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Abstract—The research on open source software has 
attracted a great deal of attention during the past decades 
for its wide applications in both academia and industry. 
Among the research topics related to open source software, 
the usefulness of software network metrics for fault 
prediction has been received much attention recently. In 
order to verify the importance of software network metrics 
in the performance of fault prediction models, this study 
mixes software network and Chidamber & Kemerer (CK) 
metrics to predict pre- and post-release fault-proneness of 
Eclipse version 2.0. The "small world" and "scale-free" 
characteristics and Spearman correlation have been 
analyzed in detail. In addition, we employed10 classifiers, 2 
weak classifiers, and 5 performance evaluation criteria to 
conduct three sets of experiments. Experimental results 
have demonstrated that the software network metrics can 
only provide little overall performance improvement. Based 
on the comprehensive study, the effect of software network 
metrics can be ignored. 
 
Index Terms—software network metrics, Chidamber & 
Kemerer (CK) metrics, fault prediction, classification, scale-
free characteristic 
 

I.  INTRODUCTION 

With the rapid development of open source software, 
the "small world" and "scale-free" characteristics have 
been discovered successively in lots of real world 
systems such as J2SE SDK, Eclipse, Smalltalk system, 
OpenOffice, BEA WebLogic, MS-Windows binaries, 
TEX, FreeBSD system calls, and Perl CPAN [1-5]. The 
epoch-making finding attracts attention of numerous 
researchers and software developers in both academia and 
industry, which contributes much to the development of 
software network metrics. Up to now, there are several 
graph-level metrics proposed in the research community, 
including In-Degree, Out-Degree, average shortest path 
length, clustering coefficient, betweenness centrality, etc. 
These metrics are useful in evaluating the quality of 
software design, and thus can help developers to design 
better and more robust large-scale open source software. 

Although there has been a significant amount of work 
done relating to predicate faults on the basis of software 
network metrics [5-12], full exhaustively comprehensive 

empirical analysis is still lacking, which provided 
suggestions on metric choice for software network 
researchers and practitioners. Moreover, almost all of 
existing studies can only predict post-release faults. In 
this study, the goal is to predict both pre- and post- 
release faults. In this study, we try to answer the 
following four questions through the comprehensive 
analysis of software network and CK metrics. Does 
software network metrics improve the performance of 
fault prediction models beyond that obtained by previous 
fault prediction models? Does the effect of software 
network metrics differ with different classifiers? Does the 
effect of software network metrics differ with different 
base classifiers? Can software network metrics accelerate 
the convergence of classifiers? In this study, Eclipse 
version 2.0 was adopted to conduct the experiments. 

The remainder of this paper is organized as follows. 
Following the introduction section, section 2 provides an 
overview on related works. Section 3 analyzes “small-
world” and “scale-free” characteristics of software 
network and CK metrics. In section 4, we analyze 
Spearman correlations among the number of faults, 
software network and CK metrics. In section 5, we 
combine software network and CK metrics into a whole 
framework to predict pre- and post-release fault-
proneness. Experimental results are analyzed in section 6. 
The final section concludes this study. 

II.  RELATED WORKS 

In software networks, the software measurement 
problem is a traditional problem and has attracted much 
attention in literature. A large variety of metrics have 
been proposed in the past decades and their usefulness 
has been experimentally demonstrated, creating diverse 
choices. Recently, many researchers have been trying to 
address the issue of fault prediction based on software 
network metrics [6-13].  

Zimmermann et al. [6] compared the ability of network 
and complexity metrics on Windows Server 2003. They 
found that the recall of models built from network metrics 
was 10% points higher than that of models built from 
complexity metrics, and thus concluded that network 
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metrics were able to predict faults better than those 
complexity metrics did. 

Bird et al. [7] showed the influence of combined socio-
technical software networks on the fault-proneness of 
individual software components within Windows Vista 
and six releases of Eclipse. 

Tosun et al. [8] examined three small-scale embedded 
software and two releases of Eclipse to compare fault 
prediction performance of complexity and Social 
Network Analysis (SNA) metrics from function level and 
source-file level. They found that network metrics were 
important indicators of fault modules for large and 
complex systems, whereas they did not have significant 
effects on small-scale systems. 

