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Abstract—Recently, spatial principal component analysis of 
census transform histograms (PACT) was proposed to 
recognize instance and categories of places or scenes in an 
image. An improved representation called Local Difference 
Binary Pattern (LDBP) also was proposed and performed 
better than that of PACT. LDBP is based on the 
comparisons between center pixel and its neighboring 
pixels, but the relationship among neighbor pixels is not 
considered. In this paper, we propose to combine Local 
Neighbor Binary Pattern (LNBP) with LDBP to construct a 
spatial representation for scene recognition, because that 
LNBP can provide complementary information regarding 
neighboring pixels for LDBP. Experiments on widely used 
datasets demonstrate that the performance of image 
recognition is further improved with proposed method.  
 
Index Terms—scene recognition, spatial pyramid matching, 
local binary pattern 
 

I.  INTRODUCTION 

Scene recognition is an important task in computer 
vision and has attracted considerable attention in recent 
years, it refers to the problem of recognizing the 
semantic category (e.g. bedroom, mountain, or coast) of 
a single image [1]. Scene recognition is widely used in 
many aspects, such as robotics path planning, video 
content analysis, content-based image retrieval, and 
video surveillance [2]. 

Compared with object recognition, scene recognition 
is more challenging because of ambiguity and variability 
in the content of scene images, which is further 
worsened by the variations in illumination and scale. 
Numerous efforts have been made to solve this kind of 
problem. Oliva and Torralba [3] proposed spatial 
envelope that represented the dominant spatial structure 
(naturalness, openness, roughness, expansion, 
ruggedness) of a scene, which achieved high accuracy in 
recognizing natural scenes. However, it performed bad 
about indoor scenes.  Hoffman [4] put forward 
probabilistic latent semantic analysis (pLSA) model to 
perform probabilistic mixture decomposition. Bag of 
visual words (BoW) model [5, 6] becomes popular in 
recent years. BoW model represents an image as an 
unordered collection of local features, and has 
demonstrated impressive levels of performance [2]. But 

the spatial information is neglected in BoW model. To 
improve the BoW model, Lazebnik et al. [7] 
incorporated spatial information by using spatial 
pyramid matching (SPM) scheme, and uses scale in 
variant feature transform (SIFT) [8] descriptor as the 
local feature. SIFT becomes the most popular descriptor 
in recent years [5, 7, 9, 10, 16, 19, 20, 21, 22, 23, 24, 25, 
26]. Yang et al. [9] proposed linear SPM based on sparse 
coding (ScSPM) which developed an extension of the 
SPM method by generalizing vector quantization to 
sparse coding of SIFT descriptors, and followed by 
multi-scale spatial max pooling. ScSPM remarkably 
reduces the complexity of training and testing task. Gao 
et al. [19] proposed a Laplacian sparse coding method, 
which exploited the dependence among the local 
features to alleviate the sensitiveness of quantization. 
Gemert et al. [10] introduce visual word ambiguity to 
model a soft assignment instead of hard assignment, 
profiting in high-dimensional feature spaces and receive 
higher benefits when increasing the number of image 
categories.  

Research on non-parametric nearest neighbor (NN) 
classification has also made progresses in past years. 
Boiman et al. [20] proposed a trivial NN-based classifier, 
which was called Naive-Bayes Nearest-Neighbor 
(NBNN). NBNN computes direct image-to-class 
distances without descriptor quantization. Wang et al. 
[21] learned metric for each class using Mahalanobis 
distance. Behmo et al. [22] relaxed the incriminated 
assumption in NBNN and solve the parameter selection 
problem by hinge-loss minimization. Tuytelaars et al. 
[23] proposed the NBNN kernel which learned the 
classifier in a discriminative setting. 

Although SIFT-based BoW model with SPM achieves 
remarkable performance, the computational complexity 
in both space and time is still a burden. Paris et al. [29, 
30] combined Histogram of Local Binary Pattern with 
BoW, which outperforms SIFT-based methods. Recently, 
Wu and Rehg [1, 11] proposed spatial principal 
component analysis of census transform histograms 
(PACT), or Census Transform histogram (CENTRIST), 
which is an effective representation that fulfills the need 
for recognizing categories of places and scenes. 
CENTRIST captured local structures of an image by the 
Census Transform [13] and incorporated global 
structures with SPM. CENTRIST is superior to BoW 
model on scene recognition task for its simplicity and 
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Figure 4.  Illustration of the level 2, 1, and 0 spatial pyramid split of 
an image, from [1]. 

