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Abstract—In the paper the author introduces FCW_MRFI, 
which is a streaming data frequent item mining algorithm 
based on variable window. The FCW_MRFI algorithm can 
mine frequent item in any window of recent streaming data, 
whose given length is L. Meanwhile, it divides recent 
streaming data into several windows of variable length 
according to m, which is the number of the counter array. 
This algorithm can achieve smaller query error in recent 
windows, and can minimize the maximum query error in 
the whole recent streaming data.  
 
Index Terms—streaming data, counter array, data mining, 
most recent frequent item 

I. INTRODUCTION 

Although there are many algorithms concerning of 
frequent item mining in streaming data[1,3,5], many of 
them don’t put emphasis on current data. The existing 
researches of frequent item mining in the most recent 
streaming data are mainly algorithms based on slide 
window technology. L. Golab et al. introduced an 
algorithm based on hopping windows[2], which requires a 
specified a threshold 1/m. Recently, they introduced 
several algorithms utilizing slide window model. Lee and 
Ting[7] put forward an algorithm, which can realize space 
complexity O(ε −1), and processing time of updating and 
querying O(ε −1). L. Zhang and Y. Guan[6] proposed an 
Estimate of streaming data frequent value based on slide 
window, which requires a memory space O(ε −1) , and 
the processing and querying time of each data item 
O(ε −1).  H.T.Lam,T.Calders[8] presented to mine the 
first K maximum frequent item in slide windows with 
dynamic-Change lengths. I.T.Ferry et al. proposed an 
algorithm which divides the most recent streaming data 
based on time-inclined method[4]. However, this 
algorithm demands that the number of counter array must 
be equal to the number of windows divided, which is not 
applicable when the number of counter array is already 
given. 

In practical application, it is required that the querying 
error of recent data be relatively smaller, while errors 
produced by most existing algorithms are all the same for 

data at all times[9,10,11]. Aiming at this problem, 
FCW_MRFI, which is a streaming data frequent item 
mining algorithm based on variable window, is 
introduced in this paper. The FCW_MRFI algorithm can 
mine frequent item in any window of recent streaming 
data, whose given length is L. Meanwhile, it divides 
recent streaming data into several windows of variable 
length according to m, which is the number of the counter 
array. This algorithm can achieve smaller query error in 
recent windows, and can minimize the maximum query 
error in the whole recent streaming data. In order to 
compare its accuracy and recall rate with other existing 
methods, experiments with real data sets and synthetic 
data sets are conducted, which shows that FCW_MRFI 
algorithm offers much improved accuracy in data stream 
recent frequent item mining. 

II. DEFINITION 

If the maximum length of the most recent streaming 
data allowed to be queried is L, and current time is t, then 
the frequent data item in any window during the period 
from t-L to t can be queried. If the particular window to 
be queried is [ ]maxmin , www =  (as illustrated in Figure 
1), in which wmin refers to the farthest point, while wmax 
refers to the nearest one, then it can be seen from Figure 1 
that the query window w should satisfy: Lwt ≤− min , 

to wit, twwLt <<≤− maxmin . 
 
 
 
 

 
Figure 1 recent streaming data of length L 

If the particular window to be queried is 
[ ]maxmin , www = , then the length of query window w is 

minmax www −= . If is a constant defined by the system 
between [0,1], and if the support of a particular x in w is 
equal to or larger than wφ (), then x is the frequent item 
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of the window. We are supposed to query the frequent 
item designated by the user in the most recent streaming 
data.  

If there are m counter units available in the system, we 
are supposed to perform frequent item query against any 
window in the most recent streaming data of length L 
using only m counter units, and at the same time 
minimize the maximum query error. For data of different 
time, query errors of those nearer to the current time are 
relatively smaller. So, the streaming data are divided into 
several time spans, which are called basic windows. 
Statistic information of item number in each basic 
window is stored in an array of counter units. Here Hash 
function is adopted to get approximate numbers, that is to 
say, set up a Hash function H with h.count, and set up 
H(x) as the counter of each data item x. If the value range 
of H(x) is [1, h], then there are h units. For a particular 
window w to be queried, some window span overlapping 
with the queried window w can be chosen to achieve 
minimum error between the length of w＇which are 
composed of these spans and the length of w which are 
composed of the queried windows.    

