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Abstract— This paper proposes a new fast method for iden-
tifying the mixing matrix based on a binary state mixture of
Gaussian (MoG) source model. First, a necessary discussion
for solving the mixing matrix detection is offered under
the multiple dominant circumstance. Second, a density
detection method is presented to improve the identification
performance. Simulations are given to demonstrate the
effectiveness of our proposed approach.

Index Terms— blind source separation (BSS); sparse com-
ponent analysisSCA; density detection; mixture of Gaussian
(MoG) model.

I. INTRODUCTION

As a result of the widely application in the area of
speech recognition, wireless communication and biolog-
ical medical signal processing, Blind Source Separation
(BSS) [1-6] is becoming one of the hottest spots in the
signal processing field. The linear model of BSS can be
stated as follows:

x(t) = As(t) + e(t) (1)

where t = 1, 2, ...T and A = [α1...αn] ∈ Rm×n is the
mixing matrix. The sample of sources s(t) ∈ Rn×1, the
observed signals sample x(t) ∈ Rm×1 and the white
Gaussian noise sample e(t) ∈ Rm×1. If m < n, which
means that the number of sources is greater than the
number of observed signals, then the separation problem
is degenerated to the Underdetermined Blind Source
Separation (UBSS) [7] problem. In this case, traditional
independent component analysis (ICA) cannot be directly
applied again. However, since signals are sparse in the
real environment or in the frequency domain through
Fourier or Wavelet transform, therefore we can solve the
UBSS problem using sparse component analysis (SCA)
[8]. According to the sparsity assumption of sources,
model (1) can rewrite as follows:

x(t) =
k∑
j=1

αi,(t)si,(t)(t) + e(t), ij(t) ∈ {1, 2, ...n} (2)

where t = 1, 2, ...T and k is the number of active source
components at each instant.

Typically, a two-stage ”clustering-then-l1-optimization”
approach is often used in SCA, which is included by
the mixing matrix estimation stage and sources recovery
stage. According to the difference of active components
number of sources, the problem of mixing matrix esti-
mation can be categorized into two types: k = 1 and
k > 1. To the one single dominant SCA problem [7]
(k = 1), several linear orientation-based algorithms [7-9]
are addressed to solve this single dominant SCA problem;
To the second case k > 1, this problem, which is called as
multiple dominant SCA problem [10-12], can be solved
by two steps: concentration hyperplanes clustering and
mixing vectors identification. Although these hyperplane
methods can effectively improve the precision of mixing
matrix identification, they may not be applied in practice
because of high computational costs. For overcoming
this problem, we propose a novel method to reduce the
time cost in the identification of A. First, we discuss the
geometrical distribution feature of the observed sample.
Second, we give a simple density detection method to
reduce the complexity of algorithm by avoiding traditional
concentration hyperplane clustering step.

This paper is organized as follows: we make an intuitive
and heuristic analysis of new algorithms in section 2.
The binary state mixture of Gaussians (MoG) mode [13]
is introduced in section 3. The complete algorithm is
given in section 4. Section 5 provides some numerical
simulations to demonstrate the effectiveness of our new
algorithm. Then we discuss and conclude in section 6.

II. THEORETICAL ANALYSIS OF THE
ALGORITHM

A. Evolutionary Algorithm

From the k-sparse mixture model of (2) , there are
c(c = Ckn) k-dimensional hyperplanes to the observed
data samples. And each column of lies in the hyperplanesn
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Figure 1. The scatter plot of observed signal samples on a unit 3-
dimensional space.

of q(q = Ck−1n−1) hyperplanes. By the normalization
process for each x(t), data samples are projected onto a
unit n-dimensional sphere (as is shown in Fig.1). In other
words, the directions of vectors in mixing matrix A can
be detected by the directions of data sample intersections.
Therefore, we can estimate the columns of mixing matrix
A by detecting these intersections instead of hyperplane
clustering.