 
Figure 2.  An example of census transformed image.  

 
Figure 3.  Illustration of constraints between CT values of neighboring 

pixels. 

 
Figure 1.  The Census Transform operation  

efficiency. Hu et al. [12, 28] utilize a multi-level kernel 
machine to alleviate the difference existing in various 
levels. Meng et al. [2] introduced local difference 
magnitude information as complement and built spatial 
Local Different Binary Pattern (LDBP) representation.  

CENTRIST and LDBP have achieved excellent 
performances. However, both of them are based on the 
comparisons between center pixel and neighbors; the 
relationship among neighbors is ignored. Under a large 
amount of conditions, there exist different local 
structures that have the same LDBP code. In such cases, 
the different local patterns are not clearly represented 
and cannot be differentiated. Some important 
information with respect to edges and gradients is lost. 
This information is significant for describing the 
structure of scenes. Consequently, different patterns are 
assigned into the same category, which decreases the 
discriminative power. To address this problem, Local 
Neighbor Binary Pattern (LNBP) [27] was proposed as 
an extension of local binary pattern. LNBP is a 
complement of CENTRIST and LDBP for describing 
local structures, and therefore could improve scene 
recognition task. We therefore propose to combine 
LDBP with LNBP, and it can preserve the advantages - 
easy to implement, nearly no parameter to tune and fast 
to evaluate. 

The rest of this paper is organized as follows. Section 
II briefly describes spatial PACT and spatial LDBP. In 
Section III we introduced LNBP, and our proposed 
image representation is presented. In section IV, 
Experimental results on common datasets are given. A 
conclusion of this paper is drawn in Section V. 

II.  RELATED WORKS 

A.  Census Transfrom and Spatial PACT 

 
Census Transform (CT) is a non-parametric local 

transform originally designed for establishing 
correspondence between local patches [13].  Census 
transform compares the intensity value of a pixel with its 
eight neighboring pixels, as illustrated in Fig. 1. If the 
center pixel is bigger than (or equal to) one of its 
neighbors, a bit 1 is set in the corresponding neighbor 
location. Otherwise a bit 0 is set, which only has a 
different bit order from the local binary pattern (LBP) 
code 1,8LBP  [18]: 
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where P is the number of neighboring pixels, i.e. 8. 
Census transform is robust to illumination changes, 

gamma variations, etc. As a visualization method, a 
census transformed image is created by replacing a pixel 
with its CT value. Shown by the example in Fig. 2, the 
census transform retains global structures of the picture 
(especially discontinuities) besides capturing the local 
structures. 

One important property of the transform is that CT 
values of neighboring pixels are highly correlated [1]. In 
the example of Fig. 3, the Census Transform for pixels 
valued 36 and 37 are depicted in right, and the two 
circled bits are both comparing the two center pixels (in 
different orders). Thus the two bits must be strict 
complement to each other if the two pixels are not equal. 
More generally, bit 5 of CT(x, y) and bit 4 of CT(x + 1, 
y) must be complementary to each other, if the pixels at 
(x, y) and (x+1, y) are not equal. Generally, there are 
eight such constraints between one pixel and its eight 
neighboring pixels. 

Besides these deterministic constraints, there also 
exist indirect constraints. For example, in Fig. 3, the 
pixel valued 32 compares with both center pixels when 
computing their CT values (bit 2 of CT(x, y) and bit 1 of 
CT(x + 1, y)). Depending on the comparison results 
between the center pixels, there are probabilistic 
relationships between these bits. 

 Wu et al. [1, 11] proposed Principal component 
Analysis of Census Transform histograms (PACT), that 
is, the principal component analysis (PCA) operation 
performs on the CT histograms, to remove these 
correlation effects, and to get a more compact 
representation. Because PACT can only encode global 
shape structure in a small image patch, in order to 
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Figure 6.  Illustration of constraints between LMBP values of 
neighboring pixels.  

 
Figure 7.  An example of LMBP transformed image 

Figure 5.  Coding process of LSBP and LMBP.  

