
Comparative Analysis of Software Network and
CK Metrics: Implications for Pre- and Post-

release Faults

Fangjun Wu
School of Information Technology,Jiangxi University of Finance and Economics, NanChang, 330013, China

Jiangxi Key Laboratory of Data and Knowledge Engineering, Jiangxi University of Finance and Economics, Nanchang,
330013, China

Email: wufangjun@jxufe.edu.cn

Abstract—The research on open source software has
attracted a great deal of attention during the past decades
for its wide applications in both academia and industry.
Among the research topics related to open source software,
the usefulness of software network metrics for fault
prediction has been received much attention recently. In
order to verify the importance of software network metrics
in the performance of fault prediction models, this study
mixes software network and Chidamber & Kemerer (CK)
metrics to predict pre- and post-release fault-proneness of
Eclipse version 2.0. The "small world" and "scale-free"
characteristics and Spearman correlation have been
analyzed in detail. In addition, we employed10 classifiers, 2
weak classifiers, and 5 performance evaluation criteria to
conduct three sets of experiments. Experimental results
have demonstrated that the software network metrics can
only provide little overall performance improvement. Based
on the comprehensive study, the effect of software network
metrics can be ignored.

Index Terms—software network metrics, Chidamber &
Kemerer (CK) metrics, fault prediction, classification, scale-
free characteristic

I. INTRODUCTION

With the rapid development of open source software,
the "small world" and "scale-free" characteristics have
been discovered successively in lots of real world
systems such as J2SE SDK, Eclipse, Smalltalk system,
OpenOffice, BEA WebLogic, MS-Windows binaries,
TEX, FreeBSD system calls, and Perl CPAN [1-5]. The
epoch-making finding attracts attention of numerous
researchers and software developers in both academia and
industry, which contributes much to the development of
software network metrics. Up to now, there are several
graph-level metrics proposed in the research community,
including In-Degree, Out-Degree, average shortest path
length, clustering coefficient, betweenness centrality, etc.
These metrics are useful in evaluating the quality of
software design, and thus can help developers to design
better and more robust large-scale open source software.

Although there has been a significant amount of work
done relating to predicate faults on the basis of software
network metrics [5-12], full exhaustively comprehensive

empirical analysis is still lacking, which provided
suggestions on metric choice for software network
researchers and practitioners. Moreover, almost all of
existing studies can only predict post-release faults. In
this study, the goal is to predict both pre- and post-
release faults. In this study, we try to answer the
following four questions through the comprehensive
analysis of software network and CK metrics. Does
software network metrics improve the performance of
fault prediction models beyond that obtained by previous
fault prediction models? Does the effect of software
network metrics differ with different classifiers? Does the
effect of software network metrics differ with different
base classifiers? Can software network metrics accelerate
the convergence of classifiers? In this study, Eclipse
version 2.0 was adopted to conduct the experiments.

The remainder of this paper is organized as follows.
Following the introduction section, section 2 provides an
overview on related works. Section 3 analyzes “small-
world” and “scale-free” characteristics of software
network and CK metrics. In section 4, we analyze
Spearman correlations among the number of faults,
software network and CK metrics. In section 5, we
combine software network and CK metrics into a whole
framework to predict pre- and post-release fault-
proneness. Experimental results are analyzed in section 6.
The final section concludes this study.

II. RELATED WORKS

In software networks, the software measurement
problem is a traditional problem and has attracted much
attention in literature. A large variety of metrics have
been proposed in the past decades and their usefulness
has been experimentally demonstrated, creating diverse
choices. Recently, many researchers have been trying to
address the issue of fault prediction based on software
network metrics [6-13].

Zimmermann et al. [6] compared the ability of network
and complexity metrics on Windows Server 2003. They
found that the recall of models built from network metrics
was 10% points higher than that of models built from
complexity metrics, and thus concluded that network

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 541

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.3.541-552

metrics were able to predict faults better than those
complexity metrics did.

Bird et al. [7] showed the influence of combined socio-
technical software networks on the fault-proneness of
individual software components within Windows Vista
and six releases of Eclipse.

Tosun et al. [8] examined three small-scale embedded
software and two releases of Eclipse to compare fault
prediction performance of complexity and Social
Network Analysis (SNA) metrics from function level and
source-file level. They found that network metrics were
important indicators of fault modules for large and
complex systems, whereas they did not have significant
effects on small-scale systems.

Concas et al. [10] reported the correlations among
SNA metrics, CK metrics and faults on two large Java
systems, of Eclipse and Netbeans. They pointed out that
SNA metrics generally showed a moderate correlation
with faults and were comparable to those of CK metrics.

Tonelli et al. [11] analyzed 9 metrics borrowed from
Social Network Analysis (SNA) and 3 traditional
software metrics, such as Loc, Fan-in and Fan-out, on 96
software systems of the Java Qualitas Corpus. For Eclipse
and Netbeans, they found that some SNA metrics (such
as Size, Ties, Brokerage and effSize) were highly
correlated with faults, while others were strongly anti-
correlated.

