
Recent Frequent Item Mining Algorithm in a
Data Stream Based on Flexible Counter Windows

Yanyang Guo

School of Information Engineering, Yangzhou Polytechnic College, Yangzhou,China
gyy197966@163.com

Gang Wang1,a, Fengmei Hou1,b, Qingling Mei2,c

1School of Information Engineering, Yangzhou Polytechnic College, Yangzhou,China
2Department of Computer Science, Yangzhou University, Yangzhou,China

ayzwg001@163.com, byzhfmjs@163.com, cmql859@163.com

Abstract—In the paper the author introduces FCW_MRFI,
which is a streaming data frequent item mining algorithm
based on variable window. The FCW_MRFI algorithm can
mine frequent item in any window of recent streaming data,
whose given length is L. Meanwhile, it divides recent
streaming data into several windows of variable length
according to m, which is the number of the counter array.
This algorithm can achieve smaller query error in recent
windows, and can minimize the maximum query error in
the whole recent streaming data.

Index Terms—streaming data, counter array, data mining,
most recent frequent item

I. INTRODUCTION

Although there are many algorithms concerning of
frequent item mining in streaming data[1,3,5], many of
them don’t put emphasis on current data. The existing
researches of frequent item mining in the most recent
streaming data are mainly algorithms based on slide
window technology. L. Golab et al. introduced an
algorithm based on hopping windows[2], which requires a
specified a threshold 1/m. Recently, they introduced
several algorithms utilizing slide window model. Lee and
Ting[7] put forward an algorithm, which can realize space
complexity O(ε −1), and processing time of updating and
querying O(ε −1). L. Zhang and Y. Guan[6] proposed an
Estimate of streaming data frequent value based on slide
window, which requires a memory space O(ε −1) , and
the processing and querying time of each data item
O(ε −1). H.T.Lam,T.Calders[8] presented to mine the
first K maximum frequent item in slide windows with
dynamic-Change lengths. I.T.Ferry et al. proposed an
algorithm which divides the most recent streaming data
based on time-inclined method[4]. However, this
algorithm demands that the number of counter array must
be equal to the number of windows divided, which is not
applicable when the number of counter array is already
given.

In practical application, it is required that the querying
error of recent data be relatively smaller, while errors
produced by most existing algorithms are all the same for

data at all times[9,10,11]. Aiming at this problem,
FCW_MRFI, which is a streaming data frequent item
mining algorithm based on variable window, is
introduced in this paper. The FCW_MRFI algorithm can
mine frequent item in any window of recent streaming
data, whose given length is L. Meanwhile, it divides
recent streaming data into several windows of variable
length according to m, which is the number of the counter
array. This algorithm can achieve smaller query error in
recent windows, and can minimize the maximum query
error in the whole recent streaming data. In order to
compare its accuracy and recall rate with other existing
methods, experiments with real data sets and synthetic
data sets are conducted, which shows that FCW_MRFI
algorithm offers much improved accuracy in data stream
recent frequent item mining.

II. DEFINITION

If the maximum length of the most recent streaming
data allowed to be queried is L, and current time is t, then
the frequent data item in any window during the period
from t-L to t can be queried. If the particular window to
be queried is []maxmin , www = (as illustrated in Figure
1), in which wmin refers to the farthest point, while wmax
refers to the nearest one, then it can be seen from Figure 1
that the query window w should satisfy: Lwt ≤− min ,

to wit, twwLt <<≤− maxmin .

Figure 1 recent streaming data of length L

If the particular window to be queried is
[]maxmin , www = , then the length of query window w is

minmax www −= . If is a constant defined by the system
between [0,1], and if the support of a particular x in w is
equal to or larger than wφ (), then x is the frequent item

W
t-L t

Wmi Wm
L

258 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.1.258-263

of the window. We are supposed to query the frequent
item designated by the user in the most recent streaming
data.

