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Abstract—Estimation of distribution algorithms ( EDAs ) is 
a new kind of evolution algorithm. In EDAs , through the 
statistics of the information of selected individuals in 
current group, the probability of the individual distribution 
in next generation is given and the next generation of group 
is formed by random sampling. A wide range of 
mathematical model of the knapsack problem are proposed. 
In this paper, the EDAs is applied to solve the knapsack 
problem. The influence of several strategies, such as 
numbers of population and better population selection 
proportions are analyzed. Simulation results show that the 
EDAs is reliable and effective for solving the knapsack 
problem. The Maltab code is given also. It can easily be 
modified for any combinatorial problem for which we have 
no good specialized algorithm. 
 
Index Terms—estimation distribution algorithm, knapsack 
problem, genetic algorithm 
 

I.  INTRODUCTION 

The knapsack problem or rucksack problem is a 
problem in combinatorial optimization: Given a set of 
items, each with a weight and a value, determine the 
number of each item to include in a collection so that the 
total weight is less than or equal to a given limit and the 
total value is as large as possible. It derives its name from 
the problem faced by someone who is constrained by a 
fixed-size knapsack and must fill it with the most 
valuable items. The 0/1 knapsack problem is proven to be 
NP-complete. It is traditionally solved by the dynamic 
programming algorithm, which is accepted as the most 
practical way to solve this problem. With the advent of 
parallel processors, many researchers concentrated their 
efforts on development of approximation algorithms for 
NP-complete problems based on the application of 
parallel processors. For the 0/1 Knapsack problem, such 
works were reported by Peters and Rudolf [1], and 
Gopalakrishnan et al. [2]. Another relevant branch of 

research was related to design of systolic arrays for 
dynamic programming problems. This approach was 
considered in works of Li et al. [3], Lipton et al. [4] and 
others. A different model for the parallel computation of 
the Knapsack problem with weights given by real 
numbers was considered by A. Yao [5]. Currently, the 
method solving knapsack problem are accurate methods 
(such as dynamic programming, the recursive method, 
backtracking, branch and bound method [6]), 
approximation algorithms (such as the greedy method [6], 
Lagrange method, etc.) and intelligent optimization 
algorithms (such as simulated annealing algorithm[7], 
genetic algorithms [7] genetic annealing evolutionary 
algorithm [8], ant colony algorithm [9, 10]), particle 
swarm optimization algorithm [11], DNA [12]）. A new 
version of MOEA/D with uniform design for solving 
multiobjective 0/1 knapsack problems is proposed in 
reference [13].  

Estimation of distribution algorithms (EDAs) are 
stochastic optimization techniques that explore the space 
of potential solutions by building and sampling explicit 
probabilistic models of promising candidate solutions. 
This explicit use of probablistic models in optimization 
offers some significant advantages over other types of 
metaheuristics. EDAs were successfully applied to 
optimization of large spin glass instances in two-
dimensional and three-dimensional lattices, military 
antenna design, multiobjective knapsack, groundwater 
remediation design, aminoacid alphabet reduction for 
protein structure prediction, identification of clusters of 
genes with similar expression profiles, economic dispatch, 
forest management, portfolio management, cancer 
chemotherapy optimization, environmental monitoring 
network design, and others. In this paper, a new method 
for knapsack problem is put forward based on estimation 
of distribution algorithms and better population selection 
proportions are analyzed. Estimation of distribution 
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algorithms (EDAs) is a new area of evolutionary 
computation. In EDAs there is neither crossover nor 
mutation operator. New population is generated by 
sampling the probability distribution, which is estimated 
from a database containing selected individuals of 
previous generation. 

Since Estimation of distribution algorithms (EDAs) 
were proposed by Baluja in 1994 [14], EDAs quickly 
become an important branch of evolutionary algorithms 
because they have better mathematical foundation than 
other evolutionary algorithms. On the basis of statistical 
learning theory, EDAs use some individuals selected 
from the population at the current evolutionary generation 
to build a probability model and then produces offspring 
for the next generation by sampling the probability model 
in a probabilistic way. A lot of investigations in [15-22] 
show that EDAs have good optimization performance in 
both combinatorial problems and numeric optimization 
problems. Until now there are many studies about EDAs, 
but EDAs mainly consist of several types: Population 
based incremental learning (PBIL) [14], univariate 
marginal distribution algorithm (UMDA), compact 
genetic algorithm (CGA), mutual-information-
maximizing input clustering algorithm (MIMIC) , 
bivariate marginal distribution algorithm (BMDA), 
factorized distribution algorithm (FDA), Bayesian 
optimization algorithm (BOA), extended compact genetic 
algorithm (ECGA) and estimation of Bayesian network 
algorithm (EBNA). UMDA works well only in the 
solution of linear problems with independent variables, so 
it requires extension as well as application of local 
heuristics for combinatorial optimizations. PBIL uses 
vector probabilities instead of population and has good 
performance for solving problems with independent 
variables in binary search space. CGA independently 
deals with each variable and needs less memory than 
simple genetic algorithm. MIMIC searches the best 
permutation of the variables at each generation to find the 
probability distribution through using Kullback-Leibler 
distance. BMDA is mainly based on the construction of a 
dependency graph, which is acyclic but does not 
necessarily have to be a connected graph. FDA integrates 
evolutionary algorithms with simulated annealing. This 
method requires additively decomposed function and the 
factorization of the joint probability distribution remains 
same for all iterations. BOA applies Bayesian network 
and Bayesian Dirichlet metric to estimate joint 
probability distributions, thus, it can take advantage of 
the prior information about the problem. ECGA 
factorizes the joint probability distribution as a product of 
marginal distributions of variable size. EBNA employs 
Bayesian network for the factorization of the joint 
probability distribution and BIC score.  

II. THE MODE OF KNAPSACK PROBLEM 

The most common problem being solved is the 0-1 
knapsack problem, which restricts the number ix  of 
copies of each kind of item to zero or one. 

Let there be n  items, 1x  to nx  where ix  has a value 

ip  and weight ic . The maximum weight that we can 

carry in the bag is C . It is common to assume that all 
values and weights are nonnegative. To simplify the 
representation, we also assume that the items are listed in 
increasing order of weight. 
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Maximize the sum of the values of the items in the 
knapsack so that the sum of the weights must be less than 
the knapsack's capacity. 

The knapsack problem is one of the most studied 
problems in combinatorial optimization, with many real-
life applications. For this reason, many special cases and 
generalizations have been examined. 

One common variant is that each item can be chosen 
multiple times. The bounded knapsack problem 
specifies, for each item i , an upper bound iu  (which 
may be a positive integer, or infinity) on the number of 
times item i  can be selected: 
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    ix  integral for all i . 

      The unbounded knapsack problem (sometimes 
called the integer knapsack problem) does not put any 
upper bounds on the number of times an item may be 
selected: 
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    ix  integral for all i . 

The unbounded variant was shown to be NP-complete 
in 1975 by Lueker.  
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If the items are subdivided into k classes denoted iN , 
and exactly one item must be taken from each class, we 
get the multiple-choice knapsack problem:  
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If for each item the profits and weights are identical, 
we get the subset sum problem (often the corresponding 
decision problem is given instead): 
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If we have n items and m knapsacks with capacities 

iC , we get the multiple knapsack problem:  
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As a special case of the multiple knapsack problem, 
when the profits are equal to weights and all bins have the 
same capacity, we can have multiple subset sