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Abstract—Vacuum circuit breaker becomes more and more 
complicated, integrated, high-speed and intellectualized. To 
insure vacuum circuit breaker in its good conditions, the 
function of fault diagnosis gets more important than before 
in the process of repairing. This paper is addressed a model-
based fault detection framework for vacuum circuit breaker 
by trip coil analysis. At first, the electromagnetic model of 
the trip coil is built. Secondly, algorithm of abrupt changes 
detection and dynamic time warping algorithm is 
introduced. At last, value comparison between the similarity 
and the threshold concludes whether a fault has occurred or 
the trip coil has potentially hazardous effects. The 
experimental results show that this method is effective. 
 
Index Terms—Vacuum Circuit Breaker (VCB), Fault 
Diagnosis, Dynamic Time Warping (DTW) 
 

I.  INTRODUCTION 

Circuit breakers must be fully operational and 
available at all times. Now circuit breakers are the 
important system protection assets which should be in 
condition assessment and performance monitoring. 
Therefore, any risk of dangerous situations could be 
surely reduced. In such complex system of vacuum 
circuit breaker, fault diagnosis plays a vital role. A fault 
in a system will lead to economic losses. Therefore, fault 
diagnosis must be done correctly and efficiently. Fault 
diagnosis is performed when a vacuum circuit breaker is 
malfunctioning and is to determine the cause responsible 
for a set of observed symptom [1-3]. One practical 
predictive maintenance approach is based on the trip coil 
current. 

The trip coil is an electromagnetic actuator which 
when energized causes an armature to strike and release 
the trip latch. It can be seen therefore, that while current 
flowing through the coil affects a force upon the armature, 
the movement of the armature through the coil generates 
an electromagnetic field in the coil, which in turn has an 
effect upon the current flowing through it [4]. The 
method identifies the critical time instants in the trip coil 

current, to be used for diagnostic analysis [6-7]. The 
shape of the coil current characterizes the operating 
health of the breaker to a greater extent. The shape is 
influenced by both the electrical parameters of the control 
circuit and the mechanical movement of the armature. 
The characteristic behavior of the trip coil in a circuit 
breaker must be analyzed and modeled before the trip coil 
can be predictive maintenance. [8-10] 

We address a model-based fault detection framework 
for vacuum circuit breaker by trip coil analysis in this 
paper. At first, we build the electromagnetic model of the 
trip coil. Secondly, we introduce the algorithm of abrupt 
changes detection to get the key points and the DTW 
algorithm to compute the similarity value of the trip coil 
current between the test data and the theoretical results. 
At last, if the similarity value is larger than the threshold 
value, comparison concludes that a fault has occurred or 
the trip coil has some potentially hazardous effects. The 
results of experiment show the diagnosis methodology is 
accurate and reliable. Such a model-based fault detection 
framework helps to increase the reliability and 
availability of the vacuum circuit breaker by reducing the 
number of shutdowns that are necessary for systematic 
maintenance. 

II.  THE DYNAMIC MODEL OF TRIP COIL 

The electrical schematic of the ideal trip coil is given 
in Fig.1. The trip coil has an inductance L(x) and a 
resistance R. The voltage u applied to the coil results in a 
current i governed by the differential equation [3-4]. The 
trip coil has an inductance L(x) and a resistance R in 
series. The voltage u is applied to the coil results in a 
current i governed by the equations (1)-(4). The dynamic 
model of the trip coil in a vacuum circuit breaker is 
presented by means of solving these functions. Table 1 is 
these variables in representation. 

 

Manuscript received May 10, 2013; revised June 15, 2013; accepted
July 20, 2013. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 251

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.1.251-257



 
Figure.1 An electrical schematic of the ideal trip coil. 

TABLE I.   
VARIABLES REPRESENTATION IN THE DYNAMIC MODEL OF TRIP COIL 

Variables Variables Representation 

x an effective displacement of the armature 

L(x) inductance of the trip coil with the armature displacement x

R resistance of the trip coil 

i the trip coil current 

u supply voltage of the trip coil current 

m mass of the armature 

k coefficient of the spring rigidity 

Fe electrodynamic force of the trip coil 

v the armature velocity 

a the armature acceleration 

f0 the friction force of the armature movement 

t0 the time when supply voltage u being applied 

t1 the time when the coil current starts rising 

t2 The time that end of armature movement 

 

dx
xdLvi

dt
dixLRiu )()( ++=

                         (1) 
The balance equation of forces acting on the armature 

of a mass m is as follows:   
                      

dt
dvmfkxFe =−− 0

                          (2)                                                                                                      
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The simulation of the close coil is performed by means 

of the Matlab 2012 with Simulink(Fig. 2). A simulation 
model is made in Simulink basing on Equ.1-Equ.4. This 
model is used to simulate the mathematical model of the 
close coil. The simulation results in obtaining time curves 
of the coil current i. The course of current i changes over 
time displays the way in which the electromagnetic force 
of the coil is controlled. The simulation curve is shown in 
Fig.3. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.2  Simulation model 

 
Figure.3  Result of simulation 

III.  A MODEL-BASED FAULT DETECTION FRAMEWORK 

The problem of fault detection for a trip coil in VCB 
involves two aspects. Firstly, the detection of failures 
should be achieved. Secondly, the detection of smaller 
faults, which affect a trip coil without causing it to stop. 
And this is also required to prevent the subsequent faults. 
Both faults and failures in a trip coil can be approached in 
the abrupt change detection [11-12]. Algorithm of abrupt 
changes detection is the core of the fault detection 
framework.  

