
Eliminating Human Visual Judgment from
Testing of Financial Charting Software+

Kwan Yong Sim*

Faculty of Engineering, Computing and Science,
Swinburne University of Technology Sarawak Campus, Kuching, Malaysia

Email: ksim@swinburne.edu.my

Chin S. Low
Nextwave Software, 68100 Sri Gombak, Malaysia

Email: cslow@nextwavesoft.com

Fei-Ching Kuo
Faculty of Information and Communication Technologies,
Swinburne University of Technology, Hawthorn, Australia

Email: dkuo@swin.edu.au

Abstract—Financial charting software is widely used in
share, commodity and foreign currency exchange markets
to visualize and analyze price movements. Its quality is
critical because incorrect outputs may lead to wrong
analysis and trading decisions, and consequently substantial
financial losses. Human visual judgment is often required to
test financial charting software because of the graphical
complexity of software outputs and limited knowledge of
expected outputs. Such approach is labour intensive and
error-prone. In this paper, we propose an automated testing
technique combining metamorphic testing, assertion
checking and a novel data label extraction method to
eliminate human visual judgment from testing financial
charting software. We used this technique to test pre-release
builds of a commercial Point and Figure charting software
component, and demonstrated that the proposed technique
can effectively detect actual faults in the software
component. Further, we discuss how the technique can be
extended to test other charting software components.

Index Terms— Software Testing, Financial Charting
Software, Metamorphic Testing, Assertion Checking

I. INTRODUCTION

The quality of software tools used in financial markets
is of outmost importance because millions of dollars may
be at stake if there is any fault in the software tools.
Financial charts have been widely used as the primary
tool in technical analysis of price movement in share,
commodity and foreign currency exchange (also known
as forex) markets. Previous study by Taylor and Allen
[30] found that over 90% of dealers in forex market use
financial charts to perform technical analysis prior to

making trading decisions. Gehrig and Menkhoff [17]
further reported that financial charts are commonly used
by forex dealers and fund managers to forecast short-term
price movements in various financial markets.

The main function of financial charting software is to
process a large amount of time-series price data and
translate it into visual representations in form of charts,
which are more meaningful to its users. For instance,
Point and Figure chart, Renko chart, Kagi chart and
Three-line-break chart are widely used to visually
highlight major trends and turning points in share,
commodity and forex prices. Such visual presentation
provides the essential information needed for analysis and
decision making in trading and investment. Therefore,
financial charts are often integrated into the market
analysis and trading software used by dealers, fund
managers and retail clients in financial markets.

As a crucial tool in financial trading, any fault in the
financial charting software components could incur
financial losses to the users. Therefore, testing of
financial charting software components used in market
analysis and trading software is crucial to ensure that
faults are discovered and eliminated before released to
the end users.

However, testing of financial charting software
components presents a few challenges. Due to the
graphical nature of the software outputs, testers have to
manually inspect the chart produced by the software as
output and exercise their visual judgment to determine
the correctness of the chart. They may have to manually
construct a chart and spot out any difference between the
constructed chart and the chart produced by the software.
This approach is known as manual oracle [22]. This is a
tedious and error-prone task for any non-trivial chart with
a substantial number of data points in its outputs. To
make it worse, the correct charting outputs are often
unknown or cannot be derived easily. In this situation,
testers will not be able to determine the correctness of the
outputs produced by the charting component. In software

+ A preliminary version of this paper has been presented in the
Proceedings of the 2nd International Conference on Computer Science
and its Applications, 2009.

* Corresponding Author.
Manuscript received Month Day, Year; revised Month Day, Year;

accepted Month Day, Year.

298 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.298-312

testing, this is known as the oracle problem [14]. Given a
test case as input, an oracle is the mechanism to specify
the expected output for the software or component under
test [16]. Complete oracle (where expected output is
known for every input) is not available for financial
charts such as Point and Figure chart, Renko chart, Kagi
chart and Three-Point-Break chart.

Test automation could be an effective solution to
eliminate error-prone human visual judgment from
testing of financial charting components. However,
automatic testing normally requires a complete oracle so
that every test output can be verified. In the absence of
oracle, automatic pixel to pixel verification cannot be
done unless there exist some “pseudo oracles” [14], in
which multiple independently-developed
implementations of the same chart are used to compare
the charting outputs for a given input. Past study [21]
suggested that pseudo oracles not only are expensive to
deploy, but also may not be feasible or effective. This is
because multiple implementations may not exist. Even if
they do exist, they may have been created by the same
group(s) of developers who are prone to making the same
types of mistakes. As a result, the pseudo oracle may not
be trustable.

In the absence of both complete oracle and trustable
pseudo oracle, metamorphic testing [11] can be used as a
reliable way not only to detect faults in software under
test but also to generate follow up test cases from existing
ones. In metamorphic testing, if input x produces an
output f(x), the necessary property (known as
metamorphic relation) of the software under test can be
used to generate a follow test case x’ for which the output
f(x’) can be determined or predicted based f(x). If the
output f(x’) is not as expected according to the
metamorphic relation, then we can conclude that there
exists a fault in the software under test. Therefore,
metamorphic testing provides a reliable way to detect any
fault that causes violation to the metamorphic relation
without the presence of oracles. Furthermore,
metamorphic testing does not require multiple-
implementations to provide pseudo-oracle. Hence, it is
less expensive to deploy in testing.

On the other hand, assertion checking [6][31] can also
be used to verify whether the execution of a test case
satisfies some expected and necessary properties even
though test oracles (pseudo or non-pseudo) are not
available. Properties such as correct program states,
variable initialization as well as lower or upper bounds of
variable value and program output can be used as
assertion conditions. These assertion conditions must be
satisfied for correct program implementation and
execution. Even though the expected output is unknown,
any violation to the assertion conditions implies the
presence of faults in the software under test. Therefore,
assertion checking can be used to test software with
oracle problem. In an empirical study to compare the use
of metamorphic testing and assertion checking, Zhang,
Chan, Tse and Hu [34] suggested that even though
metamorphic testing is more effective than assertion
checking in fault detection, assertion checking is more

efficient in terms of time and cost of implementation and
can provide finer granularity in testing.

Takahashi [29] proposed a coordinate and projection-
based approach to automate the verification for Graphical
User Interface (GUI) objects in software such as
Microsoft PowerPoint. In a separate study, Xie and
Memon [32] proposed and examined the effectiveness of
different types of oracles for graphic user interface
testing. Even though these techniques can be automated
to eliminate human visual judgment from testing GUI
objects, they still require test oracles to be present for the
software under test. A more recent study by Zacharias
[33] on test case generation and reuse on GUI also
assumed complete oracle is available.

Reading a huge amount of data on a chart and then
verifying the chart’s correctness is a very challenging
task. Many modern charting software tools such as
Microsoft Excel assist the user to directly determine the
data value on the chart by labeling these values besides
the data points. Extracting data labels can automate
output verification because data label extraction
simplifies output verification from graphical comparison
to numerical comparison.

In short, the graphical natures of its outputs and the
absence of oracle prevent financial charting software
components from being tested automatically without
requiring human visual judgment. In view of this, we
conducted a case study on the oracle problem in Point
and Figure chart in [25] and proposed an automatic
testing technique that encompasses test case generation,
execution and output verification for Point and Figure
charting software component. Our proposed testing
technique combines metamorphic testing and assertion
checking. Experiments conducted on five pre-release
builds of Nextwave Software WPF Point and Figure
charting component have successfully detected different
actual faults in the charting component tested.

In this paper, we extend the work in [25] and further
make the following contributions:
1. Overall, we have eliminated subjective human visual

judgment from testing of financial charting
component that has the oracle problem. While test
automation techniques have long been used to
replace human visual judgment in testing of
graphical user interface, these techniques assume that
complete test oracle is available for testing [29][32].
However, test oracle is not available for many
financial charts.

2. We introduced a data label extraction method to
obtain the values of output data points from the
financial charts. Data label extraction also allows
charting output verification to be simplified from
graphical comparison to numerical value
comparisons, which can be easily automated. Hence,
manual visual inspection of charting output is no
longer required. Unlike the coordinate and
projection-based method for GUI testing proposed by
Takahashi [29], data label extraction is simpler and
more straight-forward to implement because it does

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 299

© 2014 ACADEMY PUBLISHER

not suffer from problems related to display resolution
and zooming (resizing) of charting outputs.

