
A High Efficient Tables Look-up Algorithm for
CAVLC Decoding

Jianhua Wang, Lianglun Cheng, Jun Liu, ShiLiang Luo
Faculty of Automation, Guangdong University of Technology, P. R. China

Email: 123chihua@163.com, llcheng@gdut.edu.cn, liujun7700@163.com, luo2002_88@163.com

Abstract—In order to solve the problems of high table
memory access and long table look-up time and big table
storage space in the process of CAVLC decoding for
H.264/AVC, a high efficient table look-up algorithm is
presented in this paper. The contribution of this paper lies
that we uses a program method to realize fully the no-table
looking-up of codeword. Specifically, after finding the
relationships existed in code length and numbers of 0 in
code prefix and code suffix and code, we uses a program
code method to realize entirely UVLCTs(Unstructured
Variable Length Coding Tables) in CAVLC decoding, As a
result, all decoded codewords in UVLCTS can be decoded
and obtained easily through a program execution way
instead of TLSS(table look-up by sequential search), which
could save a lot of table memory access and reduce amount
of table look-up time and save a large number of table
storage spaces for CAVLC decoding. The simulation results
show that our proposed scheme can save 100% table
memory access, reduce about 45% table look-up time and
save 2320 byte table storage space of table look-up in
CAVLC decoding compared with TLSS method, without
degrading video quality.

Index Terms—Memory access; Table look-up; Storage space;
CAVLC decoding; Program method

I. INTRODUCTION

H.264/AVC is the latest international video coding
standard, which has been developed by ITU-T and
ISO/IEC [1]. It has been widely adopted in many related
video communication aspects and has greatly improved
the compression ratio and video quality. H.264/AVC has
three kinds of levels: Baseline profiles, Main profiles and
Extended profiles. Main profiles are mainly adopted to
improve image quality and compression ratio; Extended
profiles are applied to networking video streaming
transmission. Baseline profiles are used in a wide range
of small size equipments with low complexity and low
power consumption.

In the Baseline profiles of H.264/AVC, Context-based
Adaptive Variable Length Coding (CAVLC) as an
entropy coding tool is used to decode residual blocks. It
increases the compression ratio and video quality, but at
the same time, it also increases power consumption and

hardware cost of the decoder. As we all know, table look
up is a very power-consuming operation, which
consumes most power of CAVLC decoder.Since looking-
up variable length tables need to occupy about 96.6%
time and consume amount of memory access of the entire
CAVLC decoding in CAVLC decoding [2], It could
seriously affect the efficiency of CAVLC decoding.
During the process of CAVLC decoding, CAVLC
decoding needs to decode five syntax elements. Three in
five syntax elements, Coeff_token, Run_before and
Total_zeros, need be decoded by looking up the variable
length tables, while the rest of them, Level and sign of
TrailingOnes(T1s), are decoded by the regular arithmetic
operations without using the looking-up of variable
length tables. So a lot of table look-up time and memory
access will be required to find desired codewords from
variable length tables and great mount of storage space
will be required to store these variable length tables. In
this paper, table memory access refers the memory access
spent in looking up variable length tables. Table look up
time refers the looking up time of variable length tables,
and table storage space refers the storage space of storing
variable length tables. It is well known that table look-up
time and table look-up memory access and table storage
space are three important performance and bottleneck in
embedded systems especially for small-size multimedia
applications [3].In order to reduce the memory access or
save the table look-up time, many optimized decoding
methods have been developed.

In the hardware design level, Heng et al. [3] merged all
codeword tables into one table and organized the table
into sub-tables to reduce memory access and table look-
up time, reducing 40% power consumption. Lee et al. [4]
proposed pipelined architecture to save the operation
frequency greatly, saving memory access and table look-
up time. Wang et al. [5] presents a novel low-cost high-
performance CAVLC decoder for H.264/AVC, which
could greatly improve CAVLC decoding speed. Huang et
al. [6] proposed a decoder based on CMOS and FPGA
technology which reduced power consumption by 44-
48% more than previous low-power CAVLD schemes.

