverage[16-18]. L.Daniel extended
the test tools BPELUnit to support these five measures[19].
D.Lubke also gave out an instrumental method to obtain
values of these five measures[18].

B. A New Coverage Criteria for BPEL Program Testing
As previous definition, a program executable unit

implements in one execution. The amount of units covered
is what we consider in this paper while test case generating
for a web service composition. For loop structure, 0-1
criterion employed. While test case generating, we strive
to cover all such units. That is PEU coverage criterion we
adopt for the BPEL program testing.

For a CP-nets model of a web service composition, this
criterion includes place coverage, transition coverage; and
for a BPEL program, it includes activity coverage,
concurrent executable path coverage, and also link
coverage.

V. SOME ALGORITHMS RELATED TO TEST CASE
GENERATION

To generate test case of BPEL programs is complicated
Obstacles need to over come. In this section, some
algorithms are designed to solve problems during test case
generation.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 591

© 2014 ACADEMY PUBLISHER

A. An Algorithm of PEU Generation
To generate test cases satisfy the test criterion of BPEL

concurrent paths, we need to obtain all PEUs. For two
PEU, it is possible to execute asynchronous concurrently
in a running.

Algorithm 3 (Generation PEU base on control flow)
Input: the CP-nets model of a BPEL program
Output: E, a set of all PEUs of the program
Steps:
(1) Simplify the CP-nets model of the BPEL program as

one which only has control flows, that is to remove out
vertexes and edges presenting data flow. Denoted by M.

(2) Initialize the set, E , of all PEUs to empty.
(3) Traverse M to generate all conditional paths which

from SP to EP. Use CSPaths to denote the set of these
paths.

(4) If CSPaths is not empty, for each path L CSPaths∈ ,
if L is a PEU, then let { }E E L= ∪ ,

\{ }CSPaths CSPaths L= .
(Note: After this step, if CSPaths is not empty, then any

path of it has uncompleted concurrent-able path in
CSPaths .)

(5) while (CSPaths is not empty)
 { for each pair of paths 1L and 2L
 { if (1 2(,)Concurrentable L L true=)
 { let 1 2(,)L Union L L= ;
 if L is a PEU, let { }E E L= ∪ ;
 else let

 { }CSPaths CSPaths L= ∪ ,
 1 2\{ , }CSPaths CSPaths L L= }

 }
 }
(6) Output E .

B. Algorithms of Dealing with Constraints
The PEU we mentioned above is the essential unit

which will be dealt with in our approach.
After found the unit required to test, the things should to

do is attach data on them, automatically or manually.
Some methods are available, for example, all constraint
conditions are sent into a constraint system, which result in
test cases. The test data we obtained is input messages that
may include output which needs revised manually. When
no output included, it is need to supply manually. When
some information is absent from the constraint conditions,
it can be treated as a free variable and its values can be
generated randomly.

Based on the CP-nets features, a new algorithm of
dealing with constraints is presented as follows. It is
combined with the reverse replacement method which
proposed by J. Zhang[20] and improved by J. Yan[21].

Algorithm 4 (
 int(,)predicatesConstra Node N PEU epu ,
 Calculate the constraint set of node N of PEU epu)
Input: a PEU epu and a node N of the model

Output: the condition which N meets while epu
running, int()constra N

Steps:
(1) if N is a place, use p to denote N .

 if(p φ
•

==)
 { if((() (,))

t p

I p E p t false
•∈

≥ ∑ =)

 () constraint p { }false=

 elseif ((() (,)) true
t p

I p E p t
•∈

≥ ∑ =)

 () constraint p {}=

 else () constraint p { () (,)}
t p

I p E p t
•∈

= ≥ ∑

 }
 else
 { if(((,) (,))

t p t p

E t p E p t false
• •∈ ∈

≥ =∑ ∑)

 () constraint p { }false=

 elseif (((,) (,))
t p t p

E t p E p t true
• •∈ ∈

≥ =∑ ∑)

 () constraint p {}=
 else
 () constraint p { (,) (,)}

t p t p

E t p E p t
• •∈ ∈

= ≥∑ ∑

 }
 Here p

•

 and p• is the preset and postset of p ,
respectively.