Concas et al. [10] reported the correlations among 
SNA metrics, CK metrics and faults on two large Java 
systems, of Eclipse and Netbeans. They pointed out that 
SNA metrics generally showed a moderate correlation 
with faults and were comparable to those of CK metrics. 

Tonelli et al. [11] analyzed 9 metrics borrowed from 
Social Network Analysis (SNA) and 3 traditional 
software metrics, such as Loc, Fan-in and Fan-out, on 96 
software systems of the Java Qualitas Corpus. For Eclipse 
and Netbeans, they found that some SNA metrics (such 
as Size, Ties, Brokerage and effSize) were highly 
correlated with faults, while others were strongly anti-
correlated. 

Tonelli et al. [12] presented an empirical and 
exploratory study on the joint application of CK metrics, 
SNA metrics, and other network metrics to analyze 
evolution of 7 releases of Eclipse in time. They 
concluded that the joint application of traditional and 
network software metrics could be used to identify sub-
projects with similar functionality and scopes. 

        Almost all existing research in software network 
metrics related to fault prediction considered only post-
release fault prediction and did not consider pre-release 
fault prediction issues. Moreover, the SNA metrics were 
computed on undirected graphs. To overcome the 
drawbacks of these existing studies, this study proposes a 

novel algorithm to predict not only pre-release faults, but 
also post-release faults, which can be understood as an 
extension of previous works. Furthermore, the SNA 
metrics were computed on directed graphs. We believe 
that this work represents a significant step forward to 
empirically understanding software network metrics and 
their impacts on fault prediction. 

III.  THE ANALYSIS OF "SMALL WORLD" AND “SCALE-
FREE” CHARACTERISTICS 

The “small world” and “scale-free” properties are 
deemed as the most important statistical characteristics of 
complex networks, which have been observed in a host of 
complex networks, including some large-scale software, 
World Wide Web (WWW), Internet, metabolic networks, 
telephone call graphs, network of human sexual contacts, 
and protein interaction networks [14, 15]. The "small 
world" (also known as six degrees of separation) is 
known for average shortest path length and high (average) 
clustering coefficient, while the "scale-free" is famous for 
power-law degree distribution. 

The used dataset in this study was obtained from three 
resources. The first were pre- and post-release faults of 
Eclipse version 2.0, which can be downloaded from 
PROMISE software engineering repository 
(http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/). 
Eclipse version 2.0 contains 6729 classes, among which 
4203 were selected randomly. In pre-release version, 
there were 2433 classes with no-fault, and other 1770 
with faults, referred as pre-release fault dataset; while in 
post-release version, there were 3498 classes with no-
fault, and other 705 with faults, referred as post-release 
fault dataset. The second part include their CK metrics 
data, which can be computed by the software metric tool 
Understand (http://www.scitools.com/). The last one 
include software network metrics, which can be 
computed by the open-source library JUNG 
(http://jung.sourceforge.net/). 

TABLE I.   

DESCRIPTIVE STATISTICS OF PRE-RELEASE OF ECLIPSE 2.0 

Metrics LOC CBO NOC DIT LCOM WMC In-Degree Out-Degree Dijkstra 
shortest path

Betweenness 
Centrality (edge) 

Betweenness 
Centrality (vertex)

Min 8 0 0 1 0 0 0 0 0 1 0 

Max 5200 149 94 8 100 1234 5373 1 8 404 400 

Percentile (25%) 24 2 0 1 0 5 0 1 0 1 0 

Percentile (75%) 125 15 0 3 80 26 0 1 0 3 0 

Median 53 7 0 2 60 12 0 1 0 1 0 

Mean 116.644 11.039 0.2722.358 48.564 24.145 0.953707 0.953707 0.000334736 3.4800127 1.5372668 

Variance 50660.234166.3203.4911.9701269.2792207.1532919.292491 0.04415486 0.000877067 155.16808 144.63213 

Std Dev 225.078 12.897 1.8681.403 35.627 46.980 28941865.75437.7512859 86221.98493 1467114.2 1433883 

Std Error 3.439 0.197 0.0290.021 0.544 0.718 54.02775 0.21012 0.02961531 12.455989 12.025704 