3. We extend the automatic testing technique for
financial charts proposed in [25] to explicitly
combine metamorphic testing, assertion checking
with our invented data label extraction method.
Metamorphic testing has been shown to be more
effective than assertion checking in terms of fault
detection capability but its granularity of testing
criteria is coarser than that of assertion checking
[34]. Based on this observation, we propose to use
both assertion checking and metamorphic testing in
complementary to maximize fault detection
capability. In addition to the metamorphic relations
proposed in [25], three new metamorphic relations
(MR3, MR5 and MR7) are proposed in this paper, of
which MR3 has successfully detected faults in the
Point and Figure chart under test.

4. We report experimental studies of a real-world
financial chart software component (Point and Figure
chart) to evaluate the effectiveness of the proposed
technique. Through our experiment setup, we have
demonstrated that testing process can be fully
automated to eliminate human visual judgment.
From the experiment results, we found that both
assertion checking and metamorphic testing have
detected different real faults in the financial charting
components under test. In addition to the real-life
financial time-series data used in [25], we introduce
the randomized data series and compare its fault
detection capability with the real-life financial time-
series.

5. We present and discuss the details of the bugs and
their detection by assertion conditions and
metamorphic relations.

6. We observe that the effectiveness of metamorphic
testing relies on the test case used for testing. From
the experiment results, we found that test cases with
randomized data series have better fault detection
capability than real-life financial time-series data for
the Point and Figure charting component under
study.

7. We analyze and discuss the extendibility of the
proposed testing technique to three other reversal
charts, namely, Renko chart, Kagi chart and Three-
line-break chart.

The remainder of this paper is organized as follows.
Section II presents the background on metamorphic
testing and assertion checking. Section III presents the
Point and Figure chart and its algorithm as the test target
in this study. Section IV explains the metamorphic
relations and assertion conditions and data extraction
method that work together to form our charting
component testing technique. Section V presents the
experiment settings and experiment results. Section VI
discusses how the proposed technique can be extended to
the other financial charts that do not have test oracles.
Section VII presents limitation and future work. Section
VIII concludes the paper.

II. BACKGROUND

This section gives an overview of metamorphic testing,
assertion checking, and how these testing techniques can
be used to detect faults in the absence of oracle.

A. Metamorphic Testing

Metamorphic testing was first coined by Chan, Chen,
Cheung, Lau and Yiu [8] as a new approach to generate
the next test case from existing test case (especially one
that has not revealed any fault). In metamorphic testing,
metamorphic relation is first defined based on the relation
between a set of test inputs and their corresponding
outputs. The metamorphic relations can be identified
from the necessary properties of the software under test.
From a test case (called source test case) with
unverifiable output, the metamorphic relation can be used
to generate follow up test cases such that the outputs of
the source test case and follow up test cases can be
checked against the metamorphic relation. If the
metamorphic relation is violated, then we know that the
software under test is faulty. Therefore, metamorphic
testing can detect faults in the software under test without
requiring test oracles.

The following example illustrates how metamorphic
testing can be used to test a program that has been written
to compute the cos(x) function. When x = 24° is used as
the test input to the program and the program produces
0.9135 as the computed output. However, the correctness
of this output cannot be verified because the expected
correct output is unknown (in other words, the oracle is
absence). However, we know that cos(x) observes the
trigonometry identity of cos(x) = -cos(x+180°). Using
this necessary property of cos(x) as the metamorphic
relation, we can detect a fault in this program whenever
this metamorphic relation is violated. In this case, the
program should produce -0.9135 as output when
24°+180° (that is 204°) is used as test input. In
metamorphic testing, 24° serves as the source test case,
while 204° serves as the follow up test case. If the
program outputs for these two test cases are different in
absolute value, then we can conclude that the software
under test has a fault because the metamorphic relation is
violated.

To formally define a metamorphic relation, let:
I1 = {T1, T2, . . . , Tk} be a set of test cases as inputs to

a function f, where k ≥ 1. I1 is known as the source test
cases.

O1 = {f(T1), f(T2), . . . , f(Tk)} be the set of outputs
produced by f corresponding to test cases in I1.

S = {f(Ts1), f(Ts2), . . . , f(Tsm)} be a subset of O1
where m ≥ 0.

I2 = {Tk+1, Tk+2, . . . , Tn} be another set of test cases as
inputs to f, where n ≥ k+1. I2 is known as the follow up
test cases.

O2 = {f(Tk+1), f(Tk+2), . . . , f(Tn)} be the corresponding
set of outputs for test cases in I2.

RI(T1, T2, . . . , Tk, f(Ts1), f(Ts2), . . . , f(Tsm), Tk+1, Tk+2,
. . . , Tn) be a relation among I1, S and I2. RI is known as
the test input relation.

300 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

RO(T1, T2, . . . , Tn , f(T1), f(T2), . . . , f(Tn)) be the
relation among I1, I2, O1 and O2. RO is known as the test
output relation.

To formally define a metamorphic relation, assume
that there exists a relation RI among I1, S and I2, and
another relation RO among I1, I2, O1 and O2 such that RO
must be satisfied whenever RI is satisfied. The
metamorphic relation (MR) can then be defined as:

MR: If RI(T1, T2, . . . ,Tk, f(Ts1), f(Ts2), . . . , f(Tsm),
Tk+1, Tk+2, . . . , Tn), then RO(T1, T2, . . . , Tn, f(T1), f(T2), .
. . , f(Tn)).

Metamorphic relations can normally be sourced from
stakeholders of the software under test who have the
knowledge in the application domain. In addition,
previous study [34] showed that software testers who
have been briefly introduced to metamorphic testing are
also able to identify metamorphic relations for software
under test.

Once the MR has been identified, testers need to
generate or select some arbitrary test cases as the source
test cases, I1. The following procedures can then be used
to conduct Metamorphic testing:
1. Let program P be the software under test that

implement function f. Run program P with I1 as
source test cases. Record the corresponding outputs
O1.

2. Generate follow up test cases I2 using RI, I1, and S.
3. Run program P using I2 as follow up test case.

Record the corresponding outputs O2.
4. Check the test outputs in O1 and O2 against the

relation RO.
5. If RO is violated, then there exists fault(s) in program

P. Otherwise, no fault is detected by test cases in I1
and I2.

Metamorphic testing has been proven useful and
effective in testing applications in the absence of oracles.
Successful deployment of metamorphic testing has been
reported in many application domains such as numerical
analysis [8], aviation software [20], numerical solution of
partial differential equations [12], web search engines
[35], image processing [27], die casting [26], machine
learning [23], biomedical applications [13], power-aware
software for wireless sensor networks [9], middleware-
based applications [10] and healthcare simulation
software [24]. Furthermore, metamorphic testing has
been used to improve the testability of program
components [5]. Preliminary study on Point and Figure
chart also showed that metamorphic testing is effective in
detecting faults in financial charting software [25].

B. Assertion Checking

In the absence of oracles, assertion checking verifies
execution of a test case against some expected and
necessary properties [2][7][34]. It is a property-based
testing technique, where properties of software under test
are identified as assertion conditions, which are logical
expressions that evaluate to either true or false. An
assertion condition must be satisfied (that is, evaluate to
true) for correct implementation and execution of the
software. If the assertion condition evaluates to false, the
assertion is violated and it implies that the software under

test is faulty. Therefore, assertion checking does not
require a test oracle to detect faults in the software.
Assertion checking can be done not only on the output of
the software, but also intermediate program states and
variable values. Normally, assertion checking is directly
embedded in the code of the software developed. It is
widely supported by popular programming platforms
such as the Microsoft .Net and Java platforms.

To illustrate the use of assertion checking to test
software without the presence of oracles, consider the
same program that has been used in the previous
subsection (Section II A) to compute the cos(x) function.
Let x = 24° be a test input to the program. As the
expected output is unknown (in other words, the oracle is
absence), the computed output cannot be verified.
However, we can use the trigonometry property of sine
function -1≤ cos(x) ≤ 1 as an assertion condition for
assertion checking. We know that if the program is
implemented correctly, then the program output must
satisfy this assertion condition (that is, the assertion
condition must evaluate to true). If the program output is
not between -1 and 1 (both inclusive), then the assertion
condition will evaluate to false and cause an assertion
error message to be prompted on most programming
platforms. In that way, we will know that the software
under test has a fault even though the expected output is
unknown.