Algorithm of abrupt changes detection is a powerful 
new tool for determining whether a change has taken 
place.  It is capable of detecting subtle changes by three 
steps, which are data smoothing, change-point detection, 
and potential hazards detection. Data smoothing is used 
to eliminate "noise" and extract real trends and patterns of 
the trip coil current. Change-point detection is to discover 
time points at which properties of the trip coil current 
change. Finally, potential hazards detection is to scan for 
potential hazards of the trip coil and accidents in a 
vacuum circuit breaker can be avoided. 

A.  Data Smoothing 
An input sampling sequence of the trip coil current 

with a fixed sampling rate is },,,{ 21 tiiii …= . Data 
smoothing produces a "smooth" set of values from the 
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trip coil current which has been contaminated with noise.  
The LOWESS smoothing is introduced in this abrupt 
changes detection. LOWESS smoothing is an 
improvement over least squares smoothing when the data 
are not equally spaced. The following is a brief sketch of 
the LOWESS algorithm [13-15].  

• Step1: Choose a fraction f of the data points which 
is to be used for computation of each fitted value. 
Let b be the nearest integer to f.t/2 where t is the 
size of the data i. In other words, 2.b is the number 
of points around each element of i, to be used for 
fitting. We choose f=0.01.  

• Step2: Let di be the distance from ix to its bth 
nearest neighbor along the i axis and T be the 
weight function. Then the weight wk given to the 
point (k, ik) when computing a smoothed value at 
ix, is as follows: 
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• Step3: To compute the fitted value at ix weighted 
least squares fit is obtained. 
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And the smoothing set is },,,{ 21
s
t

sss iiii …= . 

B.  Change Points Detection (CPD) 
We now describe the Change Points Detection (CPD) 

process that guarantees that the required change points 
are got. In the proposed method, we have selected 
extrema information as the feature vector. To reduce the 
detection time, the extrema are extracted from the 
smoothed data. This procedure consists of three 
components, one accounting for the finding extrema 
process, one accounting for computing Euclidean 
distances among all extrema and the other accounting for 
the clustering problem of the Euclidean distances.  

In the first component, we want to determine all 
extrema of given trip coil current data.  To do this, we use 
Golden Section Search, which is an elegant and robust 
method of locating all extrema in trip coil current data. 
The book [16] is shown that this method is available for 
use. We can get the set of extrema  

},,,,,,{ """ s
q

s
p

s
k

s
j

e iiiii = . 
In the second component, we compute Euclidean 

distances between two of closet extrema. For example, in 
time p, the Euclidean distance between s

pi  and s
qi  is dp. 

22 )()( s
q

s
pp iiqpd −+−= . 

And we can get the set of Euclidean distances 
},,,,{ """ pj ddd = . 

In the third component, in order to detect the key 
change points, the set of Euclidean distances d is 

processed using clustering method. Euclidean distances d 
are grouped into two clusters: “change points” and 
“normal points”. K-Means is a rather simple but well 
known algorithm for grouping objects, clustering. Using 
the kernel K-Means clustering algorithm, the elements in 
d are clustered into “change points” cluster icp and 
“normal points” cluster inp. 

},,{},,{ """" p
p

pcp idi ⎯→⎯=  
},,{},,{ """" j

j
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The Change Points Detection algorithm is illustrated in 
Table 2. 

C.  Dynamic Time Warping Fault Detection 
Dynamic time warping (DTW) is an algorithm for 

measuring similarity between two sequences which may 
vary in time or speed. DTW has been applied for the data 
which can be turned into a linear representation. And 
DTW can be used in partial shape matching application. 
For details of DTW algorithm, please see [17-18]. 

Suppose we have two current series, an input sequence 
Q of length n, and a temple sequence C of length m, 
where 

Q = q1,q2,…,qi,…,qn       
C = c1,c2,…,cj,…,cm  
To align these two sequences using DTW, we first 

construct an n-by-m matrix where the (ith , jth ) element of 
the matrix corresponds to the squared distance,  

d(qi , cj) = (qi +cj)2                                   (9) 
which is the alignment between points qi and cj. To 

find the best match between these two sequences, we 
retrieve a path through the matrix that minimizes the 
cumulative total distance between them. In particular, the 
optimal path is the path that minimizes the warping cost 

⎪⎩
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min),(                   (10) 

Where wk is the matrix element (i,j)k that also belongs 
to kth element of a warping path, a contiguous set of 
matrix elements that represent a mapping between Q and 
C. 