If there are m counter units available in the system, we
are supposed to perform frequent item query against any
window in the most recent streaming data of length L
using only m counter units, and at the same time
minimize the maximum query error. For data of different
time, query errors of those nearer to the current time are
relatively smaller. So, the streaming data are divided into
several time spans, which are called basic windows.
Statistic information of item number in each basic
window is stored in an array of counter units. Here Hash
function is adopted to get approximate numbers, that is to
say, set up a Hash function H with h.count, and set up
H(x) as the counter of each data item x. If the value range
of H(x) is [1, h], then there are h units. For a particular
window w to be queried, some window span overlapping
with the queried window w can be chosen to achieve
minimum error between the length of w＇which are
composed of these spans and the length of w which are
composed of the queried windows.

A simple way for this problem is to averagely allocate
the most recent streaming data L into m parts, with each
part of fixed length L/m. With this way, errors between
the queried window w and the chosen window span w＇are
less than L/m. However, this method sets very high
demands for space complexity. Moreover, it treats all data
items in recent streaming data equally, which results in
much loss of the newer data information. However, the
newer data information is often commonly employed and
tends to carry more valuable information than historical
data.

Another way is to divide recent streaming data with the
length of individual window span 1,2,4,…2l-1. The tilted
time frame method can estimate the frequency of recent
data item more accurately, and decrease the accuracy of
the historical data gradually. However, with this method,
the error between w and w＇can reach L/2, and it demands
the number of counter array be equal to that of divided
window span, to wit, mLl == log , which is not
applicable when the value of counter array m is give n.

To counter the problems occurred in the two methods,
a compromise, FCW_MRFI, is proposed in this paper.
FCW_MRFI tries to preserve as much newer data
information as possible, and at the same time minimize
maximum and ensemble error.

III. MAIN IDEA OF FCW_MRFI ALGORITHM

3.1 If Lm 2log≤

If the length of slide window is L, the number of
counter array defined by the system is m, and the size of

basic window is b= m

L
2

, then the number basic window

in current slide window is L’=L/b= ml−2 .
The most recent streaming data in slide window is

divided into m spans by logarithmic time-inclined of

length L, and the length of these spans are respectively b,
b, 2b, 4b, …, 2m-2b, 2m-1b. The first window stores b
data item from the basic window that comes first, and the
length of the following window is twice that of the
former clip. Generally, if the size of the first window is
represented by w0, then, and the ith window following it
is mibw i

i <<= − 0,2 1 　　 . One array of counter is
adopted to counter the individual data item in each span,
and mark them in turn as C0, C1, C2, C3, C4,…. A buffer
array, which is marked as C-1, is set up by the system to
receive streaming data.

Hcount is adopted to estimate the counting of the
individual data item in the most recent basic windows.
The counting is added to counter array C-1, and the
original value of C-1 is transferred to C0. The counter
array correspondent to the window of 2i length is marked
as Ci,(i=0,1,2,…m-1), and a counter array C-1 is set up to
receive the latest data. The counter array C-1 should
transfer its data in order to receive the latest data every
time when it has received b data item.

Figure 2 is taken as a simple example to illustrate
how the counter array conducts hcount calculation and
transfer operation. In figure 2, b=1, m=5, the counter
arrays correspondent to the individual windows are
C-1,C0,C1,C2,C3,C4: , among which C-1 is to counter the
latest data item.