A simple way for this problem is to averagely allocate 
the most recent streaming data L into m parts, with each 
part of fixed length L/m. With this way, errors between 
the queried window w and the chosen window span w＇are 
less than L/m. However, this method sets very high 
demands for space complexity. Moreover, it treats all data 
items in recent streaming data equally, which results in 
much loss of the newer data information. However, the 
newer data information is often commonly employed and 
tends to carry more valuable information than historical 
data. 

Another way is to divide recent streaming data with the 
length of individual window span 1,2,4,…2l-1. The tilted 
time frame method can estimate the frequency of recent 
data item more accurately, and decrease the accuracy of 
the historical data gradually. However, with this method, 
the error between w and w＇can reach L/2, and it demands 
the number of counter array be equal to that of divided 
window span, to wit, mLl == log , which is not 
applicable when the value of counter array m is give n.  

To counter the problems occurred in the two methods, 
a compromise, FCW_MRFI, is proposed in this paper. 
FCW_MRFI tries to preserve as much newer data 
information as possible, and at the same time minimize 
maximum and ensemble error.  

III. MAIN IDEA OF FCW_MRFI ALGORITHM 

3.1  If Lm 2log≤  

If the length of slide window is L, the number of 
counter array defined by the system is m, and the size of 

basic window is b= m

L
2

, then the number basic window 

in current slide window is L’=L/b= ml−2 . 
The most recent streaming data in slide window is 

divided into m spans by logarithmic time-inclined of 

length L, and the length of these spans are respectively b, 
b, 2b, 4b, …, 2m-2b, 2m-1b. The first window stores b 
data item from the basic window that comes first, and the 
length of the following window is twice that of the 
former clip. Generally, if the size of the first window is 
represented by w0, then, and the ith window following it 
is mibw i

i <<= − 0,2 1 　　 . One array of counter is 
adopted to counter the individual data item in each span, 
and mark them in turn as C0, C1, C2, C3, C4,…. A buffer 
array, which is marked as C-1, is set up by the system to 
receive streaming data.  

Hcount is adopted to estimate the counting of the 
individual data item in the most recent basic windows. 
The counting is added to counter array C-1, and the 
original value of C-1 is transferred to C0. The counter 
array correspondent to the window of 2i length is marked 
as Ci,(i=0,1,2,…m-1), and a counter array C-1 is set up to 
receive the latest data. The counter array C-1 should 
transfer its data in order to receive the latest data every 
time when it has received b data item. 

Figure 2 is taken as a simple example to illustrate 
how the counter array conducts hcount calculation and 
transfer operation. In figure 2, b=1, m=5, the counter 
arrays correspondent to the individual windows are 
C-1,C0,C1,C2,C3,C4: , among which C-1 is to counter the 
latest data item. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 transfer operation f counting windows 
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Figure 2 shows that counter array C-1 always counter 
the latest data items, and every time when it has received 
b data item it perform data-transfer. Apart from 
transferring the values in C-1 to C0, it adds the values of 
former several counter arrays and transfers them to the 
following counter arrays. The time of transferring differs 
in different time t. For example, when t=2, it transfers 2 
times to the following counter array, when t=3, it 
transfers 1 time, and when t=4, it does 3 times. Generally, 
G(t) is marked as the location of “1” (the low-order bit is 
bit0), which is the lowest in binary representation of 
integer t. The times of transferring to be conducted by 
counter arrays following C-1 is identified by G(t). At t, the 
times of transferring to be conducted is G(t)+1. For 
example: if 2=(00010)2 , then G(2)=1, to wit, when t=2, 
the times of transferring is 2. Similarly, as G(3)=0 G(4)=2, 
when t=3, the times to be transferred should be 1, and 
when t=4, the times should be 3. After summing and 
transferring, the correspondent counter arrays should 
refresh their records.   

To sum up, FCW_MRFI is given below to illustrate the 
refresh procedure of individual counter array Ci. 