(2) if N is a transition, use t to denote N .
 if(()G t true=)
 int() {var1, var 2, , var }constra t l=
 else int() { (), var1, var 2, , var }constra t G t l= .
 Here G(t) is a guard function of transition

t , var1, var 2, , var l is a variable sequence the transition
t output when t fired.

(3) Output int()constra N .
The result of this algorithm, int()constra N , is a

sequence whose elements are predicates or variables.
Employing this algorithm, the constrains set for each node
of the PEU can be obtained.

In the follow algorithm 5, we adapt the breadth-first
research with a slight adjustment in order, according to the
in-degree of each vertex. The constraint condition of each
vertex is appended to the set constraintMerge by its order.
For a transition vertex which has multiple enter edges, the
adoption of breadth-first research and the way which
vertex will not be dealt with until its in-degree is 1,
ensured the condition attached on in-edge of the vertex is
appended to constraintMerge earlier than the transition
guard function. This correspond to the semantic of firing
of transition in CP-nets. The constraint set generated,
constraintMerge, is a sequence.

Algorithm 5 (

592 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

int (Constrain of each node)constra Collect PEU epu with
, Calculate the constraint set of epu)

Input: a program executable unit epu , and the
constraint(N) of each node N in epu .

Output: the constraint condition set of epu needs when
it running.

Steps:
(1) Calculate the in-degree of each node N , denote it as

in(N) .
(2) Denote the start point of epu as v .
 constraintMerge = PredicatesConstraint(v epu)， ,
 visited[v]=true;
 IniQueue(Q); // initialize Q as empty
 EnQueue(Q,v); // v enter the queue Q
(3) while(Not Empty(Q))
{ // the element Q move out the queue, denoted by v
 v=DelQueue(Q)
 w= firstAdj(v) //calculate the adjacent vertex of v
 while(w!= 0) //if the adjacent vertice of v
 { if(not visited[w])
 if(in(w)= =1)
 { constraintMerge= onstraintMerge Appened

constraint(w);
 // appended elements of constraint(w) to the
 //constraintMerge sequentially
 visited[w]=true;
 EnQueue(Q,w); //w enter the queue Q
 } //endif
 in(w)=in(w)-1;
 //get the next adjacent vertex of v
 w=nextAdj(v,w);
 } //endwhile
} //endwhile
(4) Output the set constraintMerge.
For each valid EPU, we will get a constraint condition

set. For different EPUs, their sets maybe are identical, or
has an inclusion relation. For example, "loanAmount
<10000" and "loanAmount <10000 && riskL="low" ". so
filtrition is needed to reduce test cases in this situation.

Algorithm 6 (Filtrition of Constraint Sets)
Input: CES ,the sets of constraint sets for all valid

EPUs.
Output: NCES , the sets of constraint sets filtered.
Steps:
(1) let size denotes the size of CES .
(2) for each constraint set, 1ces
 for each constraint set, 2ces
 if (1ces and 2ces are identical)
 remove 2ces out CES .
(3) for each constraint set, 1ces
 for each constraint set, 2ces
 if (1ces includes 2ces)
 remove 1ces out CES .
 elseif (2ces includes 1ces)
 remove 2ces out CES .
(4) Output the set CES .

After filtrition, each pair of constraint sets have no
intersection parts..

C. Remove out Invalid PEU
For the PEUs obtained based on control flows, it is not

ensure to be able to run. The semantic of an enable
transition shows: if an un-enabled transition exists in a
PEU, this PEU can not execute. We can ignore this kind of
PEU during the test data generated, that is these PEUs
should be removed out. Some PEUs also can not execute
if no initial values to ensure the program run along it.

Algorithm 7 (Remove out invalid PEUs)
Input: E ,the set of PEU. constra int(N) ,Constraint set

for each node
Output: E with some invalid PEU removed
Steps:
(1) for each epu E∈
 if (exist a node N in epu, satisfies

int()false constra N∈)
 \E E epu= //remove out epu from E
(2) Output the set E .
This algorithm deals with CP-nets models locally, so

only those PEUs, which are invalid to test, can be removed
out. For a PEU without resolution of the constraint set, it
can not execute and needs remove out.