In the software design level, some general table look-
up methods, such as TLSS (Table Look-up by Sequential
Search),TLBS (Table Look-up by Binary Search), have
been required to decode CAVLC. However, the TLSS
needs a great amount of memory access and a lot of table

Manuscript received March 2, 2013; revised July 20, 2013;
accepted July 28, 2013

Corresponding author: 123chihua@163.com (Jianhua Wang)

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 329

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.329-335

look-up time to spend in every decoded codeword due to
complete table look-up for the desired codeword. The
TLBS can improve table look-up speed, but because of its
random memory access, it doesn’t behave efficiently in
some systems. In Moon’s method, a new VLDs based on
integer arithmetic operations for Run_before and
Total_zeros are proposed, which can reduce some table
look-up time and reduce about 65%-88% memory access
[7]. Lu et al. [8] proposed a entropy decode algorithm
which can decrease about 75.1%-82.7% time than the
original algorithm in the H.264 reference software. Lee et
al. [9] developed a new codeword structures, a looking-
up tables and searching methods for the CAVLC syntax
elements and achieved about 90% memory access savings.
But Lee’s method still need to look up some tables, which
caused some memory access consumption. In Kim’s
method, some other integer arithmetic operations are
proposed, which can reduce about 94% memory access,
at the same time, it improved greatly table look-up speed
[10].In this work[11], Uchihara et al. proposed a fast skip
scheme of CAVLC level code, which can reduce 70% of
CAVLC level code skip And In the paper[12], in order to
reduce decoding time, they presented a proposal for an
efficient software CAVLC decoder architecture in
H.264/AVC based on level length extraction
(LLE),which achieved 22% faster decoding speed and
38% faster decoder compared with the conventional
method.

In this paper, we propose a high efficient table look-up
algorithm based on program method for CAVLC
decoding. The achievement of our algorithm rests that we
uses program code to realize fully the looking-up of
UVLCTs (Unstructured Variable Length Coding Tables)
in CAVLC decoding, As a result, all decoded codewords
in UVLCTs can be obtained easily through a program
execution way instead of TLSS (table look-up by
sequential search)method, which could save a lot of table
memory access, reduce amount of table look-up time and
save a large number of table storage spaces in the process
of CAVLC decoding. The simulation results show that
our proposed scheme can save 100% memory access of
table look-up and reduce 45% table look-up time and
save 2320 byte table storage space compared with TLSS
method for CAVLC decoding without degrading video
quality.

The rest of this paper is organized as follows. In
Section 2, the principle and complexity analysis of
CAVLC decoding are introduced. The proposed decoding
method is presented in Section 3. And the simulation
results of proposed scheme compared with existing
methods are presented in Section 4. In Section 5, we give
some conclusions.

II. THE PRINCIPLE AND COMPLEXITY ANALYSIS OF
CAVLC DECODING

A. Principle of CAVLC Decoding
In baseline profile of H.264/AVC, the CAVLC and

Exp-Golomb codes are used as two entropy decoding
method. Exp-Golomb codes are used to decode indication

information and other coding parameters, which are with
regular construction, while CAVLC is adopted to decode
the quantized transform coefficients for residual blocks.
Since computation complexity of whole entropy decoding
is mainly occupied by the CAVLC decoding, this paper
will focus on the CAVLC decoding procedures. In the
process of CAVLC decoding, the quantized coefficients
are zigzag scanned and then decoded by the five syntax
elements. The decoding order and definition of five
syntax elements above are described as follows.

 Figure1. Decoding order of five syntax elements

 Coeff_token: Both the number of nonzero
coefficients (Totalcoeff) and number of coefficients
that absolute value is equal to one (TrailingOnes).

 Sign of TrailingOnes (T1s): Use a single sign bit,
which 0 is for positive and 1 is for negative, to
represent each T1s in reverse zigzag order.