Figure 2 transfer operation f counting windows

time C-1 C0 C1

1

2 1 1-2

3 2 1-2

4 3

8

14 13 13-14

15 14 13-14

16 15 15-16

17 16 15-16

31 30 29-30

32 31 31-32

33 32 31-32

34 33 33-34

1-4

5-8

9-12

9-12

13-16

13-16

29-32

29-32

29-32

1-8

9-16

9-16

25-32

1-16

1-16

1-16

17-32

17-32

1

2

3

4

8

14

15

16

17

31

33

34

C2 C3 C4

31

25-32

……

……

……
7 7-8 1-8

3-4

1-8

25-32

17-24 25-28

17-32

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 259

© 2014 ACADEMY PUBLISHER

Figure 2 shows that counter array C-1 always counter
the latest data items, and every time when it has received
b data item it perform data-transfer. Apart from
transferring the values in C-1 to C0, it adds the values of
former several counter arrays and transfers them to the
following counter arrays. The time of transferring differs
in different time t. For example, when t=2, it transfers 2
times to the following counter array, when t=3, it
transfers 1 time, and when t=4, it does 3 times. Generally,
G(t) is marked as the location of “1” (the low-order bit is
bit0), which is the lowest in binary representation of
integer t. The times of transferring to be conducted by
counter arrays following C-1 is identified by G(t). At t, the
times of transferring to be conducted is G(t)+1. For
example: if 2=(00010)2 , then G(2)=1, to wit, when t=2,
the times of transferring is 2. Similarly, as G(3)=0 G(4)=2,
when t=3, the times to be transferred should be 1, and
when t=4, the times should be 3. After summing and
transferring, the correspondent counter arrays should
refresh their records.

To sum up, FCW_MRFI is given below to illustrate the
refresh procedure of individual counter array Ci.

As there are h units in each counter array Ci, []kCi
is adopted to represent kth unit in Ci, to wit, the counter
of data whose Hash value is k. In the following algorithm,

ji CC + represents the adding up of values of the
corresponding units of Ci and Cj. For example,

jii CCC += , represent

[] [] []),...,2,1(hkkCkCkC jii =+=

Algorithm 1 FCW_MRFI(lLm =≤ 2log)

Begin
 1. t=2;
 2. receive and form hcount of the first two windows
and save to C-1,, C0, C1=C-1+C0;
 3. While not end condition do
 4. t=t+1; C0=C-1;
 5. form Count for newer group and store to C-1;
temp1=C-1;
 6. q=min(G(t),m) /*m is the number of
counter array, G(t) the location of “1”, which is the
lowest in binary representation of integer t */
 7. for j=1 to q do
 8. temp2=Cj;
 9. Cj=Cj-1+temp1; temp1=temp2;
 10. end for j ;
11. end While ;

End
The counter array produced by the above algorithm

can cover all data items in current windows, and for the
newer data items, which can offer higher accuracy. If n
m=4, L=16, figure 3 shows the range of the individual
counter array when t=15, 16, 31, 32. As seen from above,
t=15, the range is [1, 15]. As the maximum range of
counter array is [1, 8], and the length is 8, the maximum
query error is 4, while in range [14, 15], the query error is
0. Generally, at, the query error of range [t-1, t] is 0, and
that of [t-2i+1,t] is 2i-1. One more example, when t=16,

the range is [1,16]. As ranges of [1,8] can be achieved by
subtracting counting value of [9,16] from that of [1,16],
the maximum range is [1,8] or [9,16], and the length of
both is 8, the maximum query error is 4. When t=31, the
maximum range of counter in the queried windows is
[17,24], and the length is 8, the maximum query error is4.
When t=32, the maximum range of counter in the queried
windows is [17,24] or [25-32], and the length of both is 8,
the maximum query error is4. Generally, if t mod 16=g,
then the range at t is []tgt ,116 +−− ,

[]tgt ,116 +−− . The maximum query error of
counters within the queried windows is l/2, and minimum
query error is 0. Furthermore, for those older data
ranges ()gw += 16 , the query errors are greater, while
for those newer data ranges, the query errors are smaller.

3.2 If Lm 2log>

When Lm 2log> , the recent streaming data L is
divided into l windows of length 1, 2, 4, 8, …, 2l-1. Let
m＇=m-logL, mark windows of length 2i as Si, and mark
the corresponding counter array as Ci. As for those m＇
unused counter arrays, the length of them is divided
according to the following principle: first, from Sl-1,
delete Sl-1, add two Sl-2, and subtract 1from the value of m.
If m＇is not 0, delete one more Sl-2, and add two Sl-3. And
if m＇is still not 0, delete one more Sl-2 , add two Sl-3 . If
all Sl-2 are deleted, m＇is still not 0, delete one Sl-3, subtract
1 from m＇. The rest follows the same tend till m＇is 0.