Figure 8.  Illustration of the level 2, 1, and 0 spatial pyramid split of
an image.(referred from [2]) 

capture the global structure of an image in larger scales, 
a spatial PACT representation based on the SPM scheme 
was proposed. A spatial pyramid, which divides an 
image into segments and concatenates correspondence 
results in these regions, encodes roughly spatial structure 
of an image and usually improves recognition rate. The 
level 2 split in a spatial pyramid divides the image into 4 
× 4 =16 blocks. They also shift the division (dash line 
blocks) in order to avoid artifacts created by the non-
overlapping division, which makes a total of 25 blocks 
in level 2. Similarly, level 1 and 0 have 5 and 1 block, 
respectively. The image is resized between different 
levels so that all blocks contain the same number of 
pixels. These blocks are shown in Fig. 4. PACT in all 
blocks is then concatenated to form an overall feature 
vector of 1240 dimensional.  

B.  Local Difference Binary Pattern  and Spatial LDBP 
Census transform concerns whether a center pixel is 

higher or lower than its neighboring pixels, resulting in 
some information loss of intensity contrast. It is not 
enough to discriminate different local structures using 
only census transform [2]. Meng et al. introduced local 
difference to better describe local structures. 

Local difference is defined as the intensity difference 
between a center pixel and its neighboring pixels in a 
3×3 image patch. Given a center pixel cI and its 
neighbors iI , i=0,1, …, 7. The local difference 
between cI and iI can be computed by ici IId −= . Then 
the local difference id is decomposed into two 
components: 
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where is is the sign and im is the magnitude of id . 
Obviously, the sign and magnitude components contain 
complementary information of original local difference.  

The sign and magnitude components are both 
converted into binary codes. The positive and negative 
elements in sign component are coded as 1 and 0. The 8-
bit code is converted into a base-10 number called Local 
difference Sign Binary Pattern (LSBP). LSBP is 
equivalent to Census Transform. 

The Local difference Magnitude Binary Pattern 
(LMBP) is defined as follows: 
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where ijm  is im  of the jth pixel, N is the number of 
pixels (excluding boundaries) in Image, and T is the 
mean im of the whole image. Finally, both LSBP and 
LMBP transform a 3×3 image block into an integer in [0, 

255]. The coding process of LSBP and LMBP is shown 
in Fig. 5. 

As  shown in Fig. 6, the LMBP values of neighboring 
pixels are highly correlated. Similar to CT, Bit5 of 
LMBP at (x, y) and bit 4 of LMBP at (x+1, y) must be 
the same. There are eight such constraints between one 
pixel and its eight neighboring pixels. Applying the 
constraints to all pixels of an image, we can conclude 
that the number of pixels whose LMBP value's bit 5 is 1 
must be equal to the number of pixels whose LMBP 
value's bit 4 is 1, and vice versa. 

For visualization, a LMBP transformed image is 
created by replacing a pixel with its LMBP value. 
Shown by the example in Fig. 7, the LMBP transform 
also retains global structures of the picture. 

Because bins are strong correlated with each other in 
LSBP and LMBP, PCA is utilized to reduce the 
dimensionality. The LSBP and LMBP histograms 
perform PCA separately and then are concatenated to 
form the final feature vector, namely LDBP histogram.  
PACT only uses the sign component of LDBP. 

The spatial pyramid scheme [2] is given in Fig. 8, the 
level 2 split in a spatial pyramid divides the image into 
16 non-overlapping blocks. Similarly, level 1 has 4 
blocks and level 0 has 1 block, respectively. The image 
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Figure 10.  Illustration of constraints between LNBP values of 
neighboring pixels. 

Figure 9.  Example of complementary information from LNBP. 

is resized between different levels so that all blocks 
contain the same number of pixels. In total, there are 21 
blocks for each image. The vector representations in all 
blocks are concatenated to form an overall feature vector 
for each image as the global image representation. The 
dimension of final feature vector is 840.  

III.  PROPOSED METHOD 

A.  Local Neighbor Binary Pattern 
LDBP are based on the comparisons between center 

pixel and its neighboring pixels, both the sign part and 
magnitude part. The relationship between neighbor pixel 
and center pixel is well described. However, there is 
some information loss concerning the relationship of 
neighbor pixels because the relationship of neighbor 
pixels is neglected.  

Under a large number of circumstances, there exist 
different local structures that have the same LDBP code. 
In such cases, the local pattern is not clearly represented 
and cannot be differentiated. According to our statistics 
from popular datasets, there are more than 15% pixels in 
scene images belonging to this category. These local 
structures may contain important information for scenes, 
for example, edges and gradients; it is also possible that 
some of them are smooth areas. Nevertheless, in LDBP, 
these distinct patterns are treated as the same one. LDBP 
has no discriminative ability for these local structures. 
Therefore, it is necessary to distinguish these different 
local structures that LDBP is not capable to differentiate 
with. A new descriptor is demanded to characterize such 
local patterns. 

To address this problem, we propose an extension of 
local binary pattern, which only reflects local structure 
of neighboring pixels. The Local Neighbor Binary 
Pattern (LNBP) is defined as follows: 
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LNBP is also computed on a 3×3 local neighborhood. 
Note that LNBP is different with Multimodal Invariant 
Local Binary Pattern (MILBP) [31], Local Gradient 
Pattern (LGP) [32], Modified Census Transform (MCT) 
[14], and Improved LBP (ILBP) [15]. Both MILBP and 
LGP use the absolute value of difference, therefore we 
cannot know whether the intensity of one pixel is higher 
than other ones. However, LNBP compares neighbor 

pixels with the mean of neighbors. Therefore we can 
know the relations of some neighbor pixels. This is the 
advantage of LNBP over MILBP or LGP. Compared 
with MCT and LBP, The center pixel is discarded to 
eliminate the influence of its intensity so that we can 
concentrate on the relationship of neighboring pixels. 
The threshold is set as the mean intensity value of eight 
neighbor pixels. Because the threshold is only related to 
neighboring pixels, the neighbor pattern can be 
described better. The local patch is transformed into an 
integer in [1, 255]. Note that 0 is not possible for that at 
least one neighbor pixel is larger than or equal to the 
mean value.  

LNBP can provide useful complementary information 
for LSBP and LMBP. Fig. 9 shows an example which 
abounds in scene images. The patterns of the two 
example patches are different. However, they share the 
same LSBP and LMBP code. In other words, we cannot 
discriminate these patches only by LSBP and LMBP. 
With our LNBP code, the patches can be distinguished 
as different pattern. In the example we can know that the 
neighbors of block (b) are the same, while the neighbors 
of block (a) are different in intensities. LNBP can be 
used to describe the local structures about which 

neighbors are larger than others. This also provides some 
information about gradient— how the intensity changed 
and the direction of gradient. LDBP may also provide 
this information for some local structures. But LDBP 
does not help much for the patches like those in Fig. 9. 
LNBP can always tell us such information. If the LNBP 
codes are all of 1, it tells us that this patch has neighbors 
having the same intensity. Therefore LNBP can provide 
useful complementary information for LDBP. 

There are correlations between LNBP values. As 
shown in Fig. 10, when 15 and 20 are both smaller than 
the mean intensity in the neighboring patches, the bit 2 
and bit 3 of the left patch are the same as well as the bit 
1 and bit 2 in the right patch. Moreover, when the mean 
value is between 15 and 60, the bit 2 and bit 8 of the left 
block are identical to the bit 1 and bit 7 of the right block. 

The transitive property of such constraints also makes 
them propagate to not only neighbor pixels, but also 
further ones. For example, in Fig. 10, the pixels valued 
15 (coded as 0) and 55 (coded as 1) can be compared 
using various paths of comparisons. One path is 15 < 20 
< 30 < 40 < 50 < 55, the other is 15 < 20 < 25 < 35 < 45 
< 55. Similarly, although no deterministic comparisons 
can be deduced between some pixels (e.g. 55 and 60), 
probabilistic relationships can still be obtained. The 
propagated constraints make LNBP values and 
histograms implicitly contain information for describing 
global structures, just as CENTRIST. 

206 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER



 
Figure 12.  Sample images of 8 scenes. The categories are suburb, 

industrial, coast, forest, highway, inside city, mountain, open 
country, street, and tall building, respectively (from left to right, and 

from top to bottom). 

 
Figure 11.  An example of LNBP transformed image. 

To visualize the algorithm’s effect, the LNBP 
transformed images are created by replacing a pixel with 
its LNBP transformed value. The examples shown in Fig. 
11 demonstrate that LNBP, as well as LSBP and LMBP, 
not only captures local structures, but also retains the 
global structural information, especially discontinuities. 

B.  Spatial Image Representation by Combining LDBP 
with LNBP 

A histogram of LNBP for an image or image block is 
computed. We kept the bin of zero, whose value is 
always 0. The dimension of LNBP histogram is 256. For 
each pair of adjacent pixels, they share four neighbors. 
The bins of LNBP histograms are implicitly correlated 
with each other. PCA was used to reduce the 
dimensionality of LNBP histogram to 20. Then the 
LDBP histogram was concatenated with the compressed 
LNBP histogram, and the dimension of the final feature 
vector is 60.  

In our experiments the performance of 40 
eigenvectors (an average of 13 or 14 eigenvectors for 
LSBP, LMBP and LNBP) was also evaluated. 
According to [2], when the number of eigenvectors is 
smaller than 20, the performance drops dramatically. In 
such case, the recognition rate was almost the same as 
spatial LDBP. Compared with 20 eigenvectors for both 
LSBP and LMBP, when there are only 13 or 14 
eigenvectors for LSBP, LMBP, and LNBP, the benefit 
provided by LNBP is counteracted by the information 
loss of dimension reduction.  

The spatial pyramid matching scheme in Fig. 8 is 
adopted. The final feature vector for an image is 1260 
dimension. We used support vector machine (SVM) for 
classification. 

IV.  EXPERIMENTS 

In this section, our approach is evaluated on three 
benchmark datasets: (1) 8 scene categories dataset [3], (2) 
15 class scene category [7], and (3) 8 class sports event 
[16]. In each dataset, the available data are randomly 
split into a training set and a testing set following the 
published protocols on these datasets. The random 
splitting is repeated 5 times, and the average accuracy 
and standard deviation is reported.  

In the experiments, following the same experiment 
procedure of the CENTRIST [1], only the intensity 
values and ignore color information was used. We 

normalized the LSBP, LMBP, and LNBP histograms 
and PCA eigenvectors such that they have zero mean 
and unit norm. LIBSVM [17] was utilized as the 
classifier and Radial Basis Function (RBF) kernel with 
recommended parameters )2,8(),( 7−=γC  in [1] was 
adopted. 

A.  The 8 Class Scene Category Dataset 

The 8 class scene category dataset contains total 2688 
images with 8 outdoor categories. Images are 256x256 
in resolution, varying from 260 to 360 images in each 
category. It is a subset of the 15 scene category dataset. 
These categories are coast (360 images), forest (328 
images), mountain (274 images), open country (410 
images), highway (260 images), inside city (308 images), 
tall building (356 images), and street (292 images). Fig. 
12 gives example images of the 8 categories. This 
dataset is used to investigate the usefulness of LNBP. 
Different schemes, include LSBP, LDBP, and LDBP 

TABLE I.   
RECOGNITION RATES ON THE 8  CALSS SCENE DATASET 

Method Rates(%) 

LSBP [2] 75.53 

LDBP [2] 79.18 

LDBP+LNBP 81.36 

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 207

© 2014 ACADEMY PUBLISHER



 
Figure 13.  Sample images of 15 scenes. The categories are bedroom, 
suburb, industrial, kitchen, living room, coast, forest, highway, inside 

city, mountain, open country, street, tall building, office and store, 
respectively (from left to right, and from top to bottom). 

 
Figure 14.  Confusion matrix from one run for 15 class scene category 

dataset recognition experiment. 

combined with LNBP are compared. No PCA operation 
or SPM scheme were used on this dataset.  

In the experiments, 100 images are drawn in each 
category for training, and the remaining images for 
testing. The SVM with RBF kernel was utilized to 
classify the images. The recognition results are shown in 
Table I. We can see that LNBP provides useful 
information and improves the recognition. 

B.  The 15 Class Scene Category Dataset 

The 15 class scene category dataset contains total 
4485 images with 15 categories. Images are about 
300×250 in average resolution, varying from 210 to 410 
images in each category. This dataset contains a wide 
range of scene categories in both indoor and outdoor 
environments (scene classes including office, store, coast, 
etc. Fig. 13 gives example images of all 15 categories). 
Also, this is one of the most complete scene category 
dataset used in the literature so far. 

According to previous works [1, 2, 11], the first 100 
images in each category are used to calculate the PCA 
eigenvectors. The recognition results are shown in Table 
II. From that table we can see that our method achieves 
the highest recognition rate. 

Fig. 14 shows a confusion matrix from one run on this 
dataset using our approach. The biggest confusion 
happens between category pairs such as bedroom/living 
room, industrial/store, and coast/open country, which 
coincide well with the confusion distribution in [1, 2, 7, 
11]. Our method achieves high recognition rates on 
forest, office, and suburb. 