 Level: The values for each nonzero coefficient
except for T1s in reverse zigzag order.

 Total_zeros: The total number of zero coefficients
between the DC and the last nonzero coefficient in
zigzag order.

 Run_before: The numbers of zeros preceding each
nonzero coefficient in reverse zigzag order.

B. Complexity Analysis of CAVLC Decoding
During the process of CAVLC decoding, many

variable length tables are used to decode codeword.
However, there are some difficulties in looking up
quickly variable length tables above.

(1) The complexity of code tables storage structure. In
H.264/AVC standard, the syntax elements of TotalCoeffs
and Tls are stored in the form of 2D-code table. As we all
known, for a 2D-code table, it is easy to find the
corresponding content by its coordinates, but in turn, it is
very difficult to find the corresponding coordinate
through the content, because it needs search the whole
table. Therefore, decoding the syntax elements of
TotalCoeffs and Tls needs to spend a great lot of time and
memory access in looking up 2D-code table, matching
and judging codeword for CAVLC decoding, which
could greatly adds complexity of CAVLC decoding. The
decoding process of TotalCoeffs could occupy up to 52%
time in the entire process of CAVLC decoding when QP
value is 30 [13].

(2) Selection diversity of code tables. In H.264/AVC
standard, a codeword has many corresponding code
tables. The selection and judgment of code tables needs
to make a large number of calculations, which greatly
adds the complexity of CAVLC decoding.

(3) Continuity of code stream. During decoding
process of H.264/AVC stream, since input stream is
continuous, with no intervening separator in it, this
requires CAVLC decoder to make lots of table looking up
operations to get different code and do a large number of
calculations to accurately judge different codeword from
input decoding stream. Because those operations above
are greatly time-consuming, they immensely add the

330 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

complexity of CAVLC decoding.

III. PROPOSED SCHEME

A. Variable Length Tables
As is mentioned above, the process of CAVLC

decoding needs to decode five syntax elements. Three in
five syntax elements above, Coeff_token, Run_before
and Total_zeros, need to look up variable length tables.
Through analysis the structure of variable length tables,
we can find that Coeff_token has three 2D-variable
length tables: 0<=NC<2, 2<=NC<4, 4<=NC<8, while the
Run_before and Total_zeros VLDs has one 1D-variable
length tables. Table 1 is the Part codeword of 2D-variable
length tables for Coeff_token (2≤NC<4). Table 2 is the
Part codeword of 1D-variable length tables for
TOTAL_ZEROS (TC=6). In this paper, we just need to
optimize the lookup algorithm for those variable length
tables above.

TABLE 1.
PART OF 2D-VARIABLE LENGTH TABLE FOR COEFF_TOKEN (2≤NC<4)

Code Codeword [T1,Tc]

10 0x21 [1,1]

11 0x00 [0,0]

011 0x42 [2,2]

0100 0x64 [3,4]

0101 0x63 [3,3]

00110 0x65 [3,5]

00111 0x22 [1,2]

001000 0x66 [3,6]

000111 0x02 [0,2]

… …… ……

0000000000001 0x6f [3,5]
TABLE 2.

PART OF 1D-VARIABLE LENGTH TABLE FOR TOTAL_ZEROS (TC=6)

Code Codeword

111 2
110 3
101 4
100 5
010 6
011 7
001 9
0001 8
00001 1

000001 0
000000 10

In table 1, the code represents for the input bit-stream
of the Coeff_token syntax element (2≤NC<4). The 8-bit
Codeword represents the decoded output elements. The
front 3 bits of them are for total number of ones (T1) and
the other tail 5 bits are for the total number of coefficients
(Tc). In Table 2, the code represents for the input bit-
stream of the syntax elemen of TOTAL_ZEROS, the
codeword stands for single decoded output directly

(TC=6). The other elements of Coeff_token, Run_before
and Total_zeros have the same code table structure as
Table 1 and Table 2.