VI. A ALGORITHM OF BPEL TEST CASE GENERATION

In this Section, we will elaborate the proposed BPEL
test case generation method. This method contains seven
steps as follows:

Algorithm 8 (BPEL test case generation).
Input: a BPEL program
Output: test cases
Steps:
(1) Model the BPEL program to CP-nets M .
(2) Generate the set of all PEUs of the model M ,

denoted by PS
(3) Remove the invalid PEUs from PS .
(4) Generate the constraint set for each EPU of PS .
(5) Calculate the constraint set for each EPU of PS , the

solution denoted by s . All solutions are denoted by CES .
(6) Remove s which is empty out CES , that is remove

invalid EPUs further.
(7) Filter the Constraint Sets
(8) Derived test data from each s CES∈ . Denoted by

d
(9) Derived test cases from d .
Test cases can be in some forms. XML is employed in

our work, in which a test case is described as a TestUnit
element with an attribute of TestData. This kind of formal
description can be input a test tool automatically.

VII. TEST CASE GENERATION OF WEB SERVICE
COMPOSITION

The example of Loan Approval Process[1] is used to
illustrate our approach. This example consists of a simple
loan approval service. Customers of the service send loan

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 593

© 2014 ACADEMY PUBLISHER

requests, including personal information and amount
being requested. Using this information, the loan service
executes a simple process resulting in either a "loan
approved" message or a "loan rejected" message. The
decision is based on the amount requested and the risk
associated with the customer. For low amounts of less than
$10,000 a streamlined process is used. In the streamlined
process low-risk customers are approved automatically.
For higher amounts, or medium and high-risk customers,
the credit request requires further processing. For each
request, the loan service uses the functionality provided by
two other services. In the streamlined process, used for
low amount loans, a risk assessment service is used to
obtain a quick evaluation of the risk associated with the
customer.

The CP-nets model of this web service composition is
shown is Fig.1.

15 sequence test paths are produced by our algorithm,
and 7 program executable units derived from them. The
constraint sets of these 7 units are following.

loanAmount >=10000;
loanAmount >=10000;
loanAmount <10000;
loanAmount <10000 && riskL="low";
loanAmount <10000 && riskL="low";
loanAmount <10000 && riskL!= "low";
loanAmount <10000 && riskL!= "low".
After the filtrition, only 3 of them retained.
loanAmount >=10000;
loanAmount <10000 && riskL="low";
loanAmount <10000 && riskL!= "low";
With respect to equivalence class, above 3 cases include

all classes. The number of PEUs need to test is less than 9
which is the minimum available in reference[16]. Further
more, the test cases we need is far less than formal works.

VIII. CONCLUSION

A new approach of test case generation of web service
composition is expressed. It can deal with BPEL features
properly. Such as concurrent, DPE,etc. This approach is
based on model techniques, and can be combined with
other testing techniques to use. For example, after
improved slightly, it can be used to test some programs
written in other business process languages, such as
BOMN, XPDL, XLANG, ESFL, etc. with other test
criterions adopted. These works are improvement of our
previous works[12]. It has advantages as follows.

(1) The analysis of CP-nets models directly avoids state
space explosion.

(2) It well adapts to programs of little variables sharing,
or concurrent, especially. Because not too much
interaction between the concurrent actives.

(3) The application of filter on constraint sets and the
improvement of algorithms reduce the test cases number.

(4) The PEU we defined can run directly in the program
running environment, and can be used to explore more
program errors relate to concurrent.

Compare to our previous work, we design some
algorithms to check paths are concurrency or not, and

filter constraint sets of PEU. We also improve the
generation of test cases, which results in less test cases.

The further research work should be done in two
aspects. The variables of the model needs further analysis,
the data dependence and control dependence should be
considered together, an improved generation method of
test case for programs with multiple variable sharing will
proposed. Another aspect is that some high level features
of BPEL, such as scope nest, needs to be dealt with.

ACKNOWLEDGEMENTS

This work was financially supported by the Department
of Education of Shaanxi Foundation (2013JK1190).

REFERENCES

[1] OASIS. Web Services Business Process Execution
Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
pdf. 2008.