Mode 5 0 0 1 0 3 0 1 0 1 0 
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From viewpoint of complex and software networks, 
the betweenness centrality of a vertex v is the fraction of 
shortest paths between the node pairs that pass through v. 
The betweenness reveals the importance of a node or an 
edge in the overall connectivity of a network and can also 
be viewed as a measure of network resilience, which 
means how many geodesic paths will get longer when 
vertex v is removed from the network. The clustering 

indicates the tendency of a node’s neighbors to cluster 
themselves. So, clustering coefficient is used to assess the 
degree to which nodes tend to cluster together. The 
average shortest path length is defined as the average 
number of steps along the shortest paths between every 
pair of nodes through a network. If there is no path 
connecting two nodes, their distance is conventionally 
defined as an infinite. 

 
 

(a)CBO 
y=26.159x-1.888 

 

 
(b)NOC 

y=0.9298x-1.495 
 

(c)DIT 
y=3.1497x-2.73 

 

 
(d)LCOM 

y=8.4317x-0.754 
 

(e)NOM 
y=11.303x-1.687 

 

 
(f)WMC 

y=19.081x-1.403 
 

 
(g)In-Degree 

y=0.6746x-1.035 

Figure 1.  The log-log plot of cumulative distribution and distribution of pre-release of Eclipse 2.0, in which blue line represents the distribution of 
metrics data, red line represents the cumulative distribution of metrics data and its corresponding fitting function 

Table I summarizes some typical descriptive statistics 
of pre-release of Eclipse 2.0. It is a directed graph with an 
infinite diameter. The mean value of the average shortest 
path length is 3.34736E-4, with clustering coefficient of 
1.923959E-4, In-Degree of 0.953707 and Out-Degree of 
0.953707. As shown in Table I, the values were quite 
small in all cases, even much smaller than the number of 
vertices. 

In the context of graph theory, the degree of a node is 
defined as the number of edges it has against other nodes. 
For a directed graph, its nodes have two kinds of degrees, 
namely In-Degree and Out-Degree. Degree and 
cumulative degree distributions, summarizing the 
connectivity of nodes, indicate the probability of finding 
a node with a specified degree k greater than or equal to k. 
The power law distribution corresponds to a straight line 
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in log-log coordinates, while the exponential distribution 
corresponds to a straight line in semi-log coordinates. 
Figs. 1 and 2 show cumulative distribution vs. 
distributions of In-Degree and CK metrics, respectively. 
As shown in Figs. 1 and 2, all software network and CK 
metrics, except LCOM, appear to have power-law degree 
distributions, as indicated by their approximately straight-
line forms on the doubly logarithmic scales. NOC, NOM, 

WMC and In-Degree are heavy-tailed. Heavy-tailed 
cumulative distribution & distribution of NOC show that 
there are few classes with several children. While heavy-
tailed cumulative distribution & distribution of WMC 
demonstrate complex methods seldom occur. The 
existence of heavy-tailed In-Degree distributions implies 
a broad spectrum of reuse. 

 
 

(a)CBO 
 

 
(b)NOC 

 

(c)DIT 
 

 
(d)LCOM 

 

(e)NOM 
 

 
(f)WMC 

 

 
(g)In-Degree 

Figure 2.  The semi-log plot of cumulative distribution and distribution of pre-release of Eclipse 2.0, in which blue line represents the distribution of 
metrics data, and red line represents the cumulative distribution of metrics data 

TABLE II.   

SPEARMAN CORRELATIONS AMONG THE NUMBER OF PRE-RELEASE FAULTS AND SOFTWARE NETWORK & CK METRICS OF ECLIPSE 2.0 

 CBO NOC DIT LCOM WMC LOC In-Degree Out-Degree 
NOC .036(*)        
DIT .240(**) .067(**)       

LCOM .461(**) .057(**) .007      
WMC .657(**) .113(**) -.043(**) .620(**)     
LOC .720(**) .082(**) -.011 .648(**) .943(**)    

In-Degree .014 .022 .003 .009 .008 .006   
Out-Degree .009 .016 -.004 -.017 .003 -.005 .000  

Faults .385(**) -.008 .044(**) .237(**) .343(**) .364(**) .055(**) .030 
 
*  Correlation is significant at the 0.05 level (2-tailed);  **  Correlation is significant at the 0.01 level (2-tailed).
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IV.  SPEARMAN CORRELATION ANALYSIS 