Assertion checking has been successfully deployed to
analyze the state-based behaviors [7] and detect state-
related errors in object-oriented program [19] as well as
behavioral conflict in aspect-oriented software [18].

III. TEST TARGET

While evidences suggested that financial charts have
been used for over 100 years [1], it is only in recent
decades that financial charting software became widely
accessible to institutions and retail traders through market
analysis and trading software packages. Among the
others, the Line chart, Bar chart, Candle-stick chart, Point
and Figure chart, Renko chart, Kagi chart and Three-line-
break chart are standard features available in these
software packages. Interested readers are referred to [1]
for detailed description of each financial chart.

The Line chart, Bar chart and Candle-stick chart can be
easily verified as they are plotted directly from the input
data points. However, charting outputs of the Point and
Figure chart, Renko chart, Kagi chart and Three-line-
break chart cannot be easily verified. These charts belong
to a broad category of charts known as reversal charts,
where a new point will only be plotted after price values
in the input data points have changed by a significant
amount pre-defined by the user. In effect, these charts
filter small price fluctuations in the input data and plot
only the major price moves in the charting outputs. In
addition to the complicated charting algorithm, these
financial charts are required to accept a large number of
data points as inputs to facilitate meaningful analysis
based on historical data. These factors contribute to the
oracle problems in testing the reversal charts.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 301

© 2014 ACADEMY PUBLISHER

In this paper, we focus our study on the Point and
Figure chart as the primary test target because it is the
most difficult to test among the reversal charts. The Point
and Figure chart is plotted based on two user-defined
variables, known as box size and reversal amount (to be
explained in the next paragraph). On the other hand,
Renko chart is plotted based on box size alone, while
Kagi chart is plotted based on minimum reversal alone.
Similarly, three-line-break chart is plotted based on the
number of lines which is equivalent to reversal amount in
concept. In short, the combination and interaction of both
the box size and the reversal amount make the outputs of
the Point and Figure chart more difficult to verify
compared to the other reversal charts. Therefore, we will
design the testing technique with the Point and Figure
chart as the test target. Subsequently, we will also
examine and discuss the extendibility of the proposed
testing technique to the other reversal charts.

Upward trends or increasing prices are represented as a
vertical column of ‘X’s in the Point and Figure Chart.
Similarly, downward trends or declining prices are
displayed as a vertical column of ‘O’s adjacent to the
column of ‘X’. The chart is plotted based on the box size
and the reversal amount. The box size is defined as the
minimum amount of price movement before a figure (‘X’
or ‘O’) is plotted on the chart. In other words, a new
figure (‘X’ or ‘O’) will not be plotted in the current
column until the price has increased (or decreased) by
more than the box size set by the user. On the other hand,
a new column (reversal) will not be plotted until the price
has been pulled back by the reversal amount multiplying
the box size. It disregards the time required to produce
such price movements.

Figure 1 shows a Line chart plotted based on the Dow
Jones Industrial 30 Index (DJI30) daily closing price data
from 2008 to 2009. This is plotted from more than 400
data points (daily closing prices) as charting inputs. The
same data can be plotted into the Point and Figure Chart
in Figure 2, with the box size set to 200 and a reversal
amount of 3. In this case, the DJI30 index has to advance
at least 200 points for an ‘X’ figure to be recorded in a
column of ‘X’s. Conversely, it has to decline at least 200
points for an ‘O’ figure to be recorded in the column of
‘O’s on the chart. For a new column to be plotted, the
DJI30 index has to reverse by at least 600 points (3×200
points). On the other hand, if the box size and the reversal
amount are increased to 300 and 5 respectively as in
Figure 3, a reversal of 1500 points (5×300 points) is
required for a new column to be plotted. Hence, fewer
columns are produced on the chart.

By comparing the Line chart in Figure 1 with Point
and Figure charts in Figure 2 and Figure 3, it can be
observed that the Point and Figure charts have less data
points in the charting outputs. In effect, the Point and
Figure chart filters minor price fluctuations in input
financial time-series data in order to accentuate the major
trends of price movement, and turning points [2].

The technique for constructing Point and Figure charts
has remained substantially unchanged since the
methodology was first illustrated by deVilliers [15]. To

define the algorithm required to plot a Point and Figure
Chart, let array pi denote the price value for figure-i (‘X’
or ‘O’) plotted on the chart where i=0, 1, 2…, and dj
denote the data point j of the financial time-series data
input where j = 0, 1, 2…. The algorithm for constructing
the Point and Figure chart is outlined in Figure 4.

This algorithm is adapted from the Point and Figure
Chart reversal algorithm as proposed by Archer and
Bickford [1] with additional sub-steps for plotting ‘X’s
and ‘O’s on the Point and Figure Chart. We noted that
there exist other variants of algorithms to construct a
Point and Figure chart. However, we will base our study
on the algorithm outlined in Figure 4, which is used to
develop the test target.

Figure 1. Line chart - Direct plotting of daily closing price data of Dow

Jones Industry 30 Index from 2008 to 2009.

Figure 2. Point and Figure chart of Dow Jones Industry 30 Index from

2008 to 2009, with box size = 200 and reversal amount =3.

Figure 3. Point and Figure chart of Dow Jones Industry 30 Index from

2008 to 2009, with box size = 300 and reversal amount =5.

302 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

1. Initialize boxSize and reversalAmount variables.
2. Initialize columnNumber=0, i=0, j=0, pi = dj and direction = NULL.
3. Increment j.
4. While direction = NULL AND j ≤ numberOfDataPoint

if dj ≥ (pi + boxSize), then
Set Direction = UP.
Plot ‘X’ at pi at the current columnNumber
While pi+boxSize ≤ dj

Increment i, set pi=pi-1 + boxSize
Plot ‘X’ at pi at the current columnNumber

Endwhile
Else if dj ≤ (pi – boxSize), then

Set Direction = DOWN.
Plot ‘O’ at pi at the current columnNumber
While pi – boxSize ≥ dj

Increment i, set pi=pi-1 – boxSize
Plot ‘O’ at pi at the current columnNumber

Endwhile
Endif
Increment j.

Endwhile
5. While j ≤ numberOfDataPoint

if direction = UP, then
If dj – pi ≥ boxSize Then

While pi+boxSize ≤ dj
Increment i,set pi=pi-1 + boxSize
Plot ‘X’ at pi at the current columnNumber

Endwhile
Else if dj ≤ (pi – boxSize * reversalAmount), Then

Increment columnNumber
Set Direction = DOWN
While pi – boxSize ≥ dj

Increment i, set pi=pi-1 – boxSize
Plot ‘O’ at pi at the current columnNumber

Endwhile
Endif

Else if direction = DOWN, then
if pi – dj ≥ boxSize Then

While pi – boxSize ≥ dj
Increment i, set pi=pi-1 – boxSize
Plot ‘O’ at pi at the current columnNumber

Endwhile
Else if dj ≥ (pi + boxSize * reversalAmount), Then

Increment columnNumber
Set Direction = UP
While pi+boxSize ≤ dj

Increment i, set pi=pi-1 + boxSize
Plot ‘X’ at pi at the current columnNumber

Endwhile
Endif

Endif
Increment j

End while
6. Exit

Figure 4. The algorithm for constructing Point and Figure chart

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 303

© 2014 ACADEMY PUBLISHER

IV. TESTING APPROACH

The testing approach proposed in this section combines
metamorphic testing, assertion checking and our invented
data label extraction method to eliminate human visual
judgment from testing. Metamorphic testing can be
applied without the source code of the software under
test, while the assertion checking requires assertion
conditions to be inserted into the source code, but the
conditions are not generated based on the program.
Therefore, our testing approach is a black-box testing
approach [4] that is, by definition, independent of the
source-code of the software under test. Upon detection of
fault in the chart, then the source code will be examined
for debugging.

A. Identifying Metamorphic Relations

The preliminary step in metamorphic testing is to
identifying metamorphic relations. We propose seven
metamorphic relations, MR1 to MR7, to test the Point
and Figure charting software component in this study. Let
f be the function that represents the Point and Figure
charting software component. Let Ts and Tf denote the
source test case and follow up test case, respectively, for
each metamorphic relation. Furthermore, let f(Ts) and
f(Tf) be the outputs produced by the software under test
for Ts and Tf respectively. In line with the notations used
in Figure 4, dj denotes the data point j of the financial
time-series data input (j = 0, 1, 2…).