[2] L. Chen. “Automatic Test Cases Generation for Statechart
Specifications from Semantics to Algorithm”. Journal of
Computers. 2011, Vol. 6(4):769-775

[3] Y. Yuan, Z.J. Li, W. “Sun. A Graph-Search Based
Approach to BPEL4WS Test Generation”. International
Conference on Software Engineering Advances
(ICSEA'06),2006:14-20

[4] R.N. Taylor, D.L. Levine, and C.D. Kelly. “Structural
testing of concurrent programs”. IEEE Transactions on
Software Engineering. March, 1992, vol18(3):206–215.

[5] R.D. Yang and C.G. Chung, “A path analysis approach to
concurrent program testing”, Information and Software
Technology, 1992, 34(1): 43-56.

[6] T. Katayama, E. Itoh, and Z. Furukawa, “Test-case
generation for concurrent programs with the testing criteria
using interaction sequences”, Proceedings of the 6th
Asian-Pacific Software Engineering Conference, December
1999:590-597.

[7] Y. Xu, X. Xie. Modeling and Analysis of Security Protocols
Using Colored Petri Nets[J]. Journal of Computers. 2011,
Vol 6(1):19-27

[8] G. Fan, H. Yu, L. Chen, and T. Ruan. “An Approach to
Analyzing Time Constrained Service Composition”.
Journal of Computers. 2011, Vol 6(8):1723-1731

[9] Y. WANG, P. CHEN. “Models of BPEL''s flow activity
based on color Petri net”. Application Research of
Computers,2011,28(2):631-634.

[10] Y. WANG, P. CHEN. “Models of Web Services
Composition Based on Timed Color Petri Nets” [J].
COMPUTER SCIENCE,2010,37(10):pages151-155

[11] http://wiki.daimi.au.dk/cpntools/cpntools.wiki[OL]. 2009
[12] Y. WANG, P. CHEN. “Test Case Generation of Web

Service Composition: an Approach Based on the Color Petri
Net”. Applied Mechanics and Materials .2013,Vol. 336-338:
2063-2070

[13] J. Thomas. McCabe. “A Complexity Measure”. IEEE
Transaction on Software Engineering. 1976,
SE-2(4):308–320.

[14] R. D. Yang and C. G. Chung. “A path analysis approach to
concurrent program testing. Information and Software
Technology”. 1992, Vol34(1): 43–56

[15] L. Mei, W. K. Chan, and T. H. Tse. “Data Flow Testing of
Service-Oriented Workflow Applications”. Proceedings of

594 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

the 30th International Conference on Software Engineering
(ICSE 2008), New York, NY, USA: ACM, 2008:371–380

[16] C. Ouyang, E. Verbeek, and W. M. P. Van der Aalst et al.
“Formal semantics and analysis of control flow in
WS-BPEL”. Science of Computer Programming archive.
July 2007, Vol67(2-3):162-198

[17] D. Lubke and A. Salnikow. “Definition and Formalization
of BPEL Process Test Coverage”. Technical report, Leibniz
Universit¨at Hannover, FG Software Engineering.
http://www.se.uni-hannover.de/techreports/2009-01Definit
ion AndFormalizationOfBpelProcessTestCoverage.pdf,
2008.

[18] D. Lubke, L. Singer, A. Salnikow. “Calculating BPEL Test
Coverage through Instrumentation”. Proceedings of the 4th
International Workshop on Automation of Software Test,
AST 2009, Vancouver, BC, Canada: May 2009.

[19] M. Phili. BPELUnit. URL http://www.bpelunit.org.
09/01/2007.

[20] J. Zhang, X. Wang. “A constraint solver and its application
to path feasibility analysis”. International Journal of
Software Engineering & Knowledge Engineering. 2001.
Vol.11(2):139–156.

[21] J. Yan, Z. Li, Y. Yuan et al. “BPEL4WS Unit Testing: Test
Case Generation Using a Concurrent Path Analysis
Approach”. In 17th International Symposium on Software
Reliability Engineering (ISSRE’06). IEEE, 2006

Yuying Wang was born in Chifeng, Inner
Mongolia, China in 1964. She awarded a
BS degree in mathematics from Beijing
Normal University in 1987, China. She
received the MS and Ph.D degrees in
software engineering from Xidian
University, Xi'an, China in 2003 and
2012. She is an associate professor of
math and software engineering, Xian

University of Architecture and Technology, China. Her research
interests include model checking, data mine and optimization.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 595

© 2014 ACADEMY PUBLISHER