Mark the number of windows Si as Ti. According to the
method stated above, for given L and m, the maximum
number of window k of window Sk which enables Tk≠0 is
defined by the following rule:
Mark: Ll 2log= : first calculate

)4(2 2 +−−= +− ilD il
i (1)

Then the maximum number of window k is
1)'(maxarg −≥= mDk ii

 (2)

Ti, the number of window Si is defined by

1
1

1

0
' 1

2(2) 1 1
1 2 1

i
i l i

i

i k
D m i k

T
T i k

k i

+
− −

+

>⎧
⎪ − + =⎪= ⎨ − − = −⎪
⎪ − ≥ ≥⎩

 (3)

For example, if L=1024,m=20, l=10, then m＇=10.
From (1), by calculation, D10=0, D9=3, D8=10, D7=25,
D6=56.From (2), by calculation, k=8-1=7. Still, from (3),
by calculation:
T7=10-10+1=1,T6=2(210-7-1)-1=13,
T0=T1= T2= T3= T4=T5=1

Thus, the total number of counter array needed is T7+
T6 +T5+...+ T1+ T0=1+13+6=20, which is exactly equal to
the given number of counter array m. Therefore, a
conclusion can be drawn as follows:

260 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

Theorem 1: with the window-arranging method
mentioned above, the number of windows arranged is
exactly the same as the given number of counter array m.
Prove : if Tk≠0 starts at kth layer

Total number of windows =Tk+Tk-1+....+T1+T0

= 1)2(21 −−= −
− k

kl
k TT +(k-1)

= 22 1 −+−+− kTk
kl

= () kmCk
kl +−+−− +
+− 21'2 1

1

= () kmklklkl +−−++−−+− +−−+− 21'4122 211

= kmkl +−++− 3'3
mml =+= '

proven
Theorem 2: with the window-arranging method

mentioned above, certain given counter array can cover
the query of the most recent steaming data of length L-1.
Prove : if Tk≠0 starts at kth layer

Total coverage length
= 12...22.2. 21

1 +++++ −−
−

kk
k

k
k TT

= ()[] 122.1222. 11 −+−−+ −−− kk

k
klk

k TT

= 122222. 1111 −+−−+ −−−++− kk
k

kkklk
k TT

112 −=−= Ll
proven

If the buffer array C-1 is included, it can cover the
query of the most recent streaming data with length L
entirely. As it is within the query range, the maximum
coverage range is 2k. Therefore, it is not difficult to draw
a conclusion as follows:

Theorem 3: The window-arranging method mentioned
above is a scheme that can employ as many as m
windows to query the most recent streaming data of
coverage length L, and can guarantee the error less than
2k-1. Among which:

() ()()[] 142logmaxarg 2 −+−−≤−= +− ilLmk il

i

Thus it can be seen that the maximum query error of
the counter within query windows is 2k-1, and the
minimum error is 0. Errors are greater for older data
spans, and smaller for newer ones.

According to the window-arranging method mentioned
above, m counter array can be employed to counter
streaming data of each individual window
correspondingly. Each time when a data comes, counter
array C-1 counters it, and then transfers it. Apart from
transferring the values in C-1 to C0, it adds the values of
former several counter arrays and transfers them to the
following counter arrays. The time of transferring differs
in different time t.

For example, if the length of the most recent streaming
data query window L=32, then 5log2 == Ll , and the

number of given counter array m=7, then m ＇ =2.
According to the window-arranging method mentioned
above, the number of each individual window should be
T-1=1,T0=1,T1=1,T2=3,T3=2.
To sum up, FCW_MRFI is given below to illustrate the
refresh procedure of individual counter array Ci.
Algorithm 2: FCW_MRFI(lLm => 2log)

Begin
 1. t=2;
 2. receive and form hcount of the first two windows
and save to C-1,, C0, C1=C-1+C0;
 3. While not end condition do
 4. t=t+1; C0=C-1;
 5. form Count for newer group and store to C-1;
temp1=C-1;
 6. q=min(G(t),k) /*k is the number of counter
array, G(t) the location of “1”, which is the lowest in
binary representation of integer t */
 7. for j=1 to q do
 8. temp2= 1

jC ; 1
jC =temp1; temp1=temp2;

 9. for i=2 to Ti do
 9. temp2= i

jC ; i
jC =temp1;

temp1=temp2;
 10. endfor i
 11. temp1=temp2+ 1iT

jC −
 10. end for j ;
11. end While ;

End

IV. EXPERIMENTAL INVESTIGATION

Experiments with real data sets and synthetic data sets
are conducted to measure FCW_MRFI algorithm, and
compare its performance with TiTiCount algorithm which
adopts tilted time frame method. All experiments were
operated on PCs with 512M memory, 1.7G CPU,
WINDOWS XP operating system, and programmed using
python2.6. In experiments, parameters are set as:

05.0=φ ,b=1000.