The seven metamorphic relations and the method for
generating follow up test cases from the metamorphic
relations are outlined below.
1. Let Ts be the financial time-series data used as the

source test case, execute the software to obtain its
output, f(Ts). Let Tf equal to f(Ts).If the software is
executed again with Tf using the same box size and
reversal amount to obtain the output f(Tf), then f(Tf)
must be equal to f(Ts). This metamorphic relation is
derived from the invariant property f(Ts)=f n(Ts),
where n>1, for the Point and Figure Chart. In other
words, if the output of a Point and Figure Chart is
applied as the input to the Point and Figure Chart
again as follow up test case, then the resulting output
must be identical to the output of the source test case.
Therefore, MR1 is defined as:
MR1: If Tf= f(Ts), then f(Tf)= f(Ts)
To generate the test case for MR1, simply copy f(Ts)
and use it as the follow up test case, Tf. Note that
both Ts and Tf must use the same box size and
reversal amount.

2. Let Ts =(d0, d1, . . . , dk) be the financial time-series
data used as the source test case, where dj+1 > dj for
all 0 ≤ j ≤ k-1. If the follow up test case is generated
by inserting a random value between every pair of
adjacent data points in the source test case, such that
the random value is between the data points before
and after it, then the output of the follow up test case
must be identical to the output of the source test case.
This metamorphic relation is identified based on the
algorithm to plot a new figure (‘X’ or ‘O’) where no

new figure may be plotted if the price has not
advanced or declined by more than the box size. In
short, MR2 can be defined as:
MR2: if Ts=(d0, d1, . . . , dk), Tf=(d0, d(0,1), d1, . . ., dk-1,
d(k-1,k), dk) where k ≥ 1 | dj < d(j, j+1) < dj+1, 0 ≤ j ≤ k-1,
then f(Tf)=f(Ts).
To generate the follow up test case for this
metamorphic relation, insert a random value between
every pair of adjacent data points in the source test
case, such that the random value is between the data
points before and after it. Note that both Ts and Tf
must use the same box size and reversal amount.

3. Use the same box size and reversal amount for both
the source test case and follow up test case. If the
follow up test case is generated by deleting one data
point that has a value between the data point before
and after it, then the output of the follow up test case
must be the same as the output of the source test
case. Similar to MR2, this metamorphic relation is
also identified based on the algorithm to plot a new
figure (‘X’ or ‘O’) where no new figure may be
plotted if the price has not advanced or declined by
more than the box size. In short, MR3 can be defined
as:
MR3: if Ts(d0, . . ., dj, . . . , dk), Tf(d0, . . ., dj-1, d(j+1) , .
. ., dk) where k ≥ 1 | dj-1 < dj < dj+1, 1 ≤ j ≤ k-1, then
f(Tf)=f(Ts).
To generate the follow up test case for this
metamorphic relation, delete a data point from the
source test case if the data point has a value between
the data point before and after it. Note that both Ts
and Tf must use the same box size and reversal
amount.

4. If the follow up test case is identical to the source
test case and the reversal amount is incremented by
one, then the output of the follow up test case must
have a smaller or the same number of columns as the
output of the source test case. MR4 is defined as:
MR4: if Tf=Ts, reversalAmountTs=a,
reversalAmountTf=a+1, where a>0, then
columnNumberf(Ts) ≥ columnNumberf(Tf).
To generate the follow up test case for this
metamorphic relation, simply create a copy of the
source test case and use it as the follow up test case.
Increment the reversal amount of the follow up test
case by one.

5. If the follow up test case is identical to the source
test case and the reversal amount is decremented by
one, then the output of the follow up test case must
have more or the same number of columns as the
output of the source test case. MR5 is defined as:
MR5: if Tf=Ts, reversalAmountTs=a,
reversalAmountTf=a-1, where a>1, then
columnNumberf(Tf) ≥columnNumberf(Ts).
To generate the follow up test case for this
metamorphic relation, simply copy the source test
case and use it as the follow up test case. Decrement
the reversal amount of the follow up test case by one.

6. If the follow up test case is identical to the source
test case but the box size is reduced by halve, then

304 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

the output of the follow up test case must have more
or the same number of columns as the output of the
source test case. MR6 is defined as below:
MR6: if Tf=Ts, boxsizeTs = b, boxsizeTf = 0.5b, b>0,
then columnNumberf(Tf) ≥ columnNumberf(Ts).
To generate the follow up test case for this
metamorphic relation, simply copy the source test
case and use it as the follow up test case. Note that
the box size of the follow up test case must be half of
the box size of the source test case.

7. If the follow up test case is the same as the source
test case but the box size is doubled, then the output
of the follow up test case must have a smaller or
equal number of columns as the output of the source
test case. MR7 is defined as below:
MR7: if Tf=Ts, boxsizeTs = b, boxsizeTf = 2b, b>0,
then columnNumberf(Ts) ≥columnNumberf(Tf).
To generate the follow up test case for this
metamorphic relation, simply copy the source test
case to the follow up test case. Set the box size of the
follow up test case to be double the box size of the
source test case.

The seven metamorphic relations defined above serve
two purposes in metamorphic testing. Firstly, the
definition of each metamorphic relation can be used to
automatically generate follow up test cases. Secondly,
they serve as the references for output verifications in the
metamorphic testing procedure. These follow up test
cases generated using the metamorphic relations target
the detection of faults in the Point and Figure chart that
cause any violation to the metamorphic relations defined.
It is worth noting that there could be other metamorphic
relations that can be used to test Point and Figure chart as
the seven metamorphic relations proposed above are not
exhaustive.

B. Defining Assertion Conditions

A Point and Figure Chart is plotted by incrementally
adding ‘X’ or ‘O’ onto an existing column or a new
column. As described in the algorithm in Figure 4, the
first figure (‘X’ or ‘O’) is plotted at the value of first
input data point. The subsequent figure (‘X’ or ‘O’) in the
same column on the chart is plotted by adding or
subtracting the box size to/from the price value of the
previous figure. Therefore, a necessary property for the
Point and Figure Chart is that the value of the first figure
(‘X’ or ‘O’) must be the same as the first input data point.
Another necessary property is that the interval between
two adjacent figures pi and pi+1 (‘X’ or ‘O’) must match
the value of the box size. Based on the knowledge of
these necessary properties, assertion checking can be
used to detect violation of these properties in the Point
and Figure Chart software component. These properties
can be defined as assertion conditions in (1) and (2).

assert: p0 = d0 (1)
assert: |pi+1 – pi| = box size (2)

where pi denotes the price value for figure-i (‘X’ or ‘O’)
plotted on the chart (i=0, 1, 2…) and d0 denotes the value
of the first input data point. For output data with k+1
points, where k > 0, the assertion condition (2) must hold

for 0 ≤ i ≤ k, irrespective of the difference in value
between adjacent data points in the time-series input data.

C. Data Label Extraction

After injecting the test input data into the charting
component, the test outputs, which are the data labels of
the figures (‘X’ or ‘O’) to be plotted on the Point and
Figure Chart, will be extracted from the charting
component and exported for output verifications. This
approach allows output verification to be simplified from
graphical comparison to numerical comparison, hence
alleviating human visual judgment from testing.

Similar technique has been proposed in [29] where the
coordinate data of screen output passed to the graphical
API was exploited for testing of on Microsoft
PowerPoint. However, coordinate data of screen output
are subjected to the influence of display resolution and
zooming of graphical outputs under test. Data label
extraction does not suffer from this problem because it is
the actual value of the data point to be plotted on the
chart. Therefore, its value will not be affected by display
resolution and zooming of graphical output under test.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of the
proposed testing technique on the test target. First, we
outline the set up of experiment to test five pre-release
software builds of Nextwave Software WPF Point and
Figure chart software component which was developed
and built on Microsoft .NET Framework’s Windows
Presentation Foundation (WPF) graphical subsystem.
Next, we report the results of using assertion conditions
and metamorphic relations proposed in Section IV to test
the charting component under test.