 B. Relationship between Code Length and Numbers of 0
in Code Prefix

 By analyzing the codeword structure in Table 1 and
Table 2 above, we find that there are some corresponding
relationships in code length and numbers of 0 in code
prefix for Coeff_token and Total_zeros. Table 3 and
Table4 are the corresponding relationships respectively.

TABLE 3.
THE RELATIONSHIP EXISTS BETWEEN LENGTH OF CODE AND NUMBERS

OF 0 IN CODE PREFIX CORRESPONDING TO TABLE 1
 Numbers of 0 in

code prefix
Code length

0 2
1 3 or 4
2 4 or 5
3 6
4 7
5 8
6 9
7 11
8 12
9 13
10 13 or14
11 14
12 13

TABLE 4.
THE RELATIONSHIP EXISTS BETWEEN COD LENGTH AND NUMBERS OF 0

IN CODE PREFIX CORRESPONDING TO TABLE 2
 Numbers of 0 in code

prefix
Code length

0 3
1 3
2 3
3 4
4 5
5 6
6 6

Table 3 and Table 4 are the relationship conditions
between the code length and numbers of 0 in code prefix
for Coeff_token (2≤NC<4) and Total_zeros (Tc=6).
Through the relationships above, we can find a quick way
to determine the length of code suffix through making use
of the relationships between the code length and numbers
of 0 in code prefix, which can save lots of time and
memory access of looking up tables and matching,
judging and processing code suffix.

C. Relationship between Length of Code Suffix and
Numbers of 0 in Code Prefix

Table 5 and Table 6 are the relationship between
length of code suffix and numbers of 0 in code prefix for
2D-Coeff_token and 1D-Total_zeros based on the
relationship between numbers of in code prefix and Code
length respectively.

TABLE 5 .
 PART RELATIONSHIP BETWEEN NUMBERS OF 0 IN CODE PREFIX AND

LENGTH
CODE SUFFIX FOR COEFF_TOKEN (VLCT1, 2≤NC<4)

code Numbers of 0
in code prefix

Length of Code
suffix

10
0 2

11

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 331

© 2014 ACADEMY PUBLISHER

011

1 1or 2 0100

0101

00110

2 2 or 3 00111

001000

000111 3 2

… …… ……

0000000000001 12 0
TABLE 6

 PART RELATIONSHIP BETWEEN NUMBERS OF 0 IN CODE PREFIX AND
LENGTH

CODE SUFFIX FOR TOTAL_ZEROS (TC=6)

Code
Numbers of 0
in code prefix

Length of
Code suffix

111

0 3

110
101
100
010

1 3
011
001 2 0
0001 3 0
00001 4 0

000001 5 0
000000 6 0

In table5 and table6, the numbers of 0 in code prefix of
code is obtained by calculating consequent zero from
input bit-stream. The length of code suffix can be
determined by the relation existing between code length
and numbers of 0 in code prefix, such as table3 and
table4. Since Code is made up of numbers of 0 in code
prefix and code suffix. After determining numbers of 0 in
code prefix of code and code suffix, we can determine the
code. Based on the basic idea above, we suppose a table
look-up algorithm based on program method for CAVLC
decoding.

D. Tables Look-up Algorithm based on Program Method
In this paper, based on analysis above, we propose a

new table look-up algorithm based on program method
for CAVLC decoding. The basic idea of new algorithm is
that we takes number of zero in code prefix calculated
from input bit-stream as the first progress entry of code
judging, the value of code suffix gotten according to the
length of code suffix from input bit-stream as the second
progress entry of code judging , whose length is
determined by the relation existing between numbers of 0
in code prefix and code length, then through the first and
second progress execution above, we can quickly get the
decoded output. The process of table look-up algorithm
based on program method could be shown as Figure 2.

Figure 2. Process of tables look-up based on program method

The proposed table look-up algorithm based on

program method for CAVLC decoding can be summed
up as following some steps.