As there are h units in each counter array Ci, [ ]kCi   
is adopted to represent kth unit in Ci, to wit, the counter 
of data whose Hash value is k. In the following algorithm, 

ji CC +  represents the adding up of values of the 
corresponding units of Ci and Cj. For example, 

jii CCC += , represent 

[ ] [ ] [ ] ),...,2,1( hkkCkCkC jii =+=  

Algorithm 1  FCW_MRFI( lLm =≤ 2log ) 

Begin 
 1.  t=2; 
 2.   receive and form hcount of the first two windows 
and save to C-1,, C0, C1=C-1+C0; 
 3.     While not end condition do 
 4.        t=t+1; C0=C-1; 
 5.        form Count for newer group and store to C-1; 
temp1=C-1;  
 6.        q=min(G(t),m)  /*m is the number of 
counter array, G(t) the location of “1”, which is the 
lowest in binary representation of integer t */ 
 7.        for j=1 to q do 
 8.          temp2=Cj; 
 9.           Cj=Cj-1+temp1; temp1=temp2; 
 10.       end for j ; 
11.     end While ; 

End  
The counter array produced by the above algorithm 

can cover all data items in current windows, and for the 
newer data items, which can offer higher accuracy. If n 
m=4, L=16, figure 3 shows the range of the individual 
counter array when t=15, 16, 31, 32. As seen from above, 
t=15, the range is [1, 15]. As the maximum range of 
counter array is [1, 8], and the length is 8, the maximum 
query error is 4, while in range [14, 15], the query error is 
0. Generally, at, the query error of range [t-1, t] is 0, and 
that of [t-2i+1,t] is 2i-1. One more example, when t=16, 

the range is [1,16]. As ranges of [1,8] can be achieved by 
subtracting counting value of [9,16] from that of [1,16], 
the maximum range is [1,8] or [9,16], and the length of 
both is 8, the maximum query error is 4. When t=31, the 
maximum range of counter in the queried windows is 
[17,24], and the length is 8, the maximum query error is4. 
When t=32, the maximum range of counter in the queried 
windows is [17,24] or [25-32], and the length of both is 8, 
the maximum query error is4. Generally, if t mod 16=g, 
then the range at t is [ ]tgt ,116 +−− , 

[ ]tgt ,116 +−− . The maximum query error of 
counters within the queried windows is l/2, and minimum 
query error is 0. Furthermore, for those older data 
ranges ( )gw += 16 , the query errors are greater, while 
for those newer data ranges, the query errors are smaller.   

 

3.2  If  Lm 2log>  

When Lm 2log> , the recent streaming data L is 
divided into l windows of length 1, 2, 4, 8, …, 2l-1. Let 
m＇=m-logL, mark windows of length 2i as Si, and mark 
the corresponding counter array as Ci. As for those m＇ 
unused counter arrays, the length of them is divided 
according to the following principle: first, from Sl-1, 
delete Sl-1, add two Sl-2, and subtract 1from the value of m. 
If m＇is not 0, delete one more Sl-2, and add two Sl-3. And 
if m＇is still not 0, delete one more Sl-2 , add two Sl-3 . If 
all Sl-2 are deleted, m＇is still not 0, delete one Sl-3, subtract 
1 from m＇. The rest follows the same tend till m＇is 0. 

Mark the number of windows Si as Ti. According to the 
method stated above, for given L and m, the maximum 
number of window k of window Sk which enables Tk≠0 is 
defined by the following rule:   
Mark: Ll 2log= : first calculate  

)4(2 2 +−−= +− ilD il
i                       (1) 

Then the maximum number of window k is  
1)'(maxarg −≥= mDk ii

                   (2) 

Ti, the number of window Si is defined by  

1
1

1

0
' 1

2(2 ) 1 1
1 2 1

i
i l i

i

i k
D m i k

T
T i k

k i

+
− −

+

>⎧
⎪ − + =⎪= ⎨ − − = −⎪
⎪ − ≥ ≥⎩

         (3) 

For example, if L=1024,m=20, l=10, then m＇=10. 
From (1), by calculation, D10=0, D9=3, D8=10, D7=25, 
D6=56.From (2), by calculation, k=8-1=7. Still, from (3), 
by calculation: 
T7=10-10+1=1,T6=2(210-7-1)-1=13, 
T0=T1= T2= T3= T4=T5=1 