A. Setup

Figure 5 outlines the set up for automatic testing of the
Point and Figure charting component. First, the financial
time-series data are used as the source test case, Ts, for
the Point and Figure charting component under test. The
resulting output data, f(Ts), is extracted from the chart’s
data label and verified by the assertion checker against
the assertion conditions defined in Section IV B. For
MR1, the output data, f(Ts), will be fed into the test case
generator to generate follow up test cases. For MR2 and
MR3, the source test case Ts will be modified with
respect to a data point dj to generate a follow up test case.
For MR4 to MR7, the source test case Ts can be reused as
the follow up test case with a change in either the reversal
amount or box size. Lastly, the output data correspond to
the follow up test case is verified with both the output
verifier (based on metamorphic relations) and assertion
checker (based on assertion conditions) defined in
Section IV A and Section IV B, respectively. Any
violation detected in this process is recorded as a failure.

For each source test case, this process is repeated until
all metamorphic relations have been covered at least once
by the test case generator. A sample of screen capture of
the corresponding charting component graphical output is
shown in Figure 6.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 305

© 2014 ACADEMY PUBLISHER

Figure 5. The experiment set up for testing of Point and Figure charting

component.

Figure 6. Screen capture of output from charting component for Seoul
Composite Index (KS11) closing price from June 2008 to May 2009.
The box size and the reversal amount are set to 40 and 3 respectively.

Figure 7. Line chart for the original data series that consist of 40 data

points in chronological order.

Figure 8. Line chart for the data series that consist of the same 40 data

points in Figure 7, but in randomized order.

Table 1. Six data series used as source test cases in the experiments.

Series
ID

Data Range No.
of

Data
Points

Box
Size

Reversal
Amount Min Max

DJI30 6547.05 6547.05 251 300 3
MSFT 15.15 28.93 251 1 3
KS11 938.75 1847.53 249 40 3
DJI30-R 6547.05 6547.05 251 300 3
MSFT-R 15.15 28.93 251 1 3
KS11-R 938.75 1847.53 249 40 3

Six data series have been prepared as source test cases
for the experiments. Three out of six series are real-life
financial time-series data of different data ranges,
namely, the Dow Jones Industrial 30 Index (DJI30),
Microsoft Corporation (MSFT) and South Korea’s Seoul
Composite Index (KS11). Each data series is constructed
by taking the daily trading closing prices from 2 June
2008 to 29 May 2009, in chronological order.

From each of first three data series, a new data series is
generated by randomly swapping the data points in the
original data series, while keeping the number of data
points, box size and reversal amount unchanged. The
resulting new data series are named with a postfix “-R”
(DJI30-R, MSFT-R and KS11-R) to indicate that the data
have been randomized and are not in chronological order.
The following example illustrates randomization of a
series of 40 data points obtained from DJI30 data series
used in our study:

Original data series = (8000.86, 7936.83, 8078.36,
7956.66, 8063.07, 8280.59, 8270.87, 7888.88, 7939.53,
7932.76, 7850.41, 7552.60, 7555.63, 7465.95, 7365.67,
7114.78, 7350.94, 7270.89, 7182.08, 7062.93, 6763.29,
6726.02, 6875.84, 6594.44, 6626.94, 6547.05, 6926.49,
6930.40, 7170.06, 7223.98, 7216.97, 7395.70, 7486.58,
7400.80, 7278.38, 7775.86, 7660.21, 7749.81, 7924.56,
7776.18)

Randomized data series = (7350.94, 7062.93, 8000.86,
6875.84, 7552.60, 7936.83, 6626.94, 8078.36, 7270.89,
8063.07, 7486.58, 6763.29, 7956.66, 7114.78, 7932.76,
7223.98, 7395.70, 8270.87, 7888.88, 7776.18, 7216.97,
7850.41, 7939.53, 7465.95, 8280.59, 7749.81, 7182.08,
6547.05, 7555.63, 6926.49, 7365.67, 6930.40, 6726.02,
7400.80, 7278.38, 7775.86, 7660.21, 7924.56, 6594.44,
7170.06)

For the original financial time-series data, price of a
given day is usually close to the previous day price.
Randomizing the data points is done with the aim to
produce a new data series with larger price moves
between subsequent data points as well as more turning
points in prices. These can be observed in the Line charts
for the original data series and randomized data series
points in Figure 7 and Figure 8, respectively.

B. Experiment Results

Five pre-release builds of Nextwave Software WPF
charting component have been used for the experiments.
They are identified by version numbers v0.0.2, v0.0.3,
v0.0.4, v0.0.5 and v0.0.6 respectively. The testing process
as described in Section V-A has been repeated on each
build for all the six input data series listed in Table 1.

As the test results for the DJI30 and the KS11 input
data series are identical, they are combined and presented
in Table 2. The test results for MSFT are presented
separately in Table 3 because three additional violations
were detected by MSFT in build v0.0.5 compared to
DJI30 and KS11. Table 4 presents the test results for the
three randomized data series (DJI30-R, MSFT-R and
KS11-R).

306 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

Table 2. Test Result for DJI30 and KS11 data series

Build
Version

Assertion
Conditions

Metamorphic Relations

(1) (2) MR1 MR2 MR3 MR4 MR5 MR6 MR7
v0.0.2 Fail Pass Fail Fail Fail Pass Pass Pass Pass
v0.0.3 Pass Fail Fail Fail Fail Pass Pass Pass Pass
v0.0.4 Pass Fail Fail Fail Fail Pass Pass Pass Pass
v0.0.5 Pass Pass Pass Pass Pass Pass Pass Pass Pass
v0.0.6 Pass Pass Pass Pass Pass Pass Pass Pass Pass

Table 3. Test results for MSFT data series

Build
Version

Assertion
Conditions

Metamorphic Relations

(1) (2) MR1 MR2 MR3 MR4 MR5 MR6 MR7
v0.0.2 Fail Pass Fail Fail Fail Pass Pass Pass Pass
v0.0.3 Pass Fail Fail Fail Fail Pass Pass Pass Pass
v0.0.4 Pass Fail Fail Fail Fail Pass Pass Pass Pass
v0.0.5 Pass Pass Fail Fail Fail Pass Pass Pass Pass
v0.0.6 Pass Pass Pass Pass Pass Pass Pass Pass Pass

Table 4. Test results for randomized data series: DJI30-R, MSFT-R and KS11-R

Build
Version

Assertion
Conditions

Metamorphic Relations

(1) (2) MR1 MR2 MR3 MR4 MR5 MR6 MR7
v0.0.2 Fail Pass Fail Fail Fail Pass Pass Pass Pass
v0.0.3 Pass Fail Fail Fail Fail Pass Pass Pass Pass
v0.0.4 Pass Fail Fail Fail Fail Pass Pass Pass Pass
v0.0.5 Pass Pass Fail Fail Fail Pass Pass Pass Pass
v0.0.6 Pass Pass Pass Pass Pass Pass Pass Pass Pass

From the results in Table 2, Table 3 and Table 4, it can

be observed that Build v0.0.2 violated assertion (1),
MR1, MR2 and MR3 in the testing process for all six
data sets. Build v0.0.3 contains bug fix for violation of
assertion (1). However, the testing results show that even
though violation of assertion (1) is no longer a problem,
violation of assertion (2) has been detected in addition to
MR1, MR2 and MR3. The same observation can be made
to build v0.0.4 which contains bug fix for violation of
assertion (2).

Subsequent build, version v0.0.5, which contains bug
fix for violation of assertion (2) passed all assertion
checking and metamorphic relation verifications for
DJI30 and KS11 data sets. However, violations of MR1,
MR2 and MR3 were detected for MSFT data series. This
is an interesting observation because both DJI30 and
KS11 data series did not trigger the violations of MR1,
MR2 and MR3 in build v0.0.5. However, their
randomized counterparts (DJI30-R and KS11-R)
successfully triggered the violations of MR1, MR2 and
MR3 in build v0.0.5.

This observation suggests that the randomized data
series (DJI30-R and KS11-R) have better fault detection
capability than their corresponding original time-series
data (DJI30 and KS11). Further inspection on output data
points found that, for the same number of input data
points, randomized data series produces more output data
points on Point and Figure chart compared to real-life
financial time-series data. More precisely, randomization
results in larger price moves (that is, more figures (‘X’

and ‘O’)) and more turning point in prices (that is, more
reversals to be plotted) on the Point and Figure chart,
which increases the likeliness to trigger violation in
assertion conditions and metamorphic relations if faults
do exist in the chart. Therefore, we recommend
randomization of real-life financial time-series data for
effective fault detection.