4.1 Synthetic Data
To measure this algorithm, 6 groups of data set

satisfying Zipf distribution are created randomly, with
parameters of each Zipf Distribution group being 0.5,
0.75, 1, 1.25, 1.5 and 1.75. The size of the data set is
1000k. When different number of counter array is given,
recall rate and accuracy of TiTiCount and algorithm
introduced in this paper are measured by query windows
created randomly. Meanwhile, recall rate and accuracy of
the two algorithms of different Zipf distributions are
compared when b=1000, 05.0=φ

Figure 5(a) illustrates the comparison of recall rate of
the two algorithms when φ =0.005 and Zipf distribution
parameter is 1.5. It can be seen from Figure 5 that recall
rate of both algorithms can reach 100% for data sets of
relatively stable distribution.

Figure 3(b) illustrates the comparison of accuracy of

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 261

© 2014 ACADEMY PUBLISHER

the two algorithms when values of m vary. For , as the
value of m increases, the bigger counting window keep
subdividing into smaller ones, thus guarantee more
accurate frequency counting. However, the number of
counting array of TiTiCount is stable. Therefore, as the
value of m increases, FCW_MRFI is more accurate than
FCW_MRFI.

0.8

0.85

0.9

0.95

1

10 15 20 25 30 35 40

m

R
e
c
a
l
l

R
a
t
e

FCW-MRFI TiTiCount

(a) Comparison of Recall Rate

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 15 20 25 30 35 40
m

A
c
c
u
r
a
c
y

FCW-MRFI TiTiCount

(b) Comparison of Accuracy

Figure 3 Comparison of Two Algorithm on Recall Rate
and Accuracy when the value of m varies

When m=35, recall rate comparison for data sets of
various Zip distribution parameters is illustrated in Figure
4(a). Recall rate of FCW_MRFI almost reach 100%,
while TiTiCount can’t reach 100% as its errors are greater
in querying and counting windows.

When m=35, mining accuracy comparison for data sets
of various Zip distribution parameters is illustrated in
Figure 4(b). As can be seen from the figure, for data sets
of various Zip distribution parameters, FCW_MRFI is
more accurate than TiTiCount.

0.88

0.9

0.92

0.94

0.96

0.98

1

0.5 0.75 1 1.25 1.5 1.75

zipf

R
e
c
a
l
l

R
a
t
e

FCW-MRFI TiTiCount

(a) Recall Rate Comparison

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.5 0.75 1 1.25 1.5 1.75
zipf

R
e
c
a
l
l

R
a
t
e

FCW-MRFI TiTiCount

(b) Accuracy Comparison

Figure 4 recall rate and accuracy comparison for data
sets of various Zip distribution
parameters(φ =0.05,m=35)

4.2 Real Data
In real data experiments, data set, kosarak[18] ,is

adopted (http://fimi.cs.helsinki.fi/data/). The data set is
composed of anonymous click stream of a Hungary
online news gateway website, which contains about 800
million separate data items. 90 groups of query windows
created randomly are adopted to compare their recall rate
and accuracy.