To analyze the correlations between the number of 
faults, and software network metrics or between the 
number of faults and CK metrics, we set the Spearman 
correlation values as constant values. Here take In-
Degree and Out-Degree as examples of software network 
metrics, and the number of pre-release faults as faults of 
Eclipse version 2.0. The experimental results are shown 
in Table II. As indicated by the moderate values in the 
last row of Table II, there are moderate even weak 
correlations between the number of pre-release faults and 
software network metrics, and similar conclusion is found 
with the correlations between the number of pre-release 
faults and CK metrics. Furthermore, the Spearman rank 
correlation order of software network and CK metrics is 
as follows: CBO, LOC, WMC, LCOM, In-Degree, DIT, 
Out-Degree and NOC. Although the Spearman 
correlation values between the number of faults and CK 
metrics are not relative high, experimental results have 
shown CK metrics are good indicators of fault prediction 
[16,17]. Therefore, low Spearman correlation values do 
not necessarily lead to low performance of prediction. 

V.  FAULT PREDICTION BY MIXING SOFTWARE NETWORK 
AND CK METRICS 

This section provides a detailed comparative analysis 
of software network and CK metrics on fault prediction. 
Among those software network metrics mentioned in 
Section 3, the degree metrics are taken as the example. 
Additionally, the experimental design is given, including 
base classifiers, compared techniques considered in this 
study, criteria used to assess classification performance 
and parameter choice. For the purpose of prediction, pre- 
and post-release faults of Eclipse version 2.0 are 
transferred into two labels, namely fault-proneness and 
no-fault-proneness, thus the used datasets are pre- and 
post-release fault-proneness datasets correspondingly. 

A.  “Simple”and “Weak” Classifiers 
In this study, we use two types of classifiers, namely 

J48 and Naïve Bayes as weak classifiers for the following 
reasons [18]: (1) they are well-known and commonly-
used in the communities of machine learning and 
classification. (2) They are standard statistical techniques 
for classification. 

B.  Comparison Techniques 
In this study, we use 10 classification algorithms 

including AdaC1 [19], AdaC2 [19], AdaC3 [19], weak 
classifiers (J48 or Naïve Bayes), AdaBoost [20] on the 
former two parts of datasets, and their variances on the 
whole datasets, denoted by Degree-AdaC1, Degree-
AdaC2, Degree-AdaC3, Degree-weak classifiers 
(Degree-J48 or Degree-Naïve Bayes), and Degree-
AdaBoost respectively. Previous experimental studies 
have shown that the impact of varying parameters is 
insignificant. Thus we adopt the default parameters, as 
recommended by Weka. The default parameters of the 
J48 are set as [18]: -C 0.25 -M 2. 

C.  Evaluation Criteria 
A large number of evaluation criteria have been used 

in the literature, among which we use precision, F-
Measure, Geometric mean (G-mean) [21], GMPR and 
AUC [22] in this study. The first criterion is for fault-
prone classes, while the latter four are measures of the 
discrimination power of a classifier with respect to each 
class, providing balanced viewpoints. 

 D.  Experimental Parameters 
The ultimate goal of this study is to check whether the 

use of software network metrics can improve the 
performance of fault prediction models beyond that 
obtained by previous fault prediction models. In this 
study, three sets of experiments were conducted for pre- 
and post-release fault-proneness datasets to try to answer 
the following four questions (proposed in Section 1). (1) 
The first set of experiments is conducted to check the 
effect of the degree metrics on different classifiers. (2) 
The second set of experiments is conducted to examine 
whether the degree metrics can accelerate convergence of 
classifiers or not. (3) The third one is conducted to 
investigate the effect of the degree metrics on base 
classifiers. 

All learners were implemented in Java within the 
framework of Weka toolkit [18], which is commonly 
used in machine learning research community. The 
default parameters are set as discussed in Section 5.2. All 
the experimental results are always generated by 10-fold 
cross-validation of classification to avoid sampling bias. 
The performances is evaluated by the average results of 
50 repeated times randomly. 

TABLE III.   