Finally, testing on build v0.0.6 which contains bug fix
for violation of MR1, MR2 and MR3 passed all assertion
checking and output verifications based on the seven
metamorphic relations. Debugging details will be
discussed in the next section.

In summary, it can be observed that MR4 to MR7 have
detected no fault in any build v0.0.2 to v0.0.6 in our
experiments. MR4 to MR7 are based on the necessary
software properties related to the number of columns on a
Point and Figure chart. A new column is plotted on the
Point and Figure chart when price reverses by more than
multiplication of two user-defined variables (that is,
reversal amount multiplying the box size). Therefore,
more reversals will create more columns on the chart, and
vice versa. Our current stage of testing showing no
violation of MR4 to MR7, which would suggest that
either more different source test cases are required to
detect this kind of fault, or the software contains no fault
relating to the reversal properties. On the other hand,
assertion condition (2) and MR1 to MR3 based on the
necessary properties related to the box size and the data
points in the input data series, violation of these assertion
condition and metamorphic relations means that there

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 307

© 2014 ACADEMY PUBLISHER

exist fault(s) relating to the processing of the user-defined
variable (box size) and data points in the input data series.
In complement to the mentioned properties, assertion
condition (1) was shown effective in detecting an
incorrect plotting of the first data point on the chart (one
of the output variables).

It is important that our list of assertion conditions and
metamorphic relations can cover all the possible input
variables and output variables to achieve a more
comprehensive testing. Assertion conditions (1) and (2)
as well as MR1 to MR 7 are only used to demonstrate the
effectiveness of our testing approach in absence of an
oracle for charting software. Ideally, developers should
start developing assertion conditions and metamorphic
relations once a software specification is ready, so that
they can keep these properties in mind and can
regressively test the software using the same or more
refined set of properties to detect as many faults in as
early stage as possible.

B. Debugging

The violations of assertion conditions and
metamorphic relations indicate the presence of faults in
the build versions of the Point and Figure chart under test.
In the experiments, testing was done on the earliest
version first, followed by the later versions. Based on the
violations of properties (assertion conditions and
metamorphic relations) observed, the debugging process
is performed to locate and fix the bugs related to these
properties in the charting components that have
potentially resulted in the faults. Below, we report all
identified bugs at the completion of the testing process.
Bug 1: Omission error in the implementation of Step 4 of
the Point and Figure chart algorithm.

Build versions: This bug is reported in build v0.0.2.
Description: While implementing Step 4 of the
algorithm, plotting of the first figure (‘X’ or ‘O’) prior
to entering the inner while loops was omitted by
mistake, as shown in Figure 9.
Detection: This bug results in possible violations of
Assertion Condition (1) and MR1, MR2 and MR3.

Bug 2: Misplace of “increment i” statement in the
implementation of Step 4 of the Point and Figure chart
algorithm.

Build versions: This bug is reported in build v0.0.3,
v0.0.4, v0.0.5.
Bug Description: While implementing Step 4 of the
algorithm, the “increment i” statement was misplaced
after plotting of a figure (‘X’ or ‘O’), as shown in
Figure 10. The “increment i” statement is supposed to
be placed before the plotting of a figure (‘X’ or ‘O’).
Detection: This bug results in possible violations of
Assertion Condition (2) and MR1, MR2 and MR3.

Bug 3: Initialization errors in the implementation of Step
2 of the Point and Figure chart algorithm.

Build versions: This bug is reported in build v0.0.2,
v0.0.3, v0.0.4 and v0.0.5.
Bug Description: While implementing Step 2 of the
algorithm, variables columnNumber, i and j and are
wrongly initialized to 1 instead 0, as shown in Figure
11.

Detection: This bug results in possible violations of
Assertion Condition (1) and (2) as well as MR1, MR2
and MR3.

Bug 4: Insertion error in the implementation of Step 4 of
the Point and Figure chart algorithm.

Build versions: This bug is reported in build v0.0.5.
Bug Description: While implementing Step 4 of the
algorithm, the “decrement i” statement was inserted
after the while loop, as shown in Figure 12.
Detection: This bug results in possible violation of
Assertion Condition (2) and MR1, MR2 and MR3.

From our discussion with the charting component
developer, it was found that Bug 2 and Bug 4 were
mistakenly induced into the Point and Figure chart
component in the attempts to fix existing bugs. This is an
example of classical case where a bug fix gives rise to
new bugs.

While analyzing the relationship between the bugs
identified and the assertion conditions and metamorphic
relations, we realized that an identified bug may not be
the only cause for violations of assertion conditions and
metamorphic relations. Violations can be caused by
multiple bugs. After a series of tests in this paper, we
cannot guarantee to detect all bugs contributing to the
violation. It can only be assured after we exhaustively test
all the possible inputs and necessary properties. However,
this is prohibitively expensive and infeasible as known in
software testing. Under this limitation, the combination of
assertion checking and metamorphic testing technique
proposed in this study becomes more important to
maximize the chance of fault detection and to reduce the
time and cost of testing by eliminating subjective human
visual judgment from the testing process.

VI. EXTENDIBILITY TO OTHER FINANCIAL

CHARTS

While the testing technique proposed in Section IV is
designed for Point and Figure chart, it can be extended
and applied to test other financial charts that have oracle
problems as well. The data label extraction method is
independent of the type of chart. Therefore, it can also be
applied to test other types of charts. In this section, we
will discuss the extendibility of assertion conditions and
metamorphic relations proposed in Section IV to three
other reversal charts, namely, Renko chart, Kagi chart
and Three-line-break chart.

A. Renko Chart

The Renko chart gets its name from renga, the
Japanese word for bricks [1]. It is plotted based on brick
size, which is equivalent to the box size in a Point and
Figure chart. However, the Renko chart does not have the
equivalent of reversal amount in the Point and Figure
chart since the default reversal amount is always fixed to
one brick. Hence, plotting of a Renko chart is only
influenced by one user-defined variable, that is, brick
size.

Figure 13 shows a Renko chart that corresponds to the
Line chart on Dow Jones Industrial 30 Index in Figure 1.
Based on the above knowledge of the Renko chart, it is

308 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

evident that assertion conditions (1) and (2) defined in
Section IV can be reused to test the Renko chart.
Furthermore, all metamorphic relations can be reused to

test the Renko chart except MR4 and MR5 that require
manipulation of reversal amount.

4. While direction = NULL AND j ≤ numberOfDataPoint

if dj ≥ (pi + boxSize), then
Set Direction = UP.
Plot ‘X’ at pi at the current columnNumber (Omission error in implementation)
While pi+boxSize ≤ dj

Increment i, set pi=pi-1 + boxSize
Plot ‘X’ at pi at the current columnNumber

Endwhile
Else if dj ≤ (pi – boxSize), then

Set Direction = DOWN.
Plot ‘O’ at pi at the current columnNumber (Omission error in implementation)
While pi – boxSize ≥ dj

Increment i, set pi=pi-1 – boxSize
Plot ‘O’ at pi at the current columnNumber

Endwhile
Endif
Increment j.

Endwhile
Figure 9. Omission error in the implementation of Step 4 of the Point and Figure chart algorithm

4. While direction = NULL AND j ≤ numberOfDataPoint

if dj ≥ (pi + boxSize), then
Set Direction = UP.
Plot ‘X’ at pi at the current columnNumber
While pi+boxSize ≤ dj

Increment i, set pi=pi-1 + boxSize,
Plot ‘X’ at pi at the current columnNumber
Increment i (misplace of Increment i in the implementation)

Endwhile
Else if dj ≤ (pi – boxSize), then

Set Direction = DOWN.
Plot ‘O’ at pi at the current columnNumber (Omission error in implementation)
While pi – boxSize ≥ dj

Increment i, set pi=pi-1 – boxSize,
Plot ‘O’ at pi at the current columnNumber
Increment i (misplace of Increment i in the implementation)

Endwhile
Endif

Increment j.
Endwhile

Figure 10. Misplace of “increment i” statement in the implementation of Step 4 of the Point and Figure chart algorithm

2. Initialize columnNumber=0,columnNumber=1, i=0, i=1, j=0, j=1, pi = dj and direction = NULL.

(variables columnNumber, i and j were initialized wrongly in the implementation)

Figure 11. Initialization errors in the implementation of Step 2 of the Point and Figure chart algorithm

4. While direction = NULL AND j ≤ numberOfDataPoint

if dj ≥ (pi + boxSize), then
Set Direction = UP.
Plot ‘X’ at pi at the current columnNumber
While pi+boxSize ≤ dj

Increment i, set pi=pi-1 + boxSize
Plot ‘X’ at pi at the current columnNumber

Endwhile
Else if dj ≤ (pi – boxSize), then

Set Direction = DOWN.
Plot ‘O’ at pi at the current columnNumber
While pi – boxSize ≥ dj

Increment i, set pi=pi-1 – boxSize
Plot ‘O’ at pi at the current columnNumber

Endwhile
Endif
Increment j.