Step 1: Select variable length tables of Coeff_ token
syntax element through the value of NC.

Step 2: Read input decoding bit-stream and calculate
numbers of 0 in code prefix as the first progress entry of
code judging.

Step 3: get the numbers of code length according to
numbers of 0 in code prefix above.

Step 4: determine the length of code suffix according
to the relationship existing between code length and
numbers of 0 in code prefix. If the code length has two
possible values, we will determine the numbers of code
length after judging the first value of code suffix again.

Step 5: read the value of code suffix as the second
progress entry of code judging

Step 6: find decoded codeword according to through
the first and second progress execution of code judging
above

Now take decoding Coeff_token syntax element for
example to illustrate decoding process with our supposed
table look-up algorithm. And suppose that NC value is
0≤NC<2, the bit-stream inputted is 0000100011…,
Figure 3 is a decoding example process with our
supposed algorithm based on program method. Table 7 is
pseudo code of tables look-up based on program method.

Figure 3. Process of tables look-up based on program method

Table 7.

Part pseudo code of tables look-up based on program method

From Figure 3 and Table 7, we can see clearly that our

332 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

supposed algorithm can use program code to realize
code-tables and look up codeword according to the
relationship existing in code length and numbers of 0 in
code prefix and code suffix and code, it can save a lot of
table memory access and reduce table look-up time and
save a large number of table storage spaces in the process
of CAVLC decoding. Figure 4 is the decoding process of
Coeff_token for an example with our proposed scheme.

Figure 4. Decoding process of Coeff_token with our proposed scheme

From Figure 4, we can clearly see the Coeff_token

decoding process with our proposed scheme. The
decoding process is as following:

Step 1, select variable length table0 of Coeff_token as
table entry because of NC value (0≤NC<2);

Step 2, read input decoding bit-stream and take the
numbers of 0 in code prefix (4)calculated from input
decoding bit-stream as the first progress entry of code
judging;
 Step 3, get numbers of code length (1 or 2) according
to length of code suffix (4)

 Step 4, get two possible value (1 or 2) for length of
code suffix according to the relationship existing between
code length and numbers of 0 in code prefix. After
judging the first value of code suffix (0) again, we can get
the length of code suffix (2)

 Step 5, read value of code suffix (00) from decoding
bit-stream according to length of code suffix (2) and take
it as the second program entry of code judging
 Step 6, find the decoded Codeword (0x64) according
to through the first and second progress execution of code
judging above, transform 0x64 into T1s=3, Tc=5.

After decoding the Coeff_token, level, sign of T1s,
Total_zeros and Run_before syntax elements are decoded
in sequence. As to Total_zeros and Run_before, the
decoding steps are the same as the syntax elements of
Coeff_token.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

 In order to verify the effectiveness of our proposed
method above, we take some experiments. Our designed
experiments mainly include four parts: experimental

environment, save table memory access, reduce table
look-up time and save table storage space.

. A. Experimental Environment
The simulation Environment was conducted on a Intel

2GHz processor, 1GB memory capacity, Intel Windows
XP operating system. Table 8 shows some parameters of
test sequences, including the name, resolutions, frame
rate and frame number of test sequences in our simulation
experience. Some common encoding parameters are
shown at Table 9.

TABLE 8.
 PARAMETERS OF TEST SEQUENCES

Sequence(SEQ) resolution Frame
rate

#frames

Mobile (M) CIF(176×144) 25 60, 120
Walk(W) CIF(176×144) 25 60, 120
Paris(P) CIF(176×144) 25 60, 120

Football (F) QCIF(352×288) 25 60, 120
Soccer(S) QCIF(352×288) 25 60, 120
walk(W) QCIF(352×288) 25 60, 120

TABLE 9 .