Tonelli et al. [12] presented an empirical and
exploratory study on the joint application of CK metrics,
SNA metrics, and other network metrics to analyze
evolution of 7 releases of Eclipse in time. They
concluded that the joint application of traditional and
network software metrics could be used to identify sub-
projects with similar functionality and scopes.

 Almost all existing research in software network
metrics related to fault prediction considered only post-
release fault prediction and did not consider pre-release
fault prediction issues. Moreover, the SNA metrics were
computed on undirected graphs. To overcome the
drawbacks of these existing studies, this study proposes a

novel algorithm to predict not only pre-release faults, but
also post-release faults, which can be understood as an
extension of previous works. Furthermore, the SNA
metrics were computed on directed graphs. We believe
that this work represents a significant step forward to
empirically understanding software network metrics and
their impacts on fault prediction.

III. THE ANALYSIS OF "SMALL WORLD" AND “SCALE-
FREE” CHARACTERISTICS

The “small world” and “scale-free” properties are
deemed as the most important statistical characteristics of
complex networks, which have been observed in a host of
complex networks, including some large-scale software,
World Wide Web (WWW), Internet, metabolic networks,
telephone call graphs, network of human sexual contacts,
and protein interaction networks [14, 15]. The "small
world" (also known as six degrees of separation) is
known for average shortest path length and high (average)
clustering coefficient, while the "scale-free" is famous for
power-law degree distribution.

The used dataset in this study was obtained from three
resources. The first were pre- and post-release faults of
Eclipse version 2.0, which can be downloaded from
PROMISE software engineering repository
(http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/).
Eclipse version 2.0 contains 6729 classes, among which
4203 were selected randomly. In pre-release version,
there were 2433 classes with no-fault, and other 1770
with faults, referred as pre-release fault dataset; while in
post-release version, there were 3498 classes with no-
fault, and other 705 with faults, referred as post-release
fault dataset. The second part include their CK metrics
data, which can be computed by the software metric tool
Understand (http://www.scitools.com/). The last one
include software network metrics, which can be
computed by the open-source library JUNG
(http://jung.sourceforge.net/).

TABLE I.

DESCRIPTIVE STATISTICS OF PRE-RELEASE OF ECLIPSE 2.0

Metrics LOC CBO NOC DIT LCOM WMC In-Degree Out-Degree Dijkstra
shortest path

Betweenness
Centrality (edge)

Betweenness
Centrality (vertex)

Min 8 0 0 1 0 0 0 0 0 1 0

Max 5200 149 94 8 100 1234 5373 1 8 404 400

Percentile (25%) 24 2 0 1 0 5 0 1 0 1 0

Percentile (75%) 125 15 0 3 80 26 0 1 0 3 0

Median 53 7 0 2 60 12 0 1 0 1 0

Mean 116.644 11.039 0.2722.358 48.564 24.145 0.953707 0.953707 0.000334736 3.4800127 1.5372668

Variance 50660.234166.3203.4911.9701269.2792207.1532919.292491 0.04415486 0.000877067 155.16808 144.63213

Std Dev 225.078 12.897 1.8681.403 35.627 46.980 28941865.75437.7512859 86221.98493 1467114.2 1433883

Std Error 3.439 0.197 0.0290.021 0.544 0.718 54.02775 0.21012 0.02961531 12.455989 12.025704

Mode 5 0 0 1 0 3 0 1 0 1 0

542 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

From viewpoint of complex and software networks,
the betweenness centrality of a vertex v is the fraction of
shortest paths between the node pairs that pass through v.
The betweenness reveals the importance of a node or an
edge in the overall connectivity of a network and can also
be viewed as a measure of network resilience, which
means how many geodesic paths will get longer when
vertex v is removed from the network. The clustering

indicates the tendency of a node’s neighbors to cluster
themselves. So, clustering coefficient is used to assess the
degree to which nodes tend to cluster together. The
average shortest path length is defined as the average
number of steps along the shortest paths between every
pair of nodes through a network. If there is no path
connecting two nodes, their distance is conventionally
defined as an infinite.

(a)CBO
y=26.159x-1.888

(b)NOC

y=0.9298x-1.495

(c)DIT
y=3.1497x-2.73

(d)LCOM

y=8.4317x-0.754

(e)NOM
y=11.303x-1.687

(f)WMC

y=19.081x-1.403

(g)In-Degree

y=0.6746x-1.035

Figure 1. The log-log plot of cumulative distribution and distribution of pre-release of Eclipse 2.0, in which blue line represents the distribution of
metrics data, red line represents the cumulative distribution of metrics data and its corresponding fitting function

Table I summarizes some typical descriptive statistics
of pre-release of Eclipse 2.0. It is a directed graph with an
infinite diameter. The mean value of the average shortest
path length is 3.34736E-4, with clustering coefficient of
1.923959E-4, In-Degree of 0.953707 and Out-Degree of
0.953707. As shown in Table I, the values were quite
small in all cases, even much smaller than the number of
vertices.