Endwhile
Decrement i. (Insertion of Decrement i statement in the Implementation)

Figure 12. Insertion error in the implementation of Step 4 of the Point and Figure chart algorithm

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 309

© 2014 ACADEMY PUBLISHER

Figure 13. Renko chart with a brick size of 300.

Figure 14. Kagi chart with a minimum reversal of 500

Figure 15. Three-line-break chart

B. Kagi Chart

Contrary to Renko chart, Kagi chart neither have a box
size nor brick size. Kagi charts display a series of
connecting vertical lines. If prices continue to move in
the same direction, the vertical line is extended.
Conversely, if prices reverse by a minimum reversal, a
new Kagi line is then drawn in the opposite direction in a
new column. Unlike a Point and Figure chart that requires
the price to reverse by at least the reversal amount
multiplying the box size to plot a new column, a Kagi
chart only requires the price to reverse by the user-
defined minimum reversal for the Kagi line to be plotted
in a new column. Figure 14 shows a Kagi chart that
corresponds to the Line chart on Dow Jones Industrial 30
Index in Figure 1.

Since the Kagi chart does not have a box size as in the
Point and Figure chart, only assertion condition (1) can
be reused to test the Kagi chart but not assertion
condition (2). MR1, MR2 and MR3 can be reused
without modification. A slight modification is required
for MR4 and MR5. By replacing the reversal amount
with the minimum reversal, MR4 and MR5 can also be

used to test a Kagi chart. MR6 and MR7 cannot be reused
to test a Kagi chart because they require manipulation of
box size which does not exist in the Kagi chart.

C. Three-line Break Chart

Similar to the Kagi charts, a three-line break chart
plots a series of vertical lines that are based on changes in
prices. If price continue to move in the same direction
exceeding the previous line, the line will be extended in
the same direction (in a new column) by the amount of
the price move. Therefore, the three-line-break chart does
not require a box size. Typically, the price has to reverse
by at least three lines for reversal to take place. This is the
reason why this is named as Three-line-break chart.
Figure 15 shows the Three-line-break chart corresponds
to the Line chart on Dow Jones Industrial 30 Index in
Figure 1.

As the three-line-break chart does not make use of box
size, only assertion condition (1) can be reused for testing
but not assertion condition (2). As for metamorphic
relations, only MR1, MR2, and MR3 can be reused.
MR4, MR5, MR6 and MR7 cannot be reused because
they require manipulation of either box size or reversal
amount.

VII. LIMITATIONS AND FUTURE WORK

From the experiment results in Section V-B, we can
observe that metamorphic relations that involve
manipulation of box size and reversal amount (MR4,
MR5, MR6 and MR7) have not detected any fault. It
should be noted that in any stage, if no tests conducted
can violate the assertion conditions and metamorphic
relations defined, it does not mean that we have proved
the correctness of the financial chart under test. This is
because we have not been able to test all the possible
inputs and all the possible necessary properties (known as
a limitation of software testing). Six series of data points,
two assertion conditions and seven metamorphic relations
were used to demonstrate how our testing approach
enables automatic testing of financial charts without
relying on human visual judgment (error prone and
labour intensive process).

It is worth noting that the assertion conditions and
metamorphic relations identified in this paper are not
exhaustive. Assertion conditions and metamorphic
relations proposed here are merely some of the necessary
properties of the financial chart under test. There are
other possible assertion conditions and metamorphic
relations that can be used to test Point and Figure charts.
Determining the adequacy of assertion conditions and
metamorphic relations is also a challenging problem in
testing. On one hand, having more assertion conditions
and metamorphic relations may increase the chance of
fault detection. On the other hand, this will increase the
cost of testing to a stage where there may not be
sufficient resource to execute the tests related to the
identified properties.

Selection of source test cases plays an important part in
metamorphic testing. As observed in the experiment
results, we noticed that randomized data series have

310 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

better fault detection effectiveness than the original
financial time-series data. This suggests that fault
detection effectiveness relies on the selection of source
test case, which is the data series. Various types of data
series could be explored in future studies to enhance the
fault detection.

On the other hand, the data label extraction method
used in this paper has effectively simplified the test
output verification from graphical comparisons to
numerical comparisons. However, this method assumes
that the graphical APIs of the operating system is error
free. Further, it is assumed that the pixel position of the
charting screen output is calculated correctly. Even
though data label is not affected by the charting screen
output, correct screen output is still necessary to provide
the correct visual display to the user. For example,
suppose that the vertical axis of the chart has a range of 0
to 100 and occupies the length of 200 pixels. If the price
to be plotted is 40, then the pixel position on the vertical
axis should be calculated as (40/100)*200. This can be
easily verified and tested because the expected output
(test oracle) can be easily determined.

As for future work, we notice that despite its
simplicity, the testing technique proposed for the Point
and Figure chart can be easily extended to other financial
charts. Beside financial charts, many other types of charts
that have oracle problems can benefit from the testing
technique proposed here. A generalized testing
framework for charting software components can be
developed for this purpose. In addition, we plan to study
how metamorphic testing and assertion testing can benefit
from new test case selection and generation techniques to
improve fault detection effectiveness.

VIII. CONCLUSION

Despite the important role it plays in financial market
trading, the quality of financial charts used in market
analysis and trading software has been largely overlooked
and taken for granted. Testing of financial charts is
difficult due to the graphical complexity of its outputs
and the oracle problem. Human visual judgment is often
required to perform manual testing. This is both error-
prone and labour intensive. We propose a new testing
technique that combines metamorphic testing, assertion
checking and a novel data label extraction method. Data
label extraction allows charting output verification to be
simplified from graphical comparison to numerical value
comparisons, which can be easily automated. Hence,
human visual judgment is no longer required in verifying
charting output. The use of assertion checking and
metamorphic testing has successfully alleviated the oracle
problem in testing of Point and Figure chart. The
deployment of test case generator, assertion checker and
output verifier in the proposed technique allows the
testing process to be fully automated.

To evaluate the effectiveness the proposed technique,
we apply it to test five pre-release builds of Nextwave
Software’s Point and Figure charting component. Our
experiment results show that the proposed testing
technique has successfully detected actual faults in the

Point and Figure charting component under test. From the
experiment results, we observe that the effectiveness of
metamorphic testing relies on the source test case used
for testing. Specifically, we recommend randomization of
real-life financial time-series data to improve fault
detection for Point and Figure charts.

As the pilot study on testing of financial charts that
have oracle problems, we believe that our work have
made a significant contribution toward enhancement of
quality of charts. As traders in the share, commodity and
forex markets often rely on financial charts in making
trading decisions, any fault in financial charting software
could result in substantial financial losses. Therefore, it is
critical that financial charting software is well tested
before being deployed in live trading.

ACKNOWLEDGMENT

This project is supported by Malaysian Government
MOHE FRGS (FRGS/2/2010/TK/SWIN/02/03) and an
Australian Research Council Discovery Grant (ARC
DP0984760).

REFERENCES

[1] M. D. Archer and J. L. Bickford, The Forex chartist
companion: a visual approach to technical analysis. John
Wiley & Sons, Inc.: Hoboken, New Jersey, 2007.

[2] A. M. Alakeel, "An Algorithm for Efficient Assertions-
Based Test Data Generation," Journal of Software, Vol. 5,
no. 6, pp. 644-653, 2010.

[3] J. A. Anderson, “Point and figure charting: a
computational methodology and trading rule performance
in the S&P 500 futures market,” Int. Rev. of Financial
Anal., Vol.17(1), pp. 198-217, 2008.