Thus, the total number of counter array needed is T7+ 
T6 +T5+...+ T1+ T0=1+13+6=20, which is exactly equal to 
the given number of counter array m. Therefore, a 
conclusion can be drawn as follows: 
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Theorem 1: with the window-arranging method 
mentioned above, the number of windows arranged is 
exactly the same as the given number of counter array m.  
Prove : if Tk≠0 starts at kth layer  

Total number of windows =Tk+Tk-1+....+T1+T0 

= 1)2(21 −−= −
− k

kl
k TT +(k-1) 

= 22 1 −+−+− kTk
kl

 
                

= ( ) kmCk
kl +−+−− +
+− 21'2 1

1
 

                

= ( ) kmklklkl +−−++−−+− +−−+− 21'4122 211
 

= kmkl +−++− 3'3  
mml =+= '                                           

proven 
Theorem 2: with the window-arranging method 

mentioned above, certain given counter array can cover 
the query of the most recent steaming data of length L-1. 
Prove : if Tk≠0 starts at kth layer  

Total coverage length 
= 12...22.2. 21

1 +++++ −−
−

kk
k

k
k TT  

          
= ( )[ ] 122.1222. 11 −+−−+ −−− kk

k
klk

k TT  
          

= 122222. 1111 −+−−+ −−−++− kk
k

kkklk
k TT  

112 −=−= Ll                                     
proven 

If the buffer array C-1 is included, it can cover the 
query of the most recent streaming data with length L 
entirely. As it is within the query range, the maximum 
coverage range is 2k. Therefore, it is not difficult to draw 
a conclusion as follows: 

Theorem 3: The window-arranging method mentioned 
above is a scheme that can employ as many as m 
windows to query the most recent streaming data of 
coverage length L, and can guarantee the error less than 
2k-1. Among which: 

( ) ( )( )[ ] 142logmaxarg 2 −+−−≤−= +− ilLmk il

i
 

Thus it can be seen that the maximum query error of 
the counter within query windows is 2k-1, and the 
minimum error is 0. Errors are greater for older data 
spans, and smaller for newer ones. 

According to the window-arranging method mentioned 
above, m counter array can be employed to counter 
streaming data of each individual window 
correspondingly. Each time when a data comes, counter 
array C-1 counters it, and then transfers it. Apart from 
transferring the values in C-1 to C0, it adds the values of 
former several counter arrays and transfers them to the 
following counter arrays. The time of transferring differs 
in different time t. 

For example, if the length of the most recent streaming 
data query window L=32, then 5log2 == Ll , and the 

number of given counter array m=7, then m ＇ =2. 
According to the window-arranging method mentioned 
above, the number of each individual window should be 
T-1=1,T0=1,T1=1,T2=3,T3=2. 
To sum up, FCW_MRFI is given below to illustrate the 
refresh procedure of individual counter array Ci. 
Algorithm 2: FCW_MRFI( lLm => 2log ) 

Begin 
 1.  t=2; 
 2.   receive and form hcount of the first two windows 
and save to C-1,, C0, C1=C-1+C0; 
 3.     While not end condition do 
 4.        t=t+1; C0=C-1; 
 5.        form Count for newer group and store to C-1; 
temp1=C-1;  
 6.        q=min(G(t),k)  /*k is the number of counter 
array, G(t) the location of “1”, which is the lowest in 
binary representation of integer t */ 
 7.        for j=1 to q do 
 8.          temp2= 1

jC ; 1
jC =temp1; temp1=temp2; 

 9.          for i=2 to Ti do 
 9.            temp2= i

jC ; i
jC =temp1; 

temp1=temp2; 
 10.         endfor  i  
 11.         temp1=temp2+ 1iT

jC −  
 10.       end for j ; 
11.     end While ; 

End  

IV. EXPERIMENTAL INVESTIGATION 

Experiments with real data sets and synthetic data sets 
are conducted to measure FCW_MRFI algorithm, and 
compare its performance with TiTiCount algorithm which 
adopts tilted time frame method. All experiments were 
operated on PCs with 512M memory, 1.7G CPU, 
WINDOWS XP operating system, and programmed using 
python2.6. In experiments, parameters are set as: 

05.0=φ ,b=1000. 

