
An Improved Algorithm Based on NSGA-II for 
Cloud PDTs Scheduling 

 

Shengjun Xue 
Nanjing University of Information Science & Technology, School of Computer and  

Software, Nanjing, China 
Nanjing University of Information Science & Technology, Jiangsu Engineering Center of  

Network Monitoring, Nanjing, China 
Email: nuist_lf@163.com 

 
Fei Liu, Xiaolong Xu 

Nanjing University of Information Science & Technology, School of Computer and  
Software, Nanjing, China 

Email: {jkleo07@126.com, xlxu1988@gmail.com} 
 
 
 

Abstract—Partly dependent tasks (PDTs) scheduling with 
multi-objective optimization in cloud computing is an 
NP-hard problem. Taking the quality of service (QoS) 
requirements of users that use cloud computing into account, 
we set the cost and time requirements of handling the PDTs 
as the multiple objectives and present an improved 
algorithm based on the non-dominated sorting genetic 
algorithm-II (NSGA-II) to find the Pareto optimal set of the 
PDTs scheduling. In this paper, the similar task order 
crossover (STOX) operator is applied to make the evolution 
more efficient while the shift mutation operator is applied in 
the process of evolution to avoid the premature convergence. 
In addition, we present a new method named self-adapting 
crowding distance (SCD) operator, which can improve the 
diversity of individuals in the Pareto-optimal front. The 
simulation results and analysis show that the proposed 
algorithm performs better than NSGA-II in maintaining the 
diversity and the distribution of the Pareto-optimal 
solutions in the cloud PDTs scheduling. 
 
Index Terms—PDTs, multi-objective optimization, cloud 
computing, STOX, SCD, improved NSGA-II 

I.  INTRODUCTION 

As a new commercial network computing mode, cloud 
computing has attracted many users’ attention because of 
its good performance in processing large dataset. Besides 
focusing on computational efficiency and throughput, the 
cloud computing service provider pays more attention to 
user experience since the users pay for the storage and 
computing resources when they apply for the cloud 
computing service [1][2]. 

The users don’t care about how the tasks they 
submitted were processed, it makes the relations between 
the tasks more complicated than those in the traditional 
distributed system [3][4]. Previous studies are mostly 
based on independent tasks scheduling [5][6] or 
workflow tasks scheduling [7][8], but these kinds of 
models can’t simulate the complicated relations between 
the tasks in the cloud computing environment.  

Moreover, for most users, the cost and the time 
consumed when their tasks are processed in the data 
center of the cloud computing service provider are the 
two most important factors of their interest. There are 
many researches about getting the extreme value in one 
aspect by setting a limit in another. However, these kinds 
of researches tend to neglect the fact that the users may 
not have clear impressions on their budgets about the 
time or financial cost, it may be impractical to request the 
users to submit definite limitations, and it may be much 
better if the service provider can offer the users some 
solutions so they can choose one which is appropriate for 
them in both aspects of the requirements of time and cost. 
Obviously, the results of researches mentioned earlier 
can’t meet the requirement.  

In this paper, we introduce a new scheduling model, 
that is the partly dependent tasks (PDTs) scheduling 
model [9], and the PDTs are composed of independent 
tasks and workflow tasks. In order to get a solution 
fulfilling the demands of both the time consumption and 
the financial cost budgets of the PDTs scheduling, the 
non-dominated sorting genetic algorithm-II (NSGA-II) 
[10][11] is applied in the process of task scheduling. 
However, this density-based algorithm doesn’t converge 
fast in finding the Pareto-optimal front, moreover, the 
individuals in the Pareto-optimal front are not well 
distributed. As a consequence the similar task order 
crossover (STOX) [12], shift mutation [13] and 
self-adapting crowding distance (SCD) operators are 
adopted in the improved NSGA-II to settle these 
problems. 

The rest of this paper is organized as follows. In 
Section II, we describe the scheduling model with the 
fitness function which is mainly about the time 
consumption and financial cost of processing the PDTs. 
In Section III, we introduce the NSGA-II and present an 
improved algorithm based on it, we apply both of the 
algorithms to the PDTs scheduling. Section IV compares 
the experimental results of the two algorithms and 

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 443

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.443-450



evaluates their performance. Section V concludes the 
paper and discusses some future work. 

II.  SCHEDULING MODEL 

A.  Mathematical Model 
The PDTs model is an abstract representation of tasks 

processed in the cloud environment, and we can use 
directed acyclic graph (DAG) to describe it. For a DAG 

}VET{G ><><><= ,, , >< T  is the set of task 
nodes, so iT  represents a single task with the subscript i 
in the DAG, and )( iTamount  represents the calculation 
amount of iT . >< E  is the set of edges, each edge 
means a constraint on the two related tasks. For example, 

ijE  is an edge from iT  to jT , it implies that jT  will 

never be processed until iT  is completely processed. In 
addition, ><V is the set of virtual machines associated 
with a cluster in the cloud computing, and obviously iV  
is the virtual machine with the subscript i, )( iVability  is 
used to indicate the calculating ability of iV , and 

)( iVprice  represents the cost of using iV  per unit time. 
Generally, the greater the )( iVability  is, the higher the 

)( iVprice  is. 
As shown in Fig. 1, the tasks from 0T  to 7T  form a 

simple workflow while the tasks 8T  and 9T  are 
independent tasks. All the tasks above and the relations 
between them compose the PDTs model. 

 
Figure 1. PDTs model 

How to allocate the tasks in a PDTs model to the 
virtual machines in a cluster is an NP-hard problem. In 
this paper we will take the time consumption and 
financial cost as the objectives in the multi-objective 
optimization of PDTs scheduling. 

For every task node in the PDTs model, it has to meet 
the following conditions before it can be processed. 
(1) All the direct predecessors of the task node have 

been completely processed. 
(2) The virtual machine that the task is allocated to 

should be free when the task need to be processed, 
or the task should have priority over other tasks if 
they are allocated to the virtual machine at the same 
time. 

Obviously, the constraints between the tasks will affect 
the finish time of processing all the tasks in the PDTs 
model, so we should take these constraints into 
consideration when it comes to the time consumption. We 
define )( iTPre  as the collection of direct predecessors 
of Ti, )( iTCol  as the collection of tasks that conflict 
with Ti and have priority over iT  in occupying the 
virtual machine that the tasks are allocated to. We denote 
the start time of processing iT  by )( is Tt  and the end 
time of processing iT  by )( ie Tt . As to )( is Tt , it 
depends on )( iTPre  and )( iTCol , as shown in (1), 
where )( ik TPreT ∈ , )( ij TColT ∈ , m stands for the 

number of direct predecessor tasks of iT  and n stands 
for the number of tasks that conflict with iT  and have 
priority over it. 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≠≠+

≠=

=≠
==

∑

∑
−

=≤≤

−

=

≤≤

φφ

φφ

φφ
φφ

)(,)(,)()(max

)(,)(,)(

)(,)(),(max
)(,)(,0

1

0

1

0

ii

n

j
jeke

1-mk0

ii

n

j
je

iike
1-mk0

ii

TColTPreTtTt

TColTPreTt

TColTPreTt
TColTPre

(1) 

From (1) we can see that iT  will not be processed 
until both )( iTPre  and )( iTCol  are empty, so the time 
consumption of processing iT  consists of three parts, 
the first one is the computing time taken by iT  when it 
is computed by the specified virtual machine, the second 
one is the waiting time spent by iT  when it waits for the 
tasks in )( iTPre  to be completely processed, the last 
one is the waiting time consumed by iT  when it waits 
for the tasks in )( iTCol  to be completely processed. So 
we can describe )( ie Tt  by (2) as follows. 

)(
)(
)(

)( is
i

i
ie Tt

Vability
Tamount

Tt +=
   

(2) 

The result of )( iTamount  divided by )( iVability  in 
(2) stands for the first part of time consumption 
mentioned above, and the rest parts are described by 

)( is Tt  in (1). 

B.  Fitness Function 
This paper focuses on the multi-objective optimization 

of PDTs scheduling and the fitness function is mainly 
about the time consumption totalt  and financial cost 

totalc  of processing the PDTs. To simplify the problem 
of PDTs scheduling, some assumptions are made as 
follows. 
(1) The tasks are non-preemptive. 
(2) A task can’t be processed by multiple virtual 

machines simultaneously. 

444 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



(3) When several tasks are allocated to a virtual 
machine at the same instant, the task having the 
highest priority will be processed first. 

(4) The greater the )( iVability  is, the higher the 
)( iVprice  is. 

(5) The tasks are computation-intensive, so we ignore 
the consumption of network transmission, the 
memory, and I/O requirements as well. 