Since the amplitude of sources is limited, then each
hyperplane is bounded in a fixed region in which the area
is considered as s. Suppose the probability of data points
located in a hyperplane is fx and one hyperplane can
be equally devided into several hyperplanes; Without loss
of generality, the probability of data points locating in a
hyperplane, which is denoted as ϕ, can be calculated as∮
fxdx1dx2...dxm. For simplicity, we assume that each

hyperplane has the same area. If the number of hyper-
planes is l and the number hyperplanesnis denotedyper-
planes are denoted as N1, ..., Nc, hyperplaneprobability
of points in the same hyperplane (which is denoted as
φ) is approximately as fx × s

l . As is stated in section
2.1, there are n intersections on the hypersphere. The
probability of the hyperplane containing intersection point
is denoted as pi(i ∈ {1...n}), which is intersected by q
hyperplanes Bi1, ...Biq . Therefore, the number of points
in this hyperplane can be calculated by the following
equation:

Npi = (NBi1
×fBi1

(Pi)+ ...NBiq
×fBiq

(Pi))×s/l (3)

We assume that all the hyperplanes have the same number
of points, and this total number equals to N . Then (3) can
be changed as

Npi = (fBi1
(Pi) + ...fBiq

(Pi))×N × s/l (4)

But the other hyperplanes which do not contain intersec-
tion points would contain less than than N×fBi1

(pi)×s/l
numbers of point, i ∈ {1...c}, where fBi1

(pi) refers
to probability density functions of other points in an
arbitrary hyperplane Bi, i ∈ {1...c}. In other words, the
number of points in the two kinds of hyperplane (one
contains the intersection point and the other does not) is

greatly different. So the ratio between them is given as:

Npi
Npi

=
fBi1(Pi) + ...fBiq (Pi)

fBi
(pi)

(5)

Note that if the distribution of points in every hyperplane
is previously known, there may be some methods to
distinguish the difference between intersection regions
and other regions. For example, consider points in all
hyperplanes are identically distributed with a uniform
distribution. Then the ratio value of these two kind regions
is

Npi
Npi

=
fBi1(Pi) + ...fBiq (Pi)

fBi
(pi)

= q (6)

As is shown in (6), the number of data points in the
intersection regions is q times larger than other regions
which do not contain intersection poiintersectionn detect
the intedensens points from the density regions.

III. SYSTEM MODEL AND THE DISTRIBUTION
FEATURE OF DATA SAMPLES

From the analysis above, we found that the distribution
of observed data points in m-dimensional space is decided
by the distribution of observed signal points in one
hyperplane. In this section, our major job is to study the
distribution of observed signals in a hyperplane.

A. The mathematical model of one hyperplane
Still review the model of (2), suppose that there are

N obshyperplaneals in the same hyperplane. Then the
system model is:

xti =
k∑
j

αijsij (ti)+e(ti), l ∈ 1...N, ij ∈ 1, 2, ...n (7)

As is stated in (7), it is very important to study the
source model. In order to depict the distribution of source,
we will introduce the following source models.

B. Binary state MoG source model
The mixture of Gaussian model [13] is one of the non-

Gaussian signal model. A p-th order of MoG is given
as:

p(si) =

p∑
k=1

πi,kNsi(0, δ
2
i,k) (8)

where
p∑
k=1

πi,k = 1. The MoG model is often used for

depicting non-Gaussian signals like speech/audio signals.
To the binary state of MoG model, which is the simplest
MoG model, is widely applied in image processing and
modeling sparsity in wavelet decomposition [13-16]. This
model is provided as follows:

p(si) = πi,1Nsi(0, δ
2
i,1) + πi,2Nsi(0, δ

2
i,2) (9)

where δi,1 ≈ 0, δi,2 � δi,1, πi,1 ∈ [0, 1] and πi,1+πi,2 =
1. In other words, we can rewrite model (9) as follows:

psi =

{
Nsi(0, δ

2
i,1), si is inactive with probability of πi,1

Nsi(0, δ
2
i,2), si is inactive with probability of πi,2

(10)
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Figure 2. The histogram of the point number in 350 hyperplanes.