[4] B. Beizer, Black-box testing. Techniques for Functional
Testing of Software and Systems, Wiley. 1995

[5] S. Beydeda, “Self-metamorphic-testing components,”
Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC’06),
pp. 265−272, 2006.

[6] R. V. Binder, Testing Object-Oriented Systems: Models,
Patterns, and Tools, Addison Wesley, 2000.

[7] L. C. Briand, M. D. Penta and Y. Labiche, “Assessing and
improving state-based class testing: a series of
experiments,” IEEE Trans Softw. Eng., Vol. 30 (11), pp.
770–793, 2004.

[8] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, S. M.
Yiu, “Application of metamorphic testing in numerical
analysis,” Proceedings of IASTED International
Conference on Software Engineering, pp. 191−197, 1998.

[9] W. K. Chan, T. Y. Chen, S. C. Cheung, T. H. Tse and Z.
Zhang, “Towards the testing of power-aware software
applications for wireless sensor networks,” Lect. Notes in
Comput. Sci., Vol. 4498, pp. 84-99, Springer, Berlin, 2007.

[10] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse and S. S. Yau,
“Integration testing of context-sensitive middleware-based
applications: a metamorphic approach,” Int. J. of Softw.
Eng. and Knowl. Eng., Vol. 16(5), pp. 677-703, 2006.

[11] T. Y. Chen, S. C. Cheung and S. Yiu, “Metamorphic
testing: a new approach for generating next test cases,”
Technical Report HKUST-CS98-01, Department of
Computer Science, Hong Kong University of Science and
Technology, 1998.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 311

© 2014 ACADEMY PUBLISHER

[12] T. Y. Chen TY, J. Feng and T. H. Tse, “Metamorphic
testing of programs on partial differential equations: a case
study,” Proceedings of the 26th Annual International
Computer Software and Applications Conference
(COMPSAC’02), pp. 327-333, 2002.

[13] T. Y. Chen, J. W. K. Ho, H. Liu and X. Xie, “An
innovative approach for testing bioinformatics programs
using metamorphic testing,” BMC Bioinformatics, Vol.
10(24), 2009.

[14] M. D. Davis and E. J. Weyuker, “Pseudo-oracles for non-
testable programs,” Proceedings of the ACM '81
Conference, pages 254-257, 1981.

[15] V. deVilliers, The Point & Figure Method of Anticipating
Stock Price Movements, Windsor Books - Reprint of 1933
Edition, NY.

[16] M-C. Gaudel, “Testing can be formal, too,” Lect. Notes in
Comput. Sci., Vol. 915, pp. 82–96, Springer-Verlag,
Berlin, 1995.

[17] T. Gehrig and L. Menkhoff, “Extended evidence on the use
of technical analysis in foreign exchange,” Int. J. of
Finance & Econom, Vol. 11(4), pp. 327-338, 2006.

[18] C. He, and L. Zheng, "Automatic Detection to the
Behavioral Conflict in AOP Application Based on Design
by Contract." Journal of Software, Vol. 6, No. 11, pp.
2255-2262, 2011.

[19] R. Helm, I. M. Holland and D. Gangopadhyay, “Contracts:
specifying behavioral compositions in object-oriented
systems,” ACM SIGPLAN Notices, Vol. 25(10), pp. 169–
180, 1990.

[20] S. Huang, M. Y. Ji, Z. W. Hui and Y. T. Duanmu,
“Detecting Integer Bugs without Oracle Based on
Metamorphic Testing Technique,” Applied Mechanics and
Materials, 121, pp. 1961-1965, 2012.

[21] J. Knight and N. Leveson, “An experimental evaluation of
the assumption of independence in multi-version
programming,” IEEE Trans Softw. Eng., Vol. 12(1), pp.
96-109, 1986.

[22] B. Marick, “When should a test be automated?”
Proceedings of the 11th International Software/Internet
Quality Week, 1998.

[23] C. Murphy, G. Kaiser, L. Hu and L. Wu, “Properties of
machine learning applications for use in metamorphic
testing,” Proceedings of the 20th International Conference
on Software Engineering and Knowledge Engineering
(SEKE’08), pp. 867–872, 2008.

[24] C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano,
G. Kaiser, I. Lee, O. Sokolsky, L. Clark and L. Osterweil,
“On effective testing of health care simulation software,”
Proceedings of the 3rd Workshop on Software Engineering
in Health Care, pp. 40-47. ACM, 2011.

[25] K.Y. Sim, C.S. Low and F.-C. Kuo, “Automatic Testing of
Financial Charting Software Component: A Case Study on
Point and Figure Chart,” Proceedings of the 2nd
International Conference on Computer Science and its
Applications (CSA'09), pp. 177-183, Jeju, Korea, 2009.

[26] K.Y. Sim, W. K. S. Pao, and C. Lin. "Metamorphic testing
using geometric interrogation technique and its
application." Proceedings of the 2nd International
Conference of Electrical Engineering/Electronics,
Computer, Telecommunications, and Information
Technology (ECTI'05), pp. 91-95. 2005.

[27] K.Y. Sim, D. M. L. Wong, and T. Y. Hii, "Evaluating the
Effectiveness of Metamorphic Testing on Edge Detection
Programs," International Journal of Innovation,
Management and Technology, Vol. 4(1), pp. 6-10, 2013.

[28] C. A. Sun, G. Wang, B. Mu, H. Liu, Z. Wang and T. Y.
Chen, “A Metamorphic Relation-Based Approach to

Testing Web Services Without Oracles,” International
Journal of Web Services Research (IJWSR), Vol. 9(1), pp.
51-73, 2012

[29] J. Takahashi, “An automated oracle for verifying GUI
objects,” ACM SIGSOFT Softw. Eng. Notes, Vol. 26(4),
pp. 83–88. 2001.

[30] M. P. Taylor and H. Allen, “The use of technical analysis
in the foreign exchange market,” J. of Int. Money and
Finance, Vol. 11, pp. 304-314. 1992.

[31] R. N. Taylor, “Assertions in programming languages,”
ACM SIGPLAN Notices, Vol. 15(1), pp. 105−114, 1980.

[32] Q. Xie and A. M. Memon, “Designing and comparing
automated test oracles for GUI-based software
applications,” ACM Trans Softw. Eng. and Methodol., Vol.
16(1), Article No.4, 2007.

[33] B. Zacharias, “Test Case Generation and Reusing Test
Cases for GUI Designed with HTML,” Journal of
Software, Vol. 7, No. 10, pp. 2269-2277, 2012.

[34] Z. Zhang, W. K. Chan, T. H. Tse and P. Hu, “An
experimental study to compare the use of metamorphic
testing and assertion checking,” J. of Softw. ISSN 1000-
9825, Vol. 20(10), pp. 2637–2654, 2009.

[35] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, T. Y. Chen, “Automated
functional testing of web search engines in the absence of
an oracle,” Technical Report TR-2007-06, Department of
Computer Science, The University of Hong Kong, Hong
Kong.

Kwan Yong Sim (member of IET, IEEE
and IEEE Computer Society) received
his Bachelor of Engineering in
Electrical, Electronics and Systems from
the National University of Malaysia in
1999 and the Master of Computer
Science from the University of Malaya,
Malaysia in 2001. Currently, he is a
Senior Lecturer in the Faculty of

Engineering, Swinburne University of Technology, Sarawak
Campus, Malaysia. His current research interests include
software testing and debugging.

Chin S. Low received his Bachelor of Engineering in Electrical,
Electronics and Systems from the National University of
Malaysia in 1999 and the Master of Computer Science from the
University of Malaya, Malaysia in 2000. He is currently a
technical lead for Nextwave Software, Malaysia. His current
research interests include interactive multimedia and interface
design.

Fei-Ching Kuo (member of IEEE
Computer Society) received her Bachelor
of Science Honours in Computer Science
and PhD in Software Engineering, both
from Swinburne University of
Technology, Australia. She was a
lecturer at University of Wollongong,
Australia. She is currently a Senior
Lecturer at Faculty of Information and

Communication Technologies, Swinburne University of
Technology, Australia. She is also the Program Committee
Chair for the 10th International Conference on Quality Software
2010 (QSIC'10) and Guest Editor of a Special Issue for the
Journal of Systems and Software, special issue for Software
Practice and Experience, and special issue for International
Journal of Software Engineering and Knowledge Engineering.
Her current research interests include software analysis and
testing.

312 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