With all the assumptions above, we can define the time 
consumption totalt  by the start time of the first 
processed task and the end time of the last processed task, 
as shown in (3). 

)()( firstslastetotal TtTtt −=
   

(3) 

As for the financial cost totalc , we define it in (4) 
where ic  means the cost of using the virtual machine 
that iT  is allocated to per unit time and p  is the 
number of tasks in the PDTs model. 

∑
=

−=
p

i
isieitotal TtTtcc

1
))()((*

  
(4) 

For the users of cloud computing, what they care about 
is the minimum of time consumption and financial cost, 
but it’s obvious that the two objectives are mutually 
constrained, so the fitness function is formed by the two 
factors together, as shown in (5). 

⎪
⎩

⎪
⎨

⎧

−=

−=

∑
=

)))()((*min()min(

))()(min()min(

1

p

i
isieitotal

firstslastetotal

TtTtcc

TtTtt

 

(5) 

C.  Encoding 
One of the most important procedures in the task 

scheduling of cloud computing is how the tasks are 
allocated to the virtual machines in the pool of computing 
resources [14]. For a PDTs scheduling model with p  
task nodes and q  virtual machines, we describe it by a 

pq×  matrix A  where ija  represents the element at 
the i-th row and the j-th column of the matrix. We set 

1=ija  when iT  is allocated to jV , otherwise we set 

0=ija , 10,10 −≤≤−≤≤ qjpi . Matrix A  has 
some characteristics as follows. Firstly, it’s certain that 

iT  will be allocated to a virtual machine, so at least one 
element in the j-th column will be assigned to the value of 
1. Secondly, according to the assumption (2) in section B 
of part II, so at most only one element in the j-th column 
can be assigned to the value of 1. Finally, as described in 
the assumption (3) in the section B of part II, more than 
one element in the i-th row can be assigned to the value 
of 1. 

 

TABLE1. 

ENCODING 

  iT  

jV  0T  1T  2T  … nT  

0V  0 1 0 … 1 

1V  1 0 0 … 0 

2V  0 0 0 … 0 

…
 

…
 

…
 

…
  …
 

jV  0 0 1 … 0 

 
Table1 shows an example of encoding which meets all 

the characteristics mentioned above. The matrix in the 
table will be used as the encoding of a chromosome 
involving in the following operators. 

III.  IMPROVED NSGA-II ALGORITHM 

It will be much better for the cloud computing users if 
the time consumption is shorter meanwhile the financial 
cost is lower. But we can see from the assumption (4) in 
the section B of part II that the time consumption and the 
financial cost are mutually constrained. In other words, 
the longer time consumption will lead to the lower 
financial cost. The time consumption and the financial 
cost can’t achieve the minimum at the same time. In this 
paper, we will take the time consumption and the 
financial cost as the objectives and use NSGA-II to find 
the Pareto-optimal front of the PDTs scheduling problem. 

As for the Pareto-optimal front, we should make it 
close to the real optimal solution set as much as possible, 
and as for the individuals in the Pareto-optimal front, we 
should make sure that they are distributed as evenly as 
possible. The traditional NSGA-II algorithm can find a 
Pareto-optimal front close to the real optimal solution set 
but it converges slow and the individuals in the 
Pareto-optimal front are not well distributed. For these 
disadvantages, we propose an improved algorithm based 
on NSGA-II in the PDTs scheduling problem. 

A.  Basic Algorithm 
We set the encoding of the relationships between the 

tasks and the virtual machines in the PDTs model 
introduced in section C of part II as the encoding of the 
chromosomes in NSGA-II, and the fitness function 
described by (5) as the fitness function of the 
chromosomes in NSGA-II. 

The basic steps of NSGA-II are as follows. 
Step1: Set the size of the population as M, the 

maximum evolution generation as maxGen and the 
current generation index as gen, initialize the population 
P(gen). 

Step2: Choose the chromosomes in P(gen) to perform 
crossover and mutation operation and generate the new 
population Q(gen). 

Step3: Merge P(gen) with Q(gen) to form R(gen), and 
do the fast non-dominated sorting in R(gen), the 
chromosomes are divided into several ranks. 

Step4: Calculate the crowding distance for the 
chromosomes in each rank and sort them according to the 
ascending order of the crowding distance. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 445

© 2014 ACADEMY PUBLISHER



Step5: Select the top M chromosomes in R(gen) into 
P(gen+1) according to the rank and crowding distance of 
the chromosomes in R(gen). 