Linear SVM classifiers are also applied to the scene 
dataset to test the PCA compact feature and the non-
PCA concatenated histograms. The results are shown in 
Table III. The compact feature achieves the accuracy of 
83.02%, obviously higher than 81.8% of spatial LDBP 
[2]. The difference in performance of RBF kernels and 
linear kernels is quite small. However, the performance 
of original non-PCA concatenated histogram on linear 
classifier is very poor. Therefore it is the PCA operation 
that turns the histograms into compact features. PCA is 
necessary. Because of the fast testing speed of linear 
classifiers and small performance difference, linear 
SVM classifiers could be used to ensure real-time 
classification. 

TABLE II.   
RECOGNITION RATES ON THE 15  CALSS SCENE DATASET 

Method Feature Type Rates(%) 

SPM [7] 400 cluster centers 81.40 ± 0.50

ScSPM [8] 400 cluster centers 80.28 ± 0.93

Spatial PACT [1] CENTRIST, 40 eigenvectors 83.88 ± 0.76

Spatial LDBP [2] LDBP, 40 eigenvectors 83.58 ± 0.99

Our method LDBP+LNBP, 60 eigenvectors 84.09 ± 0.35

TABLE III.   
RESULTS OF DIFFERENT FEATURE AND CLASSIFIER ON THE 15 CALSS 

SCENE DATASET  

Feature Type Classifier Rates(%)

LDBP+LNBP, 60 eigenvectors Non-linear 84.09 

LDBP+LNBP, 60 eigenvectors Linear 83.02 

LDBP+LNBP, non-PCA Linear 72.24 
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Figure 16.  Confusion matrix from one run for 8 class event 
dataset recognition experiment . 

 
Figure 15.  Sample images of 8 sport events. The categories are 

badminton, bocce, croquet, polo, rock climbing, rowing, sailing, and 
snowboarding (from left to right, top to bottom). 

C.  The 8 Class Event Dataset 

The event dataset contains images of eight sports: 

badminton, bocce, croquet, polo, rock climbing, rowing, 
sailing, and snowboarding. The images have high 
resolution (from 800x600 to thousands of pixels per 
dimension). The number of images in each category 
varies from 137 to 250. We used this dataset for scene 
recognition purposes only. Fig. 15 shows the example 
images. 

Also, following the previous works of spatial PACT 
and spatial LDBP, we randomly select 70 images per 
category for training, and 60 ones for testing. The 

training images in each train/test split are used to 
compute the eigenvectors. The recognition results are 
shown in Table IV. Our method achieves best results 
outperforming spatial PACT and spatial LDBP. 

We also compared the PCA feature with non-PCA 
concatenated histograms on linear classifier, and the 
results are similar to the experiment on the 15 scenes 
datasets, as is shown in Table V. 

Fig. 16 shows the confusion matrix of one run on this 
dataset. The biggest confusion happens between bocce 
and croquet, which is coincident with previous works. 
From the example images in Fig. 15 we can see that the 
two categories are very similar in human vision. High 
recognition rates are achieved for rock climbing, rowing 
and sailing categories. 

V.  CONCLUDSION 

In this paper, we propose to combine LNBP with 
LDBP to build an effective representation for scene 
images. LNBP provides extra complementary 
information with respect to local neighbor structures, 
which is neglected in LDBP. The new feature provides 
stronger discriminative ability for local structures in 
improving scene recognition. Experiments conducted on 
common benchmark datasets demonstrate that our 
proposed scheme outperforms spatial PACT or spatial 
LDBP on scene recognition task. Moreover, proposed 
method preserves the advantages of spatial PACT and 
spatial LDBP. It is easy to implement, has nearly no 
parameter to tune. In all the datasets we experimented 
with, the difference in recognition rates between these 
two kernel types are less than 2%. This indicates that 

TABLE IV.   
RECOGNITION RATES ON THE 8 CALSS EVENT DATASET  

Method Feature Type Rates(%) 
Spatial PACT [1] CENTRIST, 40 eigenvectors 78.25 ± 1.27

Spatial LDBP [2] LDBP, 40 eigenvectors 82.96 ± 1.51

Our method LDBP+LNBP, 60 eigenvectors 83.66 ± 0.93

 

TABLE V.   
RESULTS OF DIFFERENT FEATURE AND CLASSIFIER ON THE 8 CLASS 

EVENT DATASET 

Feature Type Classifier Rates(%)
LDBP+LNBP, 60 eigenvectors Non-linear 83.66 

LDBP+LNBP, 60 eigenvectors Linear 81.88 

LDBP+LNBP, non-PCA Linear 68.81 
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images from the same category are compact in the 
feature space. It works well on linear classifiers, thus is 
very fast for evaluation. 
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