EXPERIMENTAL PARAMETER SETUPS 

Experiments Weak 
Classifiers Compared Classifiers Iterations

No.1 J48 AdaC1, AdaC2, AdaC3, J48, AdaBoost, Degree-AdaC1, Degree-AdaC2, Degree-AdaC3, Degree-
J48, Degree-AdaBoost 10 

No.2 J48 AdaC1, AdaC2, AdaC3, J48, AdaBoost, Degree-AdaC1, Degree-AdaC2, Degree-AdaC3, Degree-
J48, Degree-AdaBoost 1 

No.3 Naïve Bayes AdaC1, AdaC2, AdaC3, Naïve Bayes, AdaBoost, Degree-AdaC1, Degree-AdaC2, Degree-AdaC3, 
Degree-Naïve Bayes, Degree-AdaBoost 10 

 
In the former two sets of experiments, J48 is selected 

as the weak classifier; while in the rest set of experiments, 
Naïve Bayes is selected as the weak classifier. In the first 
and last sets of experiments, the number of iterations is 
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set as 10; while in the second set of experiments, the 
number of iterations is set as 1. For the sake of clarity, a 
detailed description of experimental parameters is given 
in Table III. 

Lastly, we conducted a collection of experiments over 
Eclipse employing 10 classifiers, 2 weak classifiers, and 

5 performance evaluation criteria on pre- and post-release 
fault-proneness datasets. 

VI.  RESULTS AND DISCUSSION 

This section provides a detailed report and discussion 
of the experimental results. As stated in Section 5.4, they 
are described separately. 

TABLE IV.   

PERFORMANCE OF J48, ADABOOST, DEGREE-J48 AND DEGREE-ADABOOST ON PRE- AND POST-RELEASE DATASETS 

 Pre-release Dataset Post-release Dataset 
 J48 Degree-J48 AdaBoost Degree-AdaBoost J48 Degree-J48 AdaBoost Degree-AdaBoost 

Precision   0.6082 0.5973 0.6167 0.6023 0.5458 0.5416 0.4364 0.4569 
F-Measure  0.5536 0.5562 0.5576 0.5593 0.3438 0.3748 0.3838 0.4082 

G-Mean    0.6206 0.6225 0.6245 0.6254 0.4903 0.5220 0.5588 0.5798 
GMPR     0.5563 0.5575 0.5606 0.5608 0.3701 0.3939 0.3867 0.4105 
AUC 0.6918 0.6858 0.7110 0.7016 0.7487 0.7481 0.7446 0.7323 

 
 

(a) Precision 
 

(b) F-Measure 

(c) G-Mean 
 

(d) GMPR 

 
(e) AUC

Figure 3.  Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost 
setups on pre-release dataset 
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(a) Precision 
 

(b) F-Measure 

(c) G-Mean 
 

(d) GMPR 

 
(e) AUC

Figure 4.  Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost 
setups on post-release dataset 

A.  The Effect of Software Network Metrics on Different 
Classifiers 

The first set of experiments is conducted in order to 
evaluate the effect of degree metrics on different 
classifiers. In this set of experiments, CP=1 and CN is 
ranged from 0.1 to 0.9. 

J48 and AdaBoost are chosen separately because they 
don't take misclassification cost setups into account. 
Table 3 shows the results. Figs. 3 and 4 illustrate the 
results of other classifiers. 

It can be seen from the results on Degree-J48 and J48 
listed in Table IV that the former performs slightly better 
than the latter in terms of F-Measure, G-Mean and 
GMPR; but worse in terms of precision and AUC on pre-
release dataset. Similar results can be found for Degree-
J48 and J48 on post-release dataset. However, Degree-
AdaBoost is better than AdaBoost in all terms except 
AUC on the post-release dataset. 

As clearly seen from Fig. 3, with respect to precision, 
Degree-AdaC1 is better than AdaC1 when the value of 