Step6: Set gen=gen+1, if gen<maxGen, go to Step2, 
otherwise go to Step7. 

Step7: Take the chromosomes in P(gen) as the 
individuals in Pareto-optimal front. 

B.  Improved Strategies 
As mentioned above, the disadvantages of the 

traditional NSGA-II when it is applied to the PDTs 
scheduling problem are caused by different reasons. We 
will analyze the reasons and propose improved strategies 
in the following parts of this paper. 

The PDTs scheduling in cloud computing is NP-hard, 
and the relations between the tasks in the PDTs model are 
so complex that the traditional NSGA-II algorithm 
converges slow when it is applied to the problem. 
Actually, the NSGA-II algorithm tries to find the 
Pareto-optimal front by retaining the genes of high 
quality in the chromosomes which will go through the 
evolution by being chosen to take part in the crossover 
operation and the mutation operation. Generally, the 
chromosomes are chosen with certain probability to take 
part in the single-point crossover and single-point 
mutation, but these strategies can’t retain the excellent 
genetic fragments to the maximum extent so that the 
algorithm converges slow. We propose the strategy 
named STOX to improve the performance of the 
crossover operator in NSGA-II. STOX can make the 
algorithm converge faster, but it may lead the algorithm 
to converging to the local optimal solution. To avoid this 
situation, we will use the shift mutation strategy. 

Another issue needed to be resolved is that the 
individuals in the Pareto-optimal front are not well 
distributed. In the PDTs scheduling problem, the time 
consumption and the financial cost are the two objectives 
that have different dimensions which causes the 
enormous value gap between the two objectives, and it 
will have an adverse effect on computing of the crowding 
distance because the crowding distance is defined as the 
sum of the distances between the individual and its two 
adjacent individuals in the Pareto-optimal front while the 
distances are determined by the aspects of the two 
objectives. Therefore we will introduce the self-adapting 
crowding distance parameter to the computing of the 
crowding distance to weaken the adverse effect caused by 
the different dimensions so that the individuals in the 
Pareto-optimal front are well distributed. 
(1)  Crossover Strategy 

STOX is based on SJOX (Similar Job Order Crossover) 
[12], it will reserve the similar gene fragments in the 
chromosomes taking part in the crossover operation so 
that the offspring can inherit the excellent genetic 
fragments from the parents and the algorithm can 
converge faster. However, the encoding of the PDTs 
scheduling problem is different from the one-dimensional 
0-1 encoding, so we propose the STOX which is 
improved on the basis of the SJOX with corresponding 
measures for the PDTs scheduling problem. For an 
illustrative purpose, we will take a PDTs scheduling 

model with 10 tasks and 3 virtual machines for example 
as follows. 

 Figure 2. Copy the common tasks from parents to offspring 

 Figure 3. Inherit tasks up to the cut point from the direct parent 

 Figure 4. Copy the missing tasks from the other parent 

(2)  Mutation Strategy 
Two column index positions in the coding matrix of 

the chromosome will be chosen randomly by the shift 
mutation operator as the starting point and ending point 
respectively, as for the gene fragments between the 
starting point and ending point, they will be shift end to 
end with a step size. We still use the PDTs scheduling 
model above to illustrate this operator with the step size 

446 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



set to 1 as follows. 

1
0

0
0
0

1
1
0

0
0
1

0
0
0

1
0
0

1
0
0

1
0
1

0
1
0

0
1
0

0

1
0

0
0
0

1
0
1

0
1
0

0
0
0

1
0
0

1
0
0

1
0
1

0
1
0

0
1
0

0

Starting point Ending point

Starting point Ending point  
Figure 5. Shift mutation 

(3)  Self-adapting Crowding Distance Parameter 
In the self-adapting crowding distance (SCD) operator, 

we define the self-adapting crowding distance parameter 
(SCDP) as the quotient of two operands, one is the 
maximum gap value of two adjacent individuals in the 
aspect of the sub-objective time consumption, the other is 
the maximum gap value of two individuals in the aspect 
of the sub-objective financial cost. In particular, we’d like 
to highlight that the boundary values of each rank are not 
included in the maximum gap values, and we use a 
variable to count the times that the SCDP doesn’t change 
during the evolution, once the times exceed a certain 
number such as 5% of the maximum evolution generation, 
we will believe that the algorithm may converges to the 
local optimal solution and we should increase the 
crossover probability and the mutation probability by 
0.01 until they reach their respective upper limits. The 
count variable, as well as the crossover probability and 
the mutation probability, will be reset if the SCDP 
changes in the new generation. When we calculate the 
crowding distance of the individuals at the end of the 
revolution of each generation, the sub-objective in the 
denominator of the fraction will be multiplied by the 
SCDP to weaken the adverse effect caused by the 
different dimensions of the sub-objectives so that the 
individuals in the Pareto-optimal front will be well 
distributed. 