This warping path can be found using dynamic 
programming to evaluate the following recurrence 

)}1,(),,1(),1,1(min{),(),( −−−−+= jirjirjirjidjir
where d(i,j) is the distance found in the current cell, and 
r(i,j) is the cumulative distance of d(i,j) and the minimum 
cumulative distances[19-21]. 

In this type of fault detection technique, the theoretical 
data is converted to templates. The diagnosis process 
consists of matching the test data with stored templates. 
A fault is detected if the distance is larger than the 
threshold value. The distance is based upon dynamic 
programming. This is called the DTW fault detection.  

The implementing processes of the fault detection 
method are illustrated in Fig 4. 
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TABLE II.   
CHANGE POINTS DETECTION ALGORITHM 

Step ALGORITHM : Change Points Detection 
1: Input: 

2: trip coil current i; 

3: Output: 

4: change points icp; 

5: Functions: 

6: LOWESS smoothing function: LOWESS() 

7: Locating all extrema function: extrema () 

8: Computing Euclidean distances function: Euclidean () 

9: K-Means clustering function: K-Means () 

10: Algorithm: 
11: Smoothed Data is= LOWESS(i); 
12: Smoothed Data extrema ie= extrema (is); 
13:     Euclidean distances d= Euclidean(ie); 
14:     change points icp = K-Means (d); 

IV.  EXPERIMENT 

The experimental system includes hardware 
composition and software system used for trip coil 
current signal acquisition and fault detection software. 
The system offers PC-Based oscilloscope that have the 
performance and features necessary to monitor trip coil 
current waveform data.  

ACS712 is a linear current sensor. The device consists 
of a precise, low-offset, linear Hall sensor circuit. 
Applied current flowing through this copper conduction 
path generates a magnetic field which is sensed by the 
integrated Hall IC and converted into a proportional 
voltage. Device accuracy is optimized through the close 
proximity of the magnetic signal to the Hall transducer. A 
precise, proportional voltage is provided by the low-
offset, chopper-stabilized BiCMOS Hall IC, which is 
programmed for accuracy after packaging. The output of 
the device has a positive slope when an increasing current 
flows through the primary copper conduction path, which 
is the path used for current sensing.[22] 

The data acquisition platform uses DSO3064 digital 
oscilloscope which has 4 Channels Oscilloscope,60MHz 
Bandwidth, 200MS/s sampling rate and 10k--16M 
memory depth. The software environment consists of 
Matlab and a newly developed fault diagnosis library. 
(Fig.5) 

 

 
Figure.4 the implementing processes of the fault detection method 

 

 
Figure.5 Experimental system 

A.  Change Points Detection Experiment 
We sample the sequence of the trip coil current with a 

fixed sampling rate 50 kHz. The sequence is shown in Fig. 
6(a). In this sequence, the true signal amplitudes changes 
rather smoothly as a function of the time values, whereas 
many kinds of noise are seen as rapid, random changes in 
amplitude from point to point within the signal. We 
attempt to reduce the noise by LOWESS smoothing. In 
this smoothing, the sequence of the trip coil current is 
modified so that individual points that are higher than the 
immediately adjacent points are reduced, and points that 
are lower than the adjacent points are increased. This 
leads to a smoother sequence and it is shown in Fig. 6(b). 
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Figure.6 LOWESS smoothing 

The CPD algorithm requires the identification of all 
local extrema in the smoother sequence. Fig.7 shows 
performance results of the algorithm for identification of 
extrema. 

 
Figure.7 Identification of extrema 

By computing the Euclidean distances between these 
extrema, we obtain the distance sequence shown in Fig.8. 

 
Figure.8 Distance sequence 

Cluster distance sequence into two disjoint subsets 
which are shown in Fig.9.We get the key points in the 
sequence of the trip coil current by the change point’s 
subset in Fig.10. 

B.  DTW Fault Detection Experiment 
This experiment presents the analysis of current signals 

to identify and quantify common faults from a trip coil 
based on DTW algorithm. Experimental data sets of 
normal signal and abnormal signal have been studied 
using DTW algorithm. We can obtain better fault 
detection and diagnosis results, as depicted in Fig. 11 and 
12. Results show that the method is effective. 

 

 
Figure.9 K-Means Clustering 

 
Figure.10 the key points in the sequence of the trip coil current 

 
Figure. 11 Abnormal signal 
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V.  CONCLUSIONS 

This paper summarizes the key features of the model-
based fault detection framework for vacuum circuit 
breaker and the methodology scheme is proposed. At first, 
the mathematical model has been developed for the 
dynamic characteristics of the close coil. The results of 
simulation show that the accuracy of the dynamic-state 
model equations is satisfactory. Secondly, the algorithm 
of change points detection for applications in fault 
detection for a trip coil is presented. The algorithm 
includes three parts which are data smoothing, extrema 
search and K-Means clustering. Fault analysis processing 
is based on dynamic time warping technology. Thirdly, 
fault analysis processing is based on dynamic time 
warping technology and the change points detection 
algorithm. Experimental results prove the effectiveness of 
the methodology in the vacuum circuit breaker fault 
detection. 
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