ENCODING PARAMETERS
Profile Baseline

SATD (Hadamard) On
RDOptimization 1

RDO On (fast algorithm)
MV search range ±32 pixels
Reference frame 5 frames

QP 24,28, 32
Motion search Fast search
Intra interval 0

Motion search Fast search
SymbolMode 0 (CAVLC is used)

QPPrimeYZeroTransform
BypassFlag 0 (lossless)

File Vlc.c
Encoder JM 16.2 [15]

B. Save Table Memory Access
In this subsection, We evaluate the memory access

savings of our supposed table look-up compared with
other four methods, TLSS, TLBS, Moon’s [7], and Kim’s
[10], and Figure 5, Figure 6 and Figure7 are the saving
results

M W P F S W
0

10
20
30
40
50
60
70
80
90

100

M
em

or
y

ac
ce

ss
 s

av
in

g
(%

)

Test sequences

 TLSS
 TLBS
 Moon
 Kim
 Our

 Figure 5. Memory access savings comparison in table look-up for 60
frames of test sequence (QP=24)

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 333

© 2014 ACADEMY PUBLISHER

M W P F S W
0

10
20
30
40
50
60
70
80
90

100

M
em

or
y

ac
ce

ss
 s

av
in

g
(%

)

Test sequences

 TLSS
 TLBS
 Moon
 Kim
 Our

M W P F S W
0

10
20
30
40
50
60
70
80
90

100

M
em

or
y

ac
ce

ss
 s

av
in

g
(%

Test sequences

 TLSS
 TLBS
 Moon
 Kim
 Our

Figure 6. Memory access savings comparison in table look-up for 60

frames of test sequence (QP=28)
Figure 7. Memory access savings comparison in table look-up for 120

frames of test sequence (QP=32)

From Figure 5, Figure 6 and Figure 7, we can see that
our proposed algorithm has the best table memory access
saving in five methods above, reaching 100% memory
access saving. Kim’s method follows. The reason for it is
that, we use program method to instead of all tables
looking-up, which can save a lot of table memory access
spent in looking up table. In this experience, we also find
that TLBS and Moon’s method have the worse save result,
while TLBS method shows better saving results in the
higher QP and Moon’s method in the lower QP. The
similar conclusion can be found in reference [10].

C. Reduce Table Look-upTime
In this subsection, we mainly evaluate the performance

of table look-up time method with our proposed

algorithm, which was compared with TLSS, TLBS,
Moon, and Kim algorithms in different sequences with
different frames and QP. The results are shown as follows
in Table 10.

From Table 10, we can clearly find that our proposed
algorithm has superior results in five methods above
and shows about 45% saving compared to the standard
TLSS method. The main reason for reducing table look-
up time in CAVLC decoding for H.264/AVC lies that the
use of program method. Because our proposed algorithm
uses a program method to instead of table look-up in
CAVLC decoding, which can reduce the numbers of
codetable looking-up and save the time of code searching,
matching, judging and process operation.

TABLE 10.

DECODING TABLE LOOK-UP TIME IN CAVLC FOR H.264/ AVC (MS)
QP 24 28 32

SEQ TLSS TLBS Moon Kim Ours TLSS TLBS Moon Kim Ours TLSS TLBS Moon Kim Ours

M
60 73545 48646 50738 44564 40940 61793 39653 41674 35302 32326 53787 32664 35983 30990 28899

120 157372 110231 115682 103547 89856 113086 69035 61825 64542 59456 87642 57543 59709 54675 50862

W
60 54676 34683 36782 312881 28509 45890 26747 28673 25783 24090 38853 27689 29654 24661 20613

120 115432 74573 76577 72675 66906 83896 56784 57672 53661 48301 62004 40672 44367 38603 35468

P
60 64676 44676 51879 41715 35168 53985 32005 34800 309878 28540 46567 28007 29182 27823 25004

120 155424 83204 88990 83408 81328 109934 53896 67897 60992 58305 85674 49538 51076 48631 44456

F
60 40295 28116 30675 25707 22590 33554 25465 23543 206004 18092 27665 20567 21770 17784 15118

120 81887 55435 57564 50672 47263 61734 37564 39683 35697 32870 51764 30668 31896 28201 27625