CN is set as 0.3; Degree-AdaC2 is better than AdaC2 
when the value of CN is set as 0.1; Degree-AdaC3 is 
better than AdaC3 when the values of CN are set as 0.6 
and 0.7; the rest are opposite. With respect to F-Measure, 
Degree-AdaC1 performs worse than AdaC1 across 
various misclassification cost setups; Degree-AdaC2 
outperforms AdaC2 when the values of CN are set as 0.1, 
0.2, 0.3 and 0.5; Degree-AdaC3 is worse than AdaC3 
when the values of CN are set as 0.8 and 0.9; the rest are 
opposite. With respect to G-Mean, Degree-AdaC1 
outperforms AdaC1 across various misclassification cost 
setups; Degree-AdaC2 outperforms AdaC2 when the 
values of CN are set as 0.1, 0.2, 0.5, 0.6 and 0.8; Degree-
AdaC3 is worse than AdaC3 when the values of CN are 
set as 0.5 and 0.9; the rest are opposite. With respect to 
GMPR, Degree-AdaC1 outperforms AdaC1 across 
various misclassification cost setups; Degree-AdaC2 
outperforms AdaC2 when the values of CN are ranged 
from 0.1 to 0.3; Degree-AdaC3 outperforms AdaC3 when 
the values of CN are ranged from 0.1 to 0.5; the rest are 
opposite. With respect to AUC, AdaC1, AdaC2 and 
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AdaC3 are better than Degree-AdaC1, Degree-AdaC2 
and Degree-AdaC3, respectively. 

There is a similar phenomenon from the results of 
AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and 
AdaC3 & Degree-AdaC3 on post-release dataset, as 
shown in Fig.4. With respect to precision, Degree-AdaC1 
is better than AdaC1 when the values of CN are set as 0.2, 
0.3, 0.5, 0.7 and 0.8; Degree-AdaC2 is better than AdaC2 
when the values of CN are set as 0.1, 0.3, 0.8 and 0.9; 
AdaC3 is better than Degree-AdaC3 when the values of 
CN are 0.1, 0.6 and 0.8; the rest are opposite. With respect 
to F-Measure, Degree-AdaC1 outperforms AdaC1 across 
various misclassification cost setups; Degree-AdaC2 
outperforms AdaC2 when the values of CN are set as 0.1, 
0.7, 0.8 and 0.9; Degree-AdaC3 is worse than AdaC3 
when the values of CN are set as 0.6 and 0.8; the rest are 
opposite. With respect to G-Mean, Degree-AdaC1 

outperforms AdaC1 across various misclassification cost 
setups; Degree-AdaC2 outperforms AdaC2 when the 
values of CN are set as 0.1, 0.3, 0.7, 0.8 and 0.9; Degree-
AdaC3 is worse than AdaC3 when the values of CN are 
set as 0.5, 0.6 and 0.8; the rest are opposite. With respect 
to GMPR, Degree-AdaC1 outperforms AdaC1 across 
various misclassification cost setups; Degree-AdaC2 
outperforms AdaC2 when the values of CN are set as 0.1, 
0.5 and 0.8; Degree-AdaC3 outperforms AdaC3 when the 
values of CN are ranged from 0.1 to 0.3; the rest are 
opposite. With respect to AUC, Degree-AdaC1 
outperforms AdaC1 except the value of CN is set as 0.1; 
Degree-AdaC2 outperforms AdaC2 when the values of 
CN are ranged from 0.7 to 0.9; Degree-AdaC3 
outperforms AdaC3 when the values of CN are set as 0.4, 
0.7 and 0.9; the rest are opposite. 

TABLE V.   

PERFORMANCE OF J48, ADABOOST, DEGREE-J48 AND DEGREE-ADABOOST UNDER A SMALL ITERATION 

 Pre-release Dataset Post-release Dataset 
 J48 Degree-J48 AdaBoost Degree-AdaBoost J48 Degree-J48 AdaBoost Degree-AdaBoost 

Precision   0.6082 0.5973 0.6082 0.5973 0.5458 0.5416 0.5458 0.5416 
F-Measure  0.5536 0.5562 0.5536 0.5562 0.3438 0.3748 0.3438 0.3748 

G-Mean    0.6206 0.6225 0.6206 0.6225 0.4903 0.5220 0.4903 0.5220 
GMPR     0.5563 0.5575 0.5563 0.5575 0.3701 0.3939 0.3701 0.3939 
AUC 0.6918 0.6858 0.6918 0.6858 0.7487 0.7481 0.7487 0.7481 

 

(a) Precision 
 

(b) F-Measure 

(c) G-Mean 
 

(d) GMPR 

 
(e) AUC

Figure 5.  Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost 
setups under a small iteration on pre-release dataset 
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(a) Precision 
 

(b) F-Measure 

(c) G-Mean 
 

(d) GMPR 

 
(e) AUC

Figure 6.  Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost 
setups under a small iteration on post-release dataset 

From Table IV and Figs. 3 and 4, we can see that there 
is little performance improvement obtained by the degree 
metrics. The performance even decreases by adding the 
degree metrics in some cases. 

B.  The Effect of Software Network Metrics on Different 
Iterations 

In order to check whether the degree metrics accelerate 
convergence of classifiers or not, the number of iterations 
is set as 1, instead of 10 in the first set of experiments. 
Similarity, CP=1 and CN is ranged from 0.1 to 0.9. As in 
the first set of experiments, the results for J48 & Degree-
J48 and AdaBoost & Degree-AdaBoost are demonstrated 
individually in Table V. Figs. 5 and 6 show results of 
other classifiers. 

It can be seen from the results of Degree-J48 and J48 
listed in Table V that the former performs slightly better 
than the latter in terms of F-Measure, G-Mean and 
GMPR; but worse in terms of precision and AUC on pre-
release dataset. There is a similar phenomenon in the 
results of Degree-J48 and J48 on post-release dataset. The 

similar results have been achieved on Degree-AdaBoost 
and AdaBoost. 

As clearly seen from Fig. 5, with respect to precision, 
Degree-AdaC1 is better than AdaC1 when the values of 
CN are set as 0.1 and 0.6; AdaC2 always outperforms 
Degree-AdaC2; Degree-AdaC3 is better than AdaC3 
when the values of CN are set as 0.4, 0.5 and 0.8; the rest 
are opposite. Degree-AdaC1, Degree-AdaC2 and Degree-
AdaC3 always outperform AdaC1, AdaC2 and AdaC3 in 
terms of F-Measure, G-Mean and GMPR, respectively. 
On the contrary, AdaC1, AdaC2 and AdaC3 always 
outperform Degree-AdaC1, Degree-AdaC2 and Degree-
AdaC3 in terms of AUC. 

Fig. 6 indicates that, with respect to precision, Degree-
AdaC1 is better than AdaC1 when the values of CN is 0.9 
and ranged from 0.2 to 0.5; Degree-AdaC2 is better than 
AdaC2 when the values of CN are set as 0.3, 0.9 and 
ranged from 0.5 to 0.7; Degree-AdaC3 is better than 
AdaC3 when the values of CN is 0.1 and ranged from 0.3 
to 0.7; the rest are opposite. Degree-AdaC1, Degree-
AdaC2 and Degree-AdaC3 always outperform AdaC1, 
AdaC2 and AdaC3 in terms of F-Measure, G-Mean and 
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GMPR, respectively. On the contrary, AdaC1, AdaC2 
and AdaC3 always outperform Degree-AdaC1, Degree-
AdaC2 and Degree-AdaC3 in terms of AUC. There is 
exact same phenomenon in the results on pre-release 
dataset in Fig. 5. 

The effect of the degree metrics on convergence of 
classifiers is minimal, as confirmed by the first set of 
experiments. That is to say, mixing software network 
metrics can’t accelerate convergence of classifiers. 

C.  The Effect of Software Network Metrics on Different 
Base Classifiers 

In the former two sets of experiments, J48 is selected 
as a weak classifier. In this set of experiments, we focus 
on another kind of weak classifier, namely Naïve Bayes. 
As in the former two sets of experiments, the results for 
Naïve Bayes & Degree-Naïve Bayes and AdaBoost & 
Degree-AdaBoost are listed individually in Table 6. Figs. 
7 and 8 summarize the results of other classifiers. 

TABLE VI.   

PERFORMANCE OF NAÏVE BAYES, ADABOOST, DEGREE-NAÏVE BAYES AND DEGREE-ADABOOST 

 pre-release dataset post-release dataset 
 Naïve Bayes Degree-Naïve Bayes AdaBoost Degree-AdaBoost Naïve Bayes Degree-Naïve Bayes AdaBoost Degree-AdaBoost

Precision   0.6811 0.6888 0.6804 0.6888 0.4895 0.4831 0.4892 0.4831 
F-Measure  0.3686 0.3435 0.3688 0.3435 0.3493 0.3575 0.3485 0.3575 