C. Distribution of data points in one hyperplane

Suppose the components of source signals are indepen-
dent with the same distribution, then the distribution of
observed signals is:

P (x|A, s) =
k∑
i=1

Nk(0, αiα
T
i δ

2
2) = Nk(0,

k∑
i=1

αiα
T
i δ

2
2)

(11)

Therefore, we can know that the distribution of the
observed signals also satisfies the Gaussian distribution.
To the Gaussian signals, the values of probability density
function in the interval [−δ, δ] are close to each other.
When the variance is large enough, especially when δ →
∞, the probability of hypersphere points in a hypersphere
can be viewed as a constant in the interval [−δ, δ]. There-
fore, the value of (5) is close to q which is large enough to
distinguish intersection regions from others. For example,
assuming that 5 sources are generated by the model of
binary state sparse MoG and the parameter δ2 = 1, then
produce 10000 observed points in a 3-dimensional space.
We divide the data sample space into 350 hyperplanes
and calculate the number of each hyperplane. As is shown
in Fig.2, it is obvious that there are 5 indices are more
significant than others.

With the discussion above, we can make a conclusion.
If the source signal satisfies the distribution of binary-
state sparse Gaussian model, the density of points of the
intersections is larger than others. As a result, we can
estimate the columns of mixing matrix A by the detection
of intersected region.

IV. COMPLETE MIXING MATRIX
IDENTIFICATION ALGORITHM

Here we summarize the complete algorithm of mixing
matrix identification:

1) Remove the sample that are close to origin.
2) Normalize and symmetric the sample x(t) by the

following process:

x(t) =

{
x(t)
‖x(t)‖ , x(t) > 0

− x(t)
‖x(t)‖ , x(t) < 0

(12)

3) Divide the m-dimensional Euclidean space into
hyperplanes, where li = max(xi)(t)−min(xi)(t)

η , η is an
interval length.

4) Assign sample x(t) into different spaces by the
following method. Define a partition matrix U ∈ RL×T ,
ui,j ∈ [0, 1], i ∈ 0...L, j ∈ 0...T .

For j = 1 : T
Forq = 1 : m

Loc = ceil(
xq(j)

η
)

Set = uq−1∑
k=1

lk+Loc,j

End
End
5) Calculate the number of points in each hyperplane.

Choose the first n largest hyperplanes and estimate the
center of each hyperplane by the following equations:

α̃1 =

K1∑
i=1

x1i
(i)

K1
,

...

α̃m =

Km∑
i=1

xmi
(i)

Km
.

(13)

Where Ki is the number of the data points in the i-th
data hyperplane.

6) Finally, construct vectors [α̃1,...α̃m] as the estimated
matrix Ã.

V. SIMULATION EXAMPLES

In all experiences, source samples are generated inde-
pendently and satisfy the distribution of the binary state
MoG model which is also used in paper [13]. All the
simulations were performed in MTALAB7 environment
using Intel Pentium 42.4GHz processor with 512M RAM
under Microsoft Window XP operating system.

A. Experiment 1

Set n = 5, m = 4, k = 3, the mixing matrix A are
randomly generated and normalized as follows:

A=

 0.7930 0.7428 0.1410 0.9021 0.3281
0.1480 0.5901 0.7010 −0.3691 −0.4419
−0.5910 0.3161 −0.6992 −0.2235 −0.8349


The Procedures of our algorithm are shown in Fig.3

and we obtained the estimated mixing matrix as follows:

Ã=

 0.7890 0.9030 0.7441 0.3244 0.1434
0.1546 −0.3665 0.5888 −0.4454 0.7000
−0.5941 −0.2231 0.3152 −0.8343 −0.6995


For demonstrating the validity of our algorithm, the

criterion which is presented in paper [11] and paper [12]
is used:

ξ = min
P∈ρ
‖A− ÃP‖2 (14)

Where ρ is the set of al.Permutation matrices. We calcu-
late estimation error is 0.0089, and the result is 0.0066
using the algorithm in paper [13] and 0.2018 with paper
[17]. The process took about 160s when the source sample
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Figure 3. Scatter plot of the mixed sources

Figure 4. Normalize and symmetric the matrix X

number is 1000 and 25s when the source sample number
is 400, while the algorithm in this paper only took less
than 1s to finish the computing process.