S
60 43351 27044 2962 25061 23025 29990 18856 20999 17657 16781 16479 12537 13768 9847 8565

120 84451 48785 50647 47366 45610 47894 28885 30872 26577 24966 33144 19361 20625 19946 18197

W
60 61824 39674 31670 35675 33633 51698 30668 33645 29667 28152 43246 29789 30230 27162 25031

120 147354 95455 99875 90054 81631 113542 706754 796004 626594 59400 78564 55679 57651 49654 44189

D. Save Table Storage Space
As our algorithm uses a program way to realize the

table look-up for CAVLC decoding, it can also
completely save data codeword storage space for
UVLCTs. Table 11 is the consumption condition of
storage space for our method compared with TLSS

TABLE 11.
CONSUMPTION CONDITION OF TABLE STORAGE SPACE (BYTE)

method

syntax elements TLSS

ours

Storage
space

Coeff_token 408 0
Coeff_tokenDC 408 0

Total_zeros 480 0
Total_zerosDC 800 0

Run_before 224 0

334 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

From table 11, we can see that our proposed scheme
can save about 2320 byte table storage space compared
with TLSS method. The main reason for saving space lies
in the use of table look–up base on program method,
which can completely save all table storage space for
CAVLC decoding.

V. CONCLUSION

In this paper, a high efficient table look-up scheme
abased on program method is proposed for CAVLC
decoding in H.264/AVC. In our scheme, we use program
method to realize fully the UVLCTS and decode
codeword without any table look-up, which can resolve
problem of high table memory access and long table
look-up time and large table storage spaces. Simulation
results show that our proposed scheme not only can save
100% memory access in table look-up, but also reduce
about 45% time in decoding table look-up than the
conventional CAVLC decoding and save 2320 byte table
storage space, without degrading video quality.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive opinions in improving this paper.The work
was supported by the Joint Funds of the National Natural
Science Foundation of China (No.U2012A002D01);Key
Projects of National Natural Science Foundation of China
(No.U2012A002D01);The Strategic Emerging Industries
Special of Guangdong Province (No.2012A09100013-
2012BAF11B04–5150). Project of Ministry of Science and
Technology (NO.2012BAF11B04).

REFERENCES

[1] Joint Video Specification (ITU-T Rec. H.264|ISO/IEC
14496-10)-Joint Committee Draft Joint Video Team (JVT)
of ISO/IEC MPEG and ITU-T VCEG, Doc. JVT-
G050r1.doc, 2002.

[2] Junghee Lee, Chanik Park, and Soonhoi Ha, “Memory
Access Pattern Analysis and Stream Cache Design for
Multimedia Applications,” in Proc. of Asia and South
Pacific Design Automation Conf (DAC), Jan,2003,pp.22-
27.

[3] Heng-Yao Lin, Ying-Hong Lu, Bin-Da Liu, and Jar-Ferr
Yang, “A highly efficient VLSI architecture for
H.264/AVC CAVLC decoder,” IEEE Transactions on
multimedia, vol. 10, no. 1, pp.31-34 , 2008.

[4] Byung-Yup Lee, and Kwang-Ki Ryoo, “A design of high-
performance pipelined architecture for H.264/AVC
CAVLC decoder and low-power implementation,” IEEE
Transactions on Consumer Electronics, Vol. 56, No.4,
pp.2781-2789, 2010.

[5] Wang, Kyu-Yeul, Kim, Byung-Soo; Lee, Sang-Seol; Kim,
Dong-Sun; Chung, Duck-Jin. “A novel low-cost high-
throughput CAVLC decoder for H.264/AVC,” IEICE
Transactions on Information and Systems, Vol. E94-D, No.
4, pp. 895-904, 2011

[6] Fang, C.-H. ,Fan, C.-P. “Very-large-scale integration
design of a low-power and cost-effective context-based
adaptive variable length coding decoder for H.264/AVC
portable applications,” IET Image Processing, Vol. 6, No
2, pp.104-114, 2012

[7] Y. H. Moon, G. Y. Kim, and J. H. Kim, “An efficient
decoding of CAVLC in H.264/AVC video coding

standard,” IEEE Trans. on Consumer Electronics, Vol.51,
No3, pp.933-938, 2005.