In the context of graph theory, the degree of a node is
defined as the number of edges it has against other nodes.
For a directed graph, its nodes have two kinds of degrees,
namely In-Degree and Out-Degree. Degree and
cumulative degree distributions, summarizing the
connectivity of nodes, indicate the probability of finding
a node with a specified degree k greater than or equal to k.
The power law distribution corresponds to a straight line

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 543

© 2014 ACADEMY PUBLISHER

in log-log coordinates, while the exponential distribution
corresponds to a straight line in semi-log coordinates.
Figs. 1 and 2 show cumulative distribution vs.
distributions of In-Degree and CK metrics, respectively.
As shown in Figs. 1 and 2, all software network and CK
metrics, except LCOM, appear to have power-law degree
distributions, as indicated by their approximately straight-
line forms on the doubly logarithmic scales. NOC, NOM,

WMC and In-Degree are heavy-tailed. Heavy-tailed
cumulative distribution & distribution of NOC show that
there are few classes with several children. While heavy-
tailed cumulative distribution & distribution of WMC
demonstrate complex methods seldom occur. The
existence of heavy-tailed In-Degree distributions implies
a broad spectrum of reuse.

(a)CBO

(b)NOC

(c)DIT

(d)LCOM

(e)NOM

(f)WMC

(g)In-Degree

Figure 2. The semi-log plot of cumulative distribution and distribution of pre-release of Eclipse 2.0, in which blue line represents the distribution of
metrics data, and red line represents the cumulative distribution of metrics data

TABLE II.

SPEARMAN CORRELATIONS AMONG THE NUMBER OF PRE-RELEASE FAULTS AND SOFTWARE NETWORK & CK METRICS OF ECLIPSE 2.0

 CBO NOC DIT LCOM WMC LOC In-Degree Out-Degree
NOC .036(*)
DIT .240(**) .067(**)

LCOM .461(**) .057(**) .007
WMC .657(**) .113(**) -.043(**) .620(**)
LOC .720(**) .082(**) -.011 .648(**) .943(**)

In-Degree .014 .022 .003 .009 .008 .006
Out-Degree .009 .016 -.004 -.017 .003 -.005 .000

Faults .385(**) -.008 .044(**) .237(**) .343(**) .364(**) .055(**) .030

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed).

544 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

IV. SPEARMAN CORRELATION ANALYSIS

To analyze the correlations between the number of
faults, and software network metrics or between the
number of faults and CK metrics, we set the Spearman
correlation values as constant values. Here take In-
Degree and Out-Degree as examples of software network
metrics, and the number of pre-release faults as faults of
Eclipse version 2.0. The experimental results are shown
in Table II. As indicated by the moderate values in the
last row of Table II, there are moderate even weak
correlations between the number of pre-release faults and
software network metrics, and similar conclusion is found
with the correlations between the number of pre-release
faults and CK metrics. Furthermore, the Spearman rank
correlation order of software network and CK metrics is
as follows: CBO, LOC, WMC, LCOM, In-Degree, DIT,
Out-Degree and NOC. Although the Spearman
correlation values between the number of faults and CK
metrics are not relative high, experimental results have
shown CK metrics are good indicators of fault prediction
[16,17]. Therefore, low Spearman correlation values do
not necessarily lead to low performance of prediction.

V. FAULT PREDICTION BY MIXING SOFTWARE NETWORK
AND CK METRICS

This section provides a detailed comparative analysis
of software network and CK metrics on fault prediction.
Among those software network metrics mentioned in
Section 3, the degree metrics are taken as the example.
Additionally, the experimental design is given, including
base classifiers, compared techniques considered in this
study, criteria used to assess classification performance
and parameter choice. For the purpose of prediction, pre-
and post-release faults of Eclipse version 2.0 are
transferred into two labels, namely fault-proneness and
no-fault-proneness, thus the used datasets are pre- and
post-release fault-proneness datasets correspondingly.

A. “Simple”and “Weak” Classifiers
In this study, we use two types of classifiers, namely

J48 and Naïve Bayes as weak classifiers for the following
reasons [18]: (1) they are well-known and commonly-
used in the communities of machine learning and
classification. (2) They are standard statistical techniques
for classification.

B. Comparison Techniques
In this study, we use 10 classification algorithms

including AdaC1 [19], AdaC2 [19], AdaC3 [19], weak
classifiers (J48 or Naïve Bayes), AdaBoost [20] on the
former two parts of datasets, and their variances on the
whole datasets, denoted by Degree-AdaC1, Degree-
AdaC2, Degree-AdaC3, Degree-weak classifiers
(Degree-J48 or Degree-Naïve Bayes), and Degree-
AdaBoost respectively. Previous experimental studies
have shown that the impact of varying parameters is
insignificant. Thus we adopt the default parameters, as
recommended by Weka. The default parameters of the
J48 are set as [18]: -C 0.25 -M 2.

C. Evaluation Criteria
A large number of evaluation criteria have been used

in the literature, among which we use precision, F-
Measure, Geometric mean (G-mean) [21], GMPR and
AUC [22] in this study. The first criterion is for fault-
prone classes, while the latter four are measures of the
discrimination power of a classifier with respect to each
class, providing balanced viewpoints.

 D. Experimental Parameters
The ultimate goal of this study is to check whether the

use of software network metrics can improve the
performance of fault prediction models beyond that
obtained by previous fault prediction models. In this
study, three sets of experiments were conducted for pre-
and post-release fault-proneness datasets to try to answer
the following four questions (proposed in Section 1). (1)
The first set of experiments is conducted to check the
effect of the degree metrics on different classifiers. (2)
The second set of experiments is conducted to examine
whether the degree metrics can accelerate convergence of
classifiers or not. (3) The third one is conducted to
investigate the effect of the degree metrics on base
classifiers.

All learners were implemented in Java within the
framework of Weka toolkit [18], which is commonly
used in machine learning research community. The
default parameters are set as discussed in Section 5.2. All
the experimental results are always generated by 10-fold
cross-validation of classification to avoid sampling bias.
The performances is evaluated by the average results of
50 repeated times randomly.

TABLE III.

EXPERIMENTAL PARAMETER SETUPS

Experiments Weak
Classifiers Compared Classifiers Iterations

No.1 J48 AdaC1, AdaC2, AdaC3, J48, AdaBoost, Degree-AdaC1, Degree-AdaC2, Degree-AdaC3, Degree-
J48, Degree-AdaBoost 10

No.2 J48 AdaC1, AdaC2, AdaC3, J48, AdaBoost, Degree-AdaC1, Degree-AdaC2, Degree-AdaC3, Degree-
J48, Degree-AdaBoost 1

No.3 Naïve Bayes AdaC1, AdaC2, AdaC3, Naïve Bayes, AdaBoost, Degree-AdaC1, Degree-AdaC2, Degree-AdaC3,
Degree-Naïve Bayes, Degree-AdaBoost 10

In the former two sets of experiments, J48 is selected

as the weak classifier; while in the rest set of experiments,
Naïve Bayes is selected as the weak classifier. In the first
and last sets of experiments, the number of iterations is

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 545

© 2014 ACADEMY PUBLISHER

set as 10; while in the second set of experiments, the
number of iterations is set as 1. For the sake of clarity, a
detailed description of experimental parameters is given
in Table III.

Lastly, we conducted a collection of experiments over
Eclipse employing 10 classifiers, 2 weak classifiers, and

5 performance evaluation criteria on pre- and post-release
fault-proneness datasets.

VI. RESULTS AND DISCUSSION

This section provides a detailed report and discussion
of the experimental results. As stated in Section 5.4, they
are described separately.

TABLE IV.

PERFORMANCE OF J48, ADABOOST, DEGREE-J48 AND DEGREE-ADABOOST ON PRE- AND POST-RELEASE DATASETS

 Pre-release Dataset Post-release Dataset
 J48 Degree-J48 AdaBoost Degree-AdaBoost J48 Degree-J48 AdaBoost Degree-AdaBoost

Precision 0.6082 0.5973 0.6167 0.6023 0.5458 0.5416 0.4364 0.4569
F-Measure 0.5536 0.5562 0.5576 0.5593 0.3438 0.3748 0.3838 0.4082

G-Mean 0.6206 0.6225 0.6245 0.6254 0.4903 0.5220 0.5588 0.5798
GMPR 0.5563 0.5575 0.5606 0.5608 0.3701 0.3939 0.3867 0.4105
AUC 0.6918 0.6858 0.7110 0.7016 0.7487 0.7481 0.7446 0.7323

(a) Precision

(b) F-Measure

(c) G-Mean

(d) GMPR

(e) AUC

Figure 3. Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost
setups on pre-release dataset

546 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

(a) Precision

(b) F-Measure

(c) G-Mean

(d) GMPR

(e) AUC

Figure 4. Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost
setups on post-release dataset

A. The Effect of Software Network Metrics on Different
Classifiers

The first set of experiments is conducted in order to
evaluate the effect of degree metrics on different
classifiers. In this set of experiments, CP=1 and CN is
ranged from 0.1 to 0.9.

J48 and AdaBoost are chosen separately because they
don't take misclassification cost setups into account.
Table 3 shows the results. Figs. 3 and 4 illustrate the
results of other classifiers.

It can be seen from the results on Degree-J48 and J48
listed in Table IV that the former performs slightly better
than the latter in terms of F-Measure, G-Mean and
GMPR; but worse in terms of precision and AUC on pre-
release dataset. Similar results can be found for Degree-
J48 and J48 on post-release dataset. However, Degree-
AdaBoost is better than AdaBoost in all terms except
AUC on the post-release dataset.

As clearly seen from Fig. 3, with respect to precision,
Degree-AdaC1 is better than AdaC1 when the value of

CN is set as 0.3; Degree-AdaC2 is better than AdaC2
when the value of CN is set as 0.1; Degree-AdaC3 is
better than AdaC3 when the values of CN are set as 0.6
and 0.7; the rest are opposite. With respect to F-Measure,
Degree-AdaC1 performs worse than AdaC1 across
various misclassification cost setups; Degree-AdaC2
outperforms AdaC2 when the values of CN are set as 0.1,
0.2, 0.3 and 0.5; Degree-AdaC3 is worse than AdaC3
when the values of CN are set as 0.8 and 0.9; the rest are
opposite. With respect to G-Mean, Degree-AdaC1
outperforms AdaC1 across various misclassification cost
setups; Degree-AdaC2 outperforms AdaC2 when the
values of CN are set as 0.1, 0.2, 0.5, 0.6 and 0.8; Degree-
AdaC3 is worse than AdaC3 when the values of CN are
set as 0.5 and 0.9; the rest are opposite. With respect to
GMPR, Degree-AdaC1 outperforms AdaC1 across
various misclassification cost setups; Degree-AdaC2
outperforms AdaC2 when the values of CN are ranged
from 0.1 to 0.3; Degree-AdaC3 outperforms AdaC3 when
the values of CN are ranged from 0.1 to 0.5; the rest are
opposite. With respect to AUC, AdaC1, AdaC2 and

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 547

© 2014 ACADEMY PUBLISHER

AdaC3 are better than Degree-AdaC1, Degree-AdaC2
and Degree-AdaC3, respectively.

There is a similar phenomenon from the results of
AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and
AdaC3 & Degree-AdaC3 on post-release dataset, as
shown in Fig.4. With respect to precision, Degree-AdaC1
is better than AdaC1 when the values of CN are set as 0.2,
0.3, 0.5, 0.7 and 0.8; Degree-AdaC2 is better than AdaC2
when the values of CN are set as 0.1, 0.3, 0.8 and 0.9;
AdaC3 is better than Degree-AdaC3 when the values of
CN are 0.1, 0.6 and 0.8; the rest are opposite. With respect
to F-Measure, Degree-AdaC1 outperforms AdaC1 across
various misclassification cost setups; Degree-AdaC2
outperforms AdaC2 when the values of CN are set as 0.1,
0.7, 0.8 and 0.9; Degree-AdaC3 is worse than AdaC3
when the values of CN are set as 0.6 and 0.8; the rest are
opposite. With respect to G-Mean, Degree-AdaC1

outperforms AdaC1 across various misclassification cost
setups; Degree-AdaC2 outperforms AdaC2 when the
values of CN are set as 0.1, 0.3, 0.7, 0.8 and 0.9; Degree-
AdaC3 is worse than AdaC3 when the values of CN are
set as 0.5, 0.6 and 0.8; the rest are opposite. With respect
to GMPR, Degree-AdaC1 outperforms AdaC1 across
various misclassification cost setups; Degree-AdaC2
outperforms AdaC2 when the values of CN are set as 0.1,
0.5 and 0.8; Degree-AdaC3 outperforms AdaC3 when the
values of CN are ranged from 0.1 to 0.3; the rest are
opposite. With respect to AUC, Degree-AdaC1
outperforms AdaC1 except the value of CN is set as 0.1;
Degree-AdaC2 outperforms AdaC2 when the values of
CN are ranged from 0.7 to 0.9; Degree-AdaC3
outperforms AdaC3 when the values of CN are set as 0.4,
0.7 and 0.9; the rest are opposite.

TABLE V.

PERFORMANCE OF J48, ADABOOST, DEGREE-J48 AND DEGREE-ADABOOST UNDER A SMALL ITERATION

 Pre-release Dataset Post-release Dataset
 J48 Degree-J48 AdaBoost Degree-AdaBoost J48 Degree-J48 AdaBoost Degree-AdaBoost

Precision 0.6082 0.5973 0.6082 0.5973 0.5458 0.5416 0.5458 0.5416
F-Measure 0.5536 0.5562 0.5536 0.5562 0.3438 0.3748 0.3438 0.3748

G-Mean 0.6206 0.6225 0.6206 0.6225 0.4903 0.5220 0.4903 0.5220
GMPR 0.5563 0.5575 0.5563 0.5575 0.3701 0.3939 0.3701 0.3939
AUC 0.6918 0.6858 0.6918 0.6858 0.7487 0.7481 0.7487 0.7481

(a) Precision

(b) F-Measure

(c) G-Mean

(d) GMPR

(e) AUC

Figure 5. Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost
setups under a small iteration on pre-release dataset

548 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

(a) Precision

(b) F-Measure

(c) G-Mean

(d) GMPR

(e) AUC

Figure 6. Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost
setups under a small iteration on post-release dataset

From Table IV and Figs. 3 and 4, we can see that there
is little performance improvement obtained by the degree
metrics. The performance even decreases by adding the
degree metrics in some cases.

B. The Effect of Software Network Metrics on Different
Iterations

In order to check whether the degree metrics accelerate
convergence of classifiers or not, the number of iterations
is set as 1, instead of 10 in the first set of experiments.
Similarity, CP=1 and CN is ranged from 0.1 to 0.9. As in
the first set of experiments, the results for J48 & Degree-
J48 and AdaBoost & Degree-AdaBoost are demonstrated
individually in Table V. Figs. 5 and 6 show results of
other classifiers.

It can be seen from the results of Degree-J48 and J48
listed in Table V that the former performs slightly better
than the latter in terms of F-Measure, G-Mean and
GMPR; but worse in terms of precision and AUC on pre-
release dataset. There is a similar phenomenon in the
results of Degree-J48 and J48 on post-release dataset. The

similar results have been achieved on Degree-AdaBoost
and AdaBoost.

As clearly seen from Fig. 5, with respect to precision,
Degree-AdaC1 is better than AdaC1 when the values of
CN are set as 0.1 and 0.6; AdaC2 always outperforms
Degree-AdaC2; Degree-AdaC3 is better than AdaC3
when the values of CN are set as 0.4, 0.5 and 0.8; the rest
are opposite. Degree-AdaC1, Degree-AdaC2 and Degree-
AdaC3 always outperform AdaC1, AdaC2 and AdaC3 in
terms of F-Measure, G-Mean and GMPR, respectively.
On the contrary, AdaC1, AdaC2 and AdaC3 always
outperform Degree-AdaC1, Degree-AdaC2 and Degree-
AdaC3 in terms of AUC.

Fig. 6 indicates that, with respect to precision, Degree-
AdaC1 is better than AdaC1 when the values of CN is 0.9
and ranged from 0.2 to 0.5; Degree-AdaC2 is better than
AdaC2 when the values of CN are set as 0.3, 0.9 and
ranged from 0.5 to 0.7; Degree-AdaC3 is better than
AdaC3 when the values of CN is 0.1 and ranged from 0.3
to 0.7; the rest are opposite. Degree-AdaC1, Degree-
AdaC2 and Degree-AdaC3 always outperform AdaC1,
AdaC2 and AdaC3 in terms of F-Measure, G-Mean and

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 549

© 2014 ACADEMY PUBLISHER

GMPR, respectively. On the contrary, AdaC1, AdaC2
and AdaC3 always outperform Degree-AdaC1, Degree-
AdaC2 and Degree-AdaC3 in terms of AUC. There is
exact same phenomenon in the results on pre-release
dataset in Fig. 5.

The effect of the degree metrics on convergence of
classifiers is minimal, as confirmed by the first set of
experiments. That is to say, mixing software network
metrics can’t accelerate convergence of classifiers.

C. The Effect of Software Network Metrics on Different
Base Classifiers

In the former two sets of experiments, J48 is selected
as a weak classifier. In this set of experiments, we focus
on another kind of weak classifier, namely Naïve Bayes.
As in the former two sets of experiments, the results for
Naïve Bayes & Degree-Naïve Bayes and AdaBoost &
Degree-AdaBoost are listed individually in Table 6. Figs.
7 and 8 summarize the results of other classifiers.

TABLE VI.

PERFORMANCE OF NAÏVE BAYES, ADABOOST, DEGREE-NAÏVE BAYES AND DEGREE-ADABOOST

 pre-release dataset post-release dataset
 Naïve Bayes Degree-Naïve Bayes AdaBoost Degree-AdaBoost Naïve Bayes Degree-Naïve Bayes AdaBoost Degree-AdaBoost

Precision 0.6811 0.6888 0.6804 0.6888 0.4895 0.4831 0.4892 0.4831
F-Measure 0.3686 0.3435 0.3688 0.3435 0.3493 0.3575 0.3485 0.3575

G-Mean 0.4793 0.4600 0.4791 0.4600 0.5063 0.5161 0.5054 0.5161
GMPR 0.4149 0.3970 0.4148 0.3970 0.3646 0.3702 0.3638 0.3702
AUC 0.6490 0.6496 0.5932 0.6034 0.7169 0.7187 0.6659 0.6710

(a) Precision

(b) F-Measure

(c) G-Mean

(d) GMPR

(e) AUC

Figure 7. Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost
setups when Naive Bayes as weak classifier on pre-release dataset

550 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

(a) Precision

(b) F-Measure

(c) G-Mean

(d) GMPR

(e) AUC

Figure 8. Performance of AdaC1 & Degree-AdaC1, AdaC2 & Degree-AdaC2, and AdaC3 & Degree-AdaC3 across various misclassification cost
setups when Naive Bayes as weak classifier on post-release dataset

Based on the results of Table VI, it can be seen that the
degree metrics can improve performance of Naïve Bayes
and AdaBoost in terms of precision and AUC on pre-
release dataset; meanwhile F-Measure, G-Mean, GMPR
and AUC on post-release dataset.

As clearly seen from Fig. 7, with respect to precision,
AdaC1 is better than Degree-AdaC1 when the value of
CN is set as 0.3; AdaC2 is better than Degree-AdaC2
when the values of CN are set as 0.4 and 0.7; AdaC3 is
better than Degree-AdaC3 when the value of CN is set as
0.9; the rest are opposite. Degree-AdaC1 performs worse
than AdaC1 across various misclassification cost setups;
Degree-AdaC2 outperforms AdaC2 when the value of CN
is set as 0.7; Degree-AdaC3 outperforms AdaC3 when
the value of CN is set as 0.9 in the terms of F-Measure, G-
Mean and GMPR; the rest are opposite. With respect to
AUC, AdaC1, AdaC2 and AdaC3 are better than Degree-
AdaC1, Degree-AdaC2 and Degree-AdaC3, respectively,
except that Degree-AdaC2 is better than AdaC2 when the
value of CN is set as 0.6.

As clearly seen from Fig. 8, with respect to precision,
AdaC1 always outperforms Degree-AdaC1 across various
misclassification cost setups; AdaC2 outperforms

Degree-AdaC2 except the value of CN is set as 0.2;
AdaC3 outperforms Degree-AdaC3 except the value of
CN is set as 0.6. With respect to F-Measure, Degree-
AdaC1, Degree-AdaC2 and Degree-AdaC3 perform
better than AdaC1, AdaC2 and AdaC3 across various
misclassification cost setups except that Degree-AdaC3 is
worse than AdaC3 when the value of CN is set as 0.7.
Degree-AdaC1, Degree-AdaC2 and Degree-AdaC3
perform better than AdaC1, AdaC2 and AdaC3 across
various misclassification cost setups except that Degree-
AdaC2 is worse than AdaC2 when the value of CN is set
as 0.2 in terms of GMPR and G-Mean. With respect to
AUC, Degree-AdaC1, Degree-AdaC2 and Degree-AdaC3
perform better than AdaC1, AdaC2 and AdaC3 in most
cases.

Based on the above analysis, we can see that the
performance of Degree-AdaC1 & AdaC1, Degree-AdaC2
& AdaC2 and Degree-AdaC3 & AdaC3 vary; sometimes
the former is better than the latter, while the difference is
not substantial in other cases. As in the former two sets of
experiments, the effect of software network metrics is so
small that it can be excluded, which can be derived from
the results shown in Table VI and Figs. 7 and 8.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 551

© 2014 ACADEMY PUBLISHER

VII. CONCLUSIONS

This study empirically validates the influence of
software network metrics to fault prediction beyond CK
metrics. Three sets of experiments are conducted to
analyze the effect of the degree metrics on classifiers,
base classifiers, datasets, and iterations over the data from
Eclipse version 2.0. Experimental results show that the
degree metrics have minimal effect on overall
performances of classifiers in both pre- or post-release
fault prediction. This observation, as well as those
confirmed by experiments reported in previous studies [8,
11], can provide some practical guidance for the research
community.

Current, we just observe the experiment results on only
one database. In future, we intend to investigate more on
other different open source software systems.

ACKNOWLEDGMENT

This work has been partially supported by the Natural
Science Foundation of China (Project No. 61163007,
61262010), Natural Science Foundation of Jiangxi
(Project No. 20114BAB211019, 20132BAB201036) and
Scientific Research Foundation of Jiangxi Provincial
Education Department (Project No. GJJ12731, GJJ13305,
GJJ12743).

REFERENCES

[1] Giulio Concas, Michele Marchesi, Sandro Pinna, and
Nicola Serra, “Power-laws in a large object-oriented
software system”, IEEE Transactions on Software
Engineering, Vol. 33, No.10, pp.687-708, 2007.

[2] Panagiotis Louridas, Diomidis Spinellis, and Vasileios
Vlachos, “Power laws in software”, ACM Transactions on
Software Engineering and Methodology, Vol. 18, No.1,
Article 2, 2008.

[3] Fangjun Wu, “Empirical tests of scale-free geometry in
NASA data”, In Proceedings of 2nd International
Conference on Advanced Measurement and Test (AMT
2011), pp. 762-767, 2011.

[4] Fangjun Wu, "Scale-free characteristic in open source
software: an empirical case study", IJACT: International
Journal of Advancements in Computing Technology, Vol. 5,
No. 1, pp.792-799, 2013.

[5] Hui Li, Hui Zhang, Hai Zhao, and Wei Cai, “Research on
structural holes and closeness of multi-granularity software
networks”, Journal of Software, Vol.8, No.2, pp. 337-343,
2013.

[6] Thomas Zimmermann and Nachiappan Nagappan,
“Predicting defects using network analysis on dependency
graphs”, In Proceedings of 30th International Conference
on Software Engineering, pp.531-540, 2008.

[7] Christian Bird, Nachiappan Nagappan, Harald Gall,
Brendan Murphy, and Premkumar Devanbu, “Putting it all
together: using socio-technical networks to predict
failures”, In Proceedings of 20th International Symposium
on Software Reliability Engineering, pp.109-119, 2009.

[8] Ayşe Tosun, Burak Turhan, and Ayşe Bener, “Validation
of network measures as indicators of defective modules in
software systems”, In Proceedings of 5th International
Conference on Predictor Models in Software Engineering,
Article No. 5, 2009.

[9] Yutao Ma, Keqing He, Bing Li, Jing Liu, and Xiaoyan
Zhou, “A hybrid set of complexity metrics for large-scale
object-oriented software systems”, Journal of Computer
Science and Technology, Vol. 25, No.6, pp. 1184-1201,
Nov. 2010.

[10] Giulio Concas, Michele Marchesi, Alessandro Murgia, and
Roberto Tonelli, “An empirical study of social networks
metrics in object-oriented software”, Advances in Software
Engineering, Vol. 2010, Article ID 729826, January 2010.

[11] Roberto Tonelli, Giulio Concas, Michele Marchesi, and
Alessandro Murgia, “An analysis of SNA metrics on the
Java Qualitas Corpus”, In Proceedings of 4th India
Software Engineering Conference, pp.205-213, 2011.

[12] Roberto Tonelli, and Giuseppe Destefanis, “Mixing SNA
and classical software metrics for sub-projects analysis”, In
Proceedings of 11th WSEAS International conference on
Software Engineering, Parallel and Distributed Systems,
and proceedings of 9th WSEAS International conference on
Engineering Education, pp.104-109, 2012.

[13] Kewen Li, Jisong Kou, and Lina Gong, "Predicting
software quality by optimized BP network based on PSO",
Journal of Computers, Vol. 6, No. 1, pp.122-129, 2011.

[14] M. E. J. Newman, “The structure and function of complex
networks”, SIAM Review, Vol. 45, No.2, pp. 167-256, 2003.

[15] Reka Albert and Albert-Laszlo Barabasi, “Statistical
mechanics of complex networks”, Reviews of Modern
Physics, Vol. 74, pp. 47-97, 2002.

[16] Gyimothy Tibor, Ferenc Rudolf, and Siket Istvan,
“Empirical validation of object oriented metrics on open
source software for fault prediction”, IEEE Transactions
on Software Engineering, Vol.31, No.10, pp.897-910, 2005.

[17] Fangjun Wu, “Empirical validation of object-oriented
metrics on NASA for fault prediction”, In Proceedings of
2011 International Conference on Computer Science and
Education (CSE2011), pp. 168-175, 2011.

[18] Ian H. Witten and Eibe Frank, Data mining: practical
machine learning tools and techniques, 3rd ed., San
Francisco: Morgan Kaufmann, 2011.

[19] Yanmin Sun, Mohamed S. Kamel, Andrew K.C. Wong,
and Yang Wang, “Cost-sensitive boosting for classification
of imbalanced data”, Pattern Recognition, Vol.40, pp.
3358-3378, 2007.

[20] Yoav Freund and Robert Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting”, Journal of Computer and System Sciences,
Vol.55, pp. 119-139, 1997.

[21] Miroslav Kubat and Stan Matwin, “Addressing the curse of
imbalanced training sets: one sided selection”, In
Proceedings of 14th International Conference on Machine
Learning, pp.179-186, 1997.

[22] Jin Huang and C.X. Ling, “Using AUC and accuracy in
evaluating learning algorithms”, IEEE Transactions on
Knowledge and Data Engineering, Vol.17, No.3, pp. 299-
310, 2005.

Fangjun Wu received her Ph.D. degree in School of
Information Technology at the Jiangxi University of Finance
and Economics, China, in 2006. She joined this University in
2006 where she is at present Associate Professor and Associate
Director of the Jiangxi Key Laboratory of Data and Knowledge
Engineering, China. Dr. Wu has been a visiting scholar with
Centre for Quantum Computation & Intelligent Systems (QCIS),
Faculty of Engineering & IT, University of Technology Sydney
(UTS), Australia from March 2012 to March 2013. Her research
interests include data mining, software measurement, and
complex network.

552 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