B. Experiment 2

In order to demonstrate our fast detection algorithm
is capable of solving large scale problems, we compared
our algorithm to the existing method proposed in paper
[13] by using two simulations. In the first simulation, the
parameters are set as n = 15, m = 7, k = 3, T = 9000;
In the second experiment, parameters are set as n = 30,
m = 15, k = 2, T = 8500. Our method took less than

Figure 5. Regions that contain first and largest points were detected.

Figure 6. Procedures of the algorithm

Figure 7. The angle (in radian) between the mixing vectors and their
corresponding estimation in middle scale problems(n=15,m=7,k=3).

6 seconds in this two simulation while it took about 40
minutes for the first case and two hours for the second
case by using the algorithm in paper [13].

TABLE 1.

Parameters our algorithm algorithm in paper[13]
n=15,m=7,k=3,T=9000 6 Sec About 40 minutes
n=30,m=15,k=2,T=8500 4 Sec About 2 hours

Table 1 The performance comparison between our
algorithm and the algorithm in paper [13] To measure
the precision of identification, the angle between each
estimated vector and its corresponding actual mixing
vector (inverse cosine of their dot product) is calculated,
the result is shown in Fig.4, the accuracy is close to
that presented in paper [17], which shows the proposed
method can also estimate the mixing matrix successfully.

As is seen in this experiment, the proposed algorithm
can estimate mixing matrix very fast with higher accuracy
and do not change much when the parameters get larger. It
means that the proposed algorithm can be used for dealing
with middle scale problems.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a fast algorithm to estimate
the mixing matrix A in multi-dominant SCA based on a
binary state sparse MoG model. There are some aspects
we need to discuss to our algorithm.
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Figure 8. The angle (in radian) between the mixing vectors and their
corresponding estimation in middle scale problems(n=30,m=15,k=2).

A. Comparison with existing algorithms in accuracy and
speed efficiency

The existing algorithms to estimate the mixing matrix
is based on the hyperplanes clustering idea. There are
several factors that traditional method need to take into
account, such as the number of samples, observations and
active source component. These algorithms would suffer
from an exponential growth in the computation cost like
in [13]. Furthermore, if experimental data contain noises,
the algorithm would convergence much slower. But our
algorithm only takes few seconds to finish this process
and the computation cost doesn’t change much with the
growth of sample number. As observed in the simulation
results, the location of mixing vector is less precise
when there is noise-free, because the proposed algorithm
regards the center of the intersection point region as the
estimation of the mixing vector. However, the existing
algorithms can estimate the mixing vector precisely if
the system is noise-free. But it should be mentioned that,
the estimation result is imprecisely or even worse when
noise exists by using existing algorithms. In contrast, the
proposed algorithm in this paper can smooth the noise
effect and achieve a good accuracy.

B. Comments on choosing the parameter

In the proposed algorithm, the parameter η dhyperplan-
ethe size of hyperplane should choose a suitable value
according to the situation of reality. Generally, when
η is shyperplanee number of hyperplane is increasing,
which will improve the identification accuracy of mixing
matrix. And if η gets lhyperplanee number of hyperplane
is deleading, which will leads a bad performance.

C. Comments on prior knowledge

Another previous knowledge is that the source signals
should distribute in the binary state sparse distribution
model. Although such a source model might be consid-
ered too simple, it has sufficient complexity to capture
the salient features for very sparse data. In fact, binary
state mixture models have been used very successfully
by Olshausen and Millman [12] to estimate overcomplete

bases for images. Fortunately, it will be possible to solve
all kinds of BSS problem of different kinds of source
models if the probability density function of observed
data points is given in advance. These issues are currently
under study. Meanwhile, the construction of the sparse
signal model is still an open problem that remained to be
solved.
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