4.1 Synthetic Data 
To measure this algorithm, 6 groups of data set 

satisfying Zipf distribution are created randomly, with 
parameters of each Zipf Distribution group being 0.5, 
0.75, 1, 1.25, 1.5 and 1.75. The size of the data set is 
1000k. When different number of counter array is given, 
recall rate and accuracy of TiTiCount and algorithm 
introduced in this paper are measured by query windows 
created randomly. Meanwhile, recall rate and accuracy of 
the two algorithms of different Zipf distributions are 
compared when b=1000, 05.0=φ  

Figure 5(a) illustrates the comparison of recall rate of 
the two algorithms when φ =0.005 and Zipf distribution 
parameter is 1.5. It can be seen from Figure 5 that recall 
rate of both algorithms can reach 100% for data sets of 
relatively stable distribution. 

Figure 3(b) illustrates the comparison of accuracy of 
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the two algorithms when values of m vary. For , as the 
value of m increases, the bigger counting window keep 
subdividing into smaller ones, thus guarantee more 
accurate frequency counting. However, the number of 
counting array of TiTiCount is stable. Therefore, as the 
value of m increases, FCW_MRFI is more accurate than 
FCW_MRFI.  
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Figure 3 Comparison of Two Algorithm on Recall Rate 
and Accuracy when the value of m varies 

When m=35, recall rate comparison for data sets of 
various Zip distribution parameters is illustrated in Figure 
4(a). Recall rate of FCW_MRFI almost reach 100%, 
while TiTiCount can’t reach 100% as its errors are greater 
in querying and counting windows. 

When m=35, mining accuracy comparison for data sets 
of various Zip distribution parameters is illustrated in 
Figure 4(b). As can be seen from the figure, for data sets 
of various Zip distribution parameters, FCW_MRFI is 
more accurate than TiTiCount.  
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(b) Accuracy Comparison 

Figure 4 recall rate and accuracy comparison for data 
sets of various Zip distribution 
parameters(φ =0.05,m=35) 

4.2 Real Data 
In real data experiments, data set, kosarak[18] ,is 

adopted (http://fimi.cs.helsinki.fi/data/). The data set is 
composed of anonymous click stream of a Hungary 
online news gateway website, which contains about 800 
million separate data items. 90 groups of query windows 
created randomly are adopted to compare their recall rate 
and accuracy.  

Figure 5(a) illustrates the comparison of recall rate 
when the value of m varies. As seen from Figure 5(a), 
recall rate of FCW_MRFI is higher than that of TiTiCount. 
Figure 5(b) illustrates the comparison of accuracy when 
the value of m varies. Obviously, as the value of m 
increases, FCW_MRFI is more accurate than that of 
TiTiCount.  
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(b) Accuracy Comparison 

Figure 5 Recall Rate and Accuracy Comparison when 
the value of m varies (kosarak data set,φ =0.05) 

Figure 6(a) illustrates the recall rate comparison of two 
algorithms with different query width. As seen from the 
figure, recall rate of FCW_MRFI is higher than that of t. 
Figure 6(b) illustrate the accuracy comparison of the two 
algorithms. Results in the figure shows that FCW_MRFI 
is more accurate than t. Accuracy rate of FCW_MRFI are 
all over 95%, even 100%, which proves better 
performance of FCW_MRFI.  
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Figure 6 recall rate and accuracy comparison of two  
algorithms with different query width 

V. CONCLUSION 

FCW_MRFI, which is a streaming data frequent item 
mining algorithm based on variable window, is 
introduced in this paper. The FCW_MRFI algorithm can 
mine frequent item in any window of recent streaming 
data, whose given length is L. Meanwhile, it divides 
recent streaming data into several windows of variable 
length according to m, which is the number of the counter 
array. This algorithm can achieve smaller query error in 
recent windows, and can minimize the maximum query 
error in the whole recent streaming data. In order to 
compare its accuracy and recall rate with other existing 
methods, experiments with real data sets and synthetic 
data sets are conducted, which proves that FCW_MRFI 
algorithm offers much improved accuracy in recent 
frequent item mining in data stream. 
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