Figure 5(a) illustrates the comparison of recall rate
when the value of m varies. As seen from Figure 5(a),
recall rate of FCW_MRFI is higher than that of TiTiCount.
Figure 5(b) illustrates the comparison of accuracy when
the value of m varies. Obviously, as the value of m
increases, FCW_MRFI is more accurate than that of
TiTiCount.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

30 35 40 45 50 55

m

R
e
c
a
l
l

R
a
t
e

FCW-MRFI TiTiCount

(a) Recall Rate Comparison

262 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

30 35 40 45 50 55
m

A
c
c
u
r
a
c
y

FCW-MRFI TiTiCount

(b) Accuracy Comparison

Figure 5 Recall Rate and Accuracy Comparison when
the value of m varies (kosarak data set,φ =0.05)

Figure 6(a) illustrates the recall rate comparison of two
algorithms with different query width. As seen from the
figure, recall rate of FCW_MRFI is higher than that of t.
Figure 6(b) illustrate the accuracy comparison of the two
algorithms. Results in the figure shows that FCW_MRFI
is more accurate than t. Accuracy rate of FCW_MRFI are
all over 95%, even 100%, which proves better
performance of FCW_MRFI.

0.88

0.9

0.92

0.94

0.96

0.98

1

2 4 6 8 10 12

Query width(K)

R
e
c
a
l
l

R
a
t
e

FCW-MRFI TiTiCount

(a) Recall Rate Comparison

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

2 4 6 8 10 12
Query width(K)

A
c
c
u
r
a
c
y

FCW-MRFI TiTiCount

(b) Accuracy comparison

Figure 6 recall rate and accuracy comparison of two
algorithms with different query width

V. CONCLUSION

FCW_MRFI, which is a streaming data frequent item
mining algorithm based on variable window, is
introduced in this paper. The FCW_MRFI algorithm can
mine frequent item in any window of recent streaming
data, whose given length is L. Meanwhile, it divides
recent streaming data into several windows of variable
length according to m, which is the number of the counter
array. This algorithm can achieve smaller query error in
recent windows, and can minimize the maximum query
error in the whole recent streaming data. In order to
compare its accuracy and recall rate with other existing
methods, experiments with real data sets and synthetic
data sets are conducted, which proves that FCW_MRFI
algorithm offers much improved accuracy in recent
frequent item mining in data stream.

ACKNOWLEDGEMENTS

This research was supported in part by modern
education technology research project of Jiangsu
province (2013-R-24925).

REFERENCES

[1] J. Misra, D. Gries. Finding repeated elements[J]. Science
of Computer Programming, 1982, pp.143~152.

[2] L. Golab, D. DeHaan, A. L.Ortiz, et al. Finding frequent
items in sliding windows with multinomially-distributed
item frequencies[C]. In Proceedings of the 16th
International Conference on Scientific and Statistical
Database Management, 2004, pp.425~426.

[3] G. S. Manku, R. Motwani. Approximate Frequency
Counts over Data Streams[C]. In Proc. of VLDB, 2002,
pp.346~357.

[4] T. Calders, N. Dexters, B. Goethals. Mining Frequent
Itemsets in a Stream[C]. In Proceedings of 7th IEEE
International Conference on Data Mining, 2007, pp.
83~92.

[5] Frequent itemset mining dataset repository, university of
helsinki (2008), http://fimi.cs.helsinki.fi/data/

[6] L. f. Zhang, Y. Guan, Frequency estimation over sliding
windows[C], Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, 2008,
pp.1385~1387.

[7] H. F. Li, S. Y. Lee. Mining frequent itemsets over data
streams using efficient window sliding techniques[J].
Expert Systems with Applications.2009, pp.1466-1477.

[8] H. T.Lam ,T. Calders, Mining Top-K Frequent Items in a
Data Stream with Flexible Sliding Windows,Copyright
2010 ACM 978-1-4503-0055-110/07

[9] C.N. Yang, and Y.Y Yang, and C.Y. Chiu, "Image Library
Systems: A Novel Installment Payment for Buying Images
on the Web," Journal of Computers, Vol. 20, No.1,
2009,pp. 43-49, Apr.

[10] X. Xu, J. Lin . A novel time advancing mechanism for
agent-oriented supply chain simulation. Journal of
Computers, Vol.4, No.12, 2009, pp.1301-1308.

[11] Ma cuixia, Meng xiangxu. Research on Object Constraints
Model and Inverted Constraints in Parametric Design,
Journal of Computers, Vol.23, No.9, 2000, pp.991-995.

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 263

© 2014 ACADEMY PUBLISHER