Actually, the SCDP is calculated during the Step4 in 
section A of part III, and it is implemented in the 
following steps. 

Step1: Initialize all the variables including maxCount, 
maxPc and maxPm, which respectively represent the 
upper limit of the counter, the crossover probability and 
the mutation probability. If it is the first generation, set 
the initial value of the SCDP to 1, otherwise set it with 
the value of SCDP in the previous generation. 

Step2: Calculate the new SCDP in the current 
generation, if it isn’t equal to the SCDP of the previous 
generation, reset the variables of the counter, the 
crossover probability and the mutation probability, go to 
Step6, otherwise, increase the value of the counter by 1. 

Step3: If the counter doesn’t reach its upper limit, go to 
Step6, otherwise, go to Step4. 

Step4: If the crossover probability reaches its upper 
limit, go to Step5, otherwise, increase the crossover 
probability by 0.01. 

Step5: If the mutation probability reaches its upper 
limit, go to Step6, otherwise, increase the mutation 
probability by 0.01. 

Step6: Go outside of the procedure of calculating the 
SCDP. 

The specific steps are shown in Fig. 6. 

Start

Initialize the variables:
maxCount,maxPc and maxPm

PRE_SCDP=1

gen=0
set PRE_SCDP 

to the value of SCDP 
in the previous generation

Calculate the SCDP 
in the current generation

N

Y

PRE_SCDP==SCDP

N

reset the variables:
count,pc and pm

End

Ycount=count+1

count>maxCount

Y

pc<maxPc

Y

pc=pc+0.01

pm<maxPm

Y

pm=pm+0.01

N

N

N

Figure 6. Calculate the SCDP 

As mentioned above, the procedure of calculating the 
SCDP is embedded in the step4 in section A of part III, 
and the variables such as gen, count, pc and pm are 
defined outside the procedure. 

IV.  EXPERIMENTS AND ANALYSIS 

In order to evaluate the performance of the improved 
NSGA-II when applied to the PDTs scheduling problem, 
we compare it with the traditional NSGA-II in the aspects 
of the ability of finding the Pareto-optimal solutions and 
the distribution of the Pareto-optimal solutions in the 
Pareto-optimal front. With regard to the ability of finding 
the Pareto-optimal solutions, we take the number of the 
non-repetitive Pareto-optimal solutions under the same 
population size and the same evolution generations as 
reference, obviously, the greater the number is, the more 
powerful the ability is. As for the distribution of the 
individuals in the Pareto-optimal front, we take the mean 
value and the stand deviation of the distances between 
every two adjacent solutions as reference, the mean value 
and the stand deviation should be smaller if we expect the 
individuals in the Pareto-optimal to get a better 
distribution in the Pareto-optimal front. 

A.  Performance Comparison 

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 447

© 2014 ACADEMY PUBLISHER



We can compare the performance mentioned above by 
analyzing the results of the simulation experiments. To 
get these results, we initialize the scheduling problem by 
setting a PDTs model with 10 task nodes and 8 virtual 
machine nodes, and when the algorithms are applied to 
solve the problem, we set the size of the population 
ranging from 100 to 500 with an interval value of 100, as 
well as the evolution generation. For every situation we 
run the program 50 times and get the average value of the 
performance mentioned above. Taking the situation with 
a population of 100 for example, its performance 
comparisons are shown as follows in Fig.7 and Fig. 8. 

 
Figure 7.The mean value and the stand deviation of the distances 

between the adjacent solutions 

 
Figure 8.The number of the non-repetitive Pareto-optimal solutions 

We can see from the figures that the improved 
algorithm behaves much better than the traditional 
algorithm under the same condition, which has a more 
powerful ability to find the non-repetitive Pareto-optimal 
solutions meanwhile the solutions in the Pareto-optimal 
front are better distributed. 