[8] Lu, Da,Liu, Guofan Zhu and Lingli,“An optimization for
CAVLC code table lookup algorithm in H. 264 decoder,”
The 2th International symposium on Intelligence
Information Processing and Trusted Computing, China,
2011,pp.79-83.

[9] Jun Young Lee, Jae Jin Lee, and SeongMo Park, “New
lookup tables and searching algorithms for fast
H.264/AVC CAVLC decoding” , IEEE Trans. Circuits
and Syst. Video Technol. vol. 20, no.7 pp.1007-1017, 2010.

[10] Yong-Hwan Kim, Yoon-jong Yoo, Jeongho Shin,
Byeongho Choi, and Joonki Paik, “Memory-efficient
H.264/AVC CAVLC for fast decoding,” IEEE Trans On
Consumer Electronics, Vol.52, No.3, pp.943-952, 2006.

[11] Naofumi Uchihara, Hiroki Hayakawa, Hiroyuki Kasai.
“Fast CAVLC Level Code Skip scheme for H.264/AVC
stream manipulation,” Consumer Electronics (ICCE), 2012
IEEE International Conference. Pp.267 - 268 , Jan. 2012

[12] Naofumi Uchihara, Hiroki Hayakawa, and Hiroyuki Kasai.
“Efficient H.264/AVC software CAVLC decoder based on
level length extraction,” IEEE Transactions on Consumer
Electronics, Vol. 58, No. 1,pp.146-153, 2012

[13] Jun-Young Lee, Jae-Jin Lee, and SeongMo Park, “New
lookup tables and searching algorithms for fast
H.264/AVC CAVLC decoding,” IEEE Trans. On Circuits
and Systems for Video Technology, vol.20, no.7, pp.1007-
1017, 2010

[14] G. Sullivan and G. Bjontegaard, “Recommended
simulation common conditions for H.26L coding
efficiency experiments on low-resolution progressive-scan
source material,” ITU-T VCEG, Doc. VCEG-N81, 2001.

[15] K. Suhring, “JM 16.2 software,”
http://iphome.hhi.de/suehring/tml/.

Jianhua Wang was born on February 6, 1982 in GuangDong,
China. He received his B.S degree in Electronic Information
Science and Technology from Shaoguan University,
GuangDong, China, in 2006. Currently he is pursuing Ph.D
degree in Control Science and Engineering at Guangdong
University of Technology. His research interests include 3G
wireless video transmission, IoT, CPS and wireless sensor
networks.

Lianglun Cheng was born on August 22, 1964 in Hubei, China.
He received his M.S and Ph.D degrees from Huazhong
University of Science and Technology, HuBei, China in 1992
and Chinese academy of Sciences JiLin, china in 1999
respectively. He is a Prof and doctoral supervisor of Guangdong
University of Technology. His research interests include RFID
and WSN, IoT and CPS, production equipment and automation
of the production, etc.

Jun Liu was born on October 11,1986 in Hubei, China. He
received his M.S degree in Control Science and Engineering
from Guangdong University of Technology, Guangdong, China,
in 2012. Currently he is pursuing Ph.D degree in Control
Science and Engineering at Guangdong University of
Technology.His research interests include wireless transmission,
CPS and wireless sensor networks.

Shiliang Luo was born on October, 1978 in JiangXi, China. He
received his M.S degree in automation from Guangdong
University of Technology, Guangdong, China, in 2005.
Currently he is pursuing Ph.D degree in Control Science and
Engineering at Guangdong University of Technology. His
research interests include CPS and wireless sensor networks.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 335

© 2014 ACADEMY PUBLISHER