G-Mean    0.4793 0.4600 0.4791 0.4600 0.5063 0.5161 0.5054 0.5161 
GMPR     0.4149 0.3970 0.4148 0.3970 0.3646 0.3702 0.3638 0.3702 
AUC 0.6490 0.6496 0.5932 0.6034 0.7169 0.7187 0.6659 0.6710 

 

(a) Precision 
 

(b) F-Measure 

(c) G-Mean 
 

(d) GMPR 

 
(e) AUC

Figure 7.  Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost 
setups when Naive Bayes as weak classifier on pre-release dataset 
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(a) Precision 
 

(b) F-Measure 

(c) G-Mean 
 

(d) GMPR 

 
(e) AUC

Figure 8.  Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost 
setups when Naive Bayes as weak classifier on post-release dataset 

Based on the results of Table VI, it can be seen that the 
degree metrics can improve performance of Naïve Bayes 
and AdaBoost in terms of precision and AUC on pre-
release dataset; meanwhile F-Measure, G-Mean, GMPR 
and AUC on post-release dataset. 

As clearly seen from Fig. 7, with respect to precision, 
AdaC1 is better than Degree-AdaC1 when the value of 
CN is set as 0.3; AdaC2 is better than Degree-AdaC2 
when the values of CN are set as 0.4 and 0.7; AdaC3 is 
better than Degree-AdaC3 when the value of CN is set as 
0.9; the rest are opposite. Degree-AdaC1 performs worse 
than AdaC1 across various misclassification cost setups; 
Degree-AdaC2 outperforms AdaC2 when the value of CN 
is set as 0.7; Degree-AdaC3 outperforms AdaC3 when 
the value of CN is set as 0.9 in the terms of F-Measure, G-
Mean and GMPR; the rest are opposite. With respect to 
AUC, AdaC1, AdaC2 and AdaC3 are better than Degree-
AdaC1, Degree-AdaC2 and Degree-AdaC3, respectively, 
except that Degree-AdaC2 is better than AdaC2 when the 
value of CN is set as 0.6. 

As clearly seen from Fig. 8, with respect to precision, 
AdaC1 always outperforms Degree-AdaC1 across various 
misclassification cost setups; AdaC2 outperforms 

Degree-AdaC2 except the value of CN is set as 0.2; 
AdaC3 outperforms Degree-AdaC3 except the value of 
CN is set as 0.6. With respect to F-Measure, Degree-
AdaC1, Degree-AdaC2 and Degree-AdaC3 perform 
better than AdaC1, AdaC2 and AdaC3 across various 
misclassification cost setups except that Degree-AdaC3 is 
worse than AdaC3 when the value of CN is set as 0.7. 
Degree-AdaC1, Degree-AdaC2 and Degree-AdaC3 
perform better than AdaC1, AdaC2 and AdaC3 across 
various misclassification cost setups except that Degree-
AdaC2 is worse than AdaC2 when the value of CN is set 
as 0.2 in terms of GMPR and G-Mean. With respect to 
AUC, Degree-AdaC1, Degree-AdaC2 and Degree-AdaC3 
perform better than AdaC1, AdaC2 and AdaC3 in most 
cases. 

Based on the above analysis, we can see that the 
performance of Degree-AdaC1 & AdaC1, Degree-AdaC2 
& AdaC2 and Degree-AdaC3 & AdaC3 vary; sometimes 
the former is better than the latter, while the difference is 
not substantial in other cases. As in the former two sets of 
experiments, the effect of software network metrics is so 
small that it can be excluded, which can be derived from 
the results shown in Table VI and Figs. 7 and 8. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 551

© 2014 ACADEMY PUBLISHER



VII.  CONCLUSIONS 

This study empirically validates the influence of 
software network metrics to fault prediction beyond CK 
metrics. Three sets of experiments are conducted to 
analyze the effect of the degree metrics on classifiers, 
base classifiers, datasets, and iterations over the data from 
Eclipse version 2.0. Experimental results show that the 
degree metrics have minimal effect on overall 
performances of classifiers in both pre- or post-release 
fault prediction. This observation, as well as those 
confirmed by experiments reported in previous studies [8, 
11], can provide some practical guidance for the research 
community. 

Current, we just observe the experiment results on only 
one database. In future, we intend to investigate more on 
other different open source software systems. 
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