Also, we can see that both the improved algorithm and 
the traditional algorithm behave better as the evolution 

generation increases when it ranges from 100 to 300, 
however, when the evolution generation is over 300, the 
results of the traditional algorithm show that its 
performance becomes slightly worse while the improved 
algorithm can avoid the atavism. 

B.  The Influence of Population Size on the Performance 
of the Algorithm 

NSGA-II is essentially an evolutionary algorithm, both 
the population size and the evolution generation can 
influence the performance of the algorithm when it is 
applied to the task scheduling problem. As is shown in 
the section A of part IV, the improved algorithm behaves 
much better than the traditional algorithm when they are 
under the same population size and evolution generation. 
In this section we take the improved algorithm for 
example to show that how the algorithm behaves when 
the evolution generation is sufficient while the population 
size ranges from 100 to 500 with a step size of 100. 
Table2 shows the average values of the number of 
non-repetitive Pareto-optimal solutions, the mean value 
and the stand deviation of the distances between every 
two adjacent solutions when the improved algorithm is 
run 50 times with every different population size. 

TABLE2.  

INFLUENCE OF POPULATION SIZE ON THE ALGORITHM 

Population 
size 

The average number 
of solutions 

Mean 
value 

Stand 
deviation 

100 73.6 103.9076 84.5916 
200 123.6 72.4885 68.6235 
300 150.2 64.7250 66.0616 
400 149.4 65.2252 66.0764 
500 141.2 64.7846 68.4530 

 
We can see from the table that the population size has a 

strong influence on the performance, we should choose 
an appropriate population size according to the PDTs 
model’s scale and make sure that the evaluation 
generation is sufficient, as opposed to the supposition that 
the bigger is the better, for there is a risk of atavism and 
also a waste of the computing resource and time. So it 
will be much better if we choose an appropriate 
population size and evaluation generation or set some 
limit values to have the computing stop automatically. 

C.  Pareto-optimal front Comparison 
The advantages of the improved NSGA-II are not only 

reflected in the performance data above but also in the 
Pareto-optimal front. Actually the improved NSGA-II can 
get a Pareto-optimal front which is closer to the optimal 
solution than the traditional NSGA-II when they are 
under the same population size and evaluation generation. 
That means the user can get a solution which needs less 
time consumption or financial cost. Due to the large 
range in the aspect of financial cost, we only select a 
subset of the individuals in the Pareto-optimal front to 
generate a figure for illustrative purpose so that we can 
see the difference clearly as shown in Fig. 9. 

448 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER



 
Figure 9.Part of the Pareto-optimal front 

V.  CONCLUSION AND FUTURE WORKS 

The cloud PDTs are composed of independent tasks 
and workflow tasks, so the scheduling model is more 
complicated. In order to find the optimal solutions, we 
apply the traditional NSGA-II algorithm to this problem 
and propose an improved algorithm based on it by 
adopting the STOX, shift mutation and SCD operator. We 
can see from the simulation experiment that the improved 
NSGA-II can get a much better Pare-to optimal front than 
the traditional one in the aspects of the number of 
non-repetitive Pareto-optimal solutions, the distributions 
of the individuals in the Pareto-optimal front and the 
degree of approaching the optimal front when they are 
under the same population size and evolution generation. 

In this paper we are just concerned with the time 
consumption and financial cost happening in the task 
computing, however, the data centers of the cloud service 
providers must consider the bandwidth delay and other 
issues that may happen in the scheduling procedure. 
Therefore, the objectives should be more than what we 
have paid attention to. In the future, we will do further 
researches on a more complete objective mechanism and 
simulate with more multi-objective optimization 
algorithms to check the comparison results. 

ACKNOWLEDGEMENTS 

This work was partly supported by National Natural 
Science Foundation of China (Grand Nos. 41275116) and 
Jiangsu Economic and Information Technology 
Commission project of China (Grand Nos.{2011}1178). 

REFERENCES 

[1] Armbrust, Michael, et al. "A view of cloud computing." 
Communications of the ACM 53.4 (2010): 50-58. 

[2] Andrzejak, Artur, Derrick Kondo, and Sangho Yi. 
"Decision model for cloud computing under sla 
constraints." Modeling, Analysis & Simulation of 
Computer and Telecommunication Systems (MASCOTS), 
2010 IEEE International Symposium on. IEEE, 2010. 

[3] Buyya, Rajkumar, David Abramson, and Jonathan Giddy. 
"An economy driven resource management architecture for 
global computational power grids." Proceedings of the 

2000 International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA 2000). 
2000. 

[4] Vaquero, Luis M., et al. "A break in the clouds: towards a 
cloud definition." ACM SIGCOMM Computer 
Communication Review 39.1 (2008): 50-55. 

[5] Izakian, Hesam, Ajith Abraham, and Vaclav Snasel. 
"Comparison of heuristics for scheduling independent 
tasks on heterogeneous distributed environments." 
Computational Sciences and Optimization, 2009. CSO 
2009. International Joint Conference on. Vol. 1. IEEE, 
2009. 

[6] Zhu, Hai, et al. "Grid Independent Task Scheduling 
Multi-Objective Optimization Model and Genetic 
Algorithm." Journal of Computers 5.12 (2010): 1907-1915. 

[7] Pandey, Suraj, et al. "A particle swarm optimization-based 
heuristic for scheduling workflow applications in cloud 
computing environments." Advanced Information 
Networking and Applications (AINA), 2010 24th IEEE 
International Conference on. IEEE, 2010. 

[8] Vöckler, Jens-Sönke, et al. "Experiences using cloud 
computing for a scientific workflow application." 
Proceedings of the 2nd international workshop on 
Scientific cloud computing. ACM, 2011. 

[9] Shengjun Xue, Jie Zhang, Xiaolong Xu. "An improved 
algorithm based on ACO for cloud service PDTs 
scheduling." Advances in Information Sciences and 
Service Sciences, 2012, 4(18):340-348. 

[10] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective 
genetic algorithm: NSGA-II." Evolutionary Computation, 
IEEE Transactions on 6.2 (2002): 182-197. 

[11] Deb, Kalyanmoy, et al. "A fast elitist non-dominated 
sorting genetic algorithm for multi-objective optimization: 
NSGA-II." Lecture notes in computer science 1917 (2000): 
849-858. 

[12] Ruiz, Rubén, Concepción Maroto, and Javier Alcaraz. 
"Two new robust genetic algorithms for the flowshop 
scheduling problem." Omega 34.5 (2006): 461-476. 

[13] Murata, Tadahiko, HisaoIshibuchi, and Hideo Tanaka. 
"Genetic algorithms for flowshop scheduling problems." 
Computers & Industrial Engineering 30.4 (1996): 
1061-1071. 

[14] Buyya, Rajkumar, et al. "Cloud computing and emerging 
IT platforms: Vision, hype, and reality for delivering 
computing as the 5th utility." Future Generation computer 
systems 25.6 (2009): 599-616. 

 
 
 
 
 

Shengjun Xue was born in Qingdao, 
China. He received the B.S. degree in 
1983 in computer science & technology 
from Zhejiang University, Hangzhou, 
China. He received the M.S. degree in 
1998 and the Ph.D. degree in 2002 from 
Wuhan University of Technology, 
Wuhan, China. He once worked as a 
postdoctoral researcher at Purdue 

University. 
Now he is the professor of computer science in Nanjing 

University of Information Science & Technology, Nanjing, 
China. His research interests in network of computer, cloud 
computing, intelligent transport and applied meteorology. 

Prof. Xue is a member of IEEE, and he is also the advanced 
member of Chinese Computer Federation (CCF). 

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 449

© 2014 ACADEMY PUBLISHER



Fei Liu was born in Jiangsu, China. He 
received the B.S degree in 2011 in 
computer science & technology from 
Nanjing University of Information 
Science & Technology, Nanjing, China. 
He is now studying as a M.S. at Nanjing 
University of Information Science & 
Technology, Nanjing, China. 

His research interests in cloud storage, 
cloud scheduling, genetic algorithm and multi-objective 
optimization. 

 
 
 

Xiaolong Xu was born in Jiangsu, China. 
He received the B.S. degree in 2010 in 
software engineering from Nanjing 
University of Information Science & 
Technology, Nanjing, China. He is now 
studying as a M.S. at Nanjing University 
of Information Science & Technology, 
Nanjing, China. And he will be a Ph.D. 
student of Nanjing University in 

September 2013. 
His research interests in cloud computing, cloud scheduling 

and cloud storage. He has 4 papers published on International 
journals. 

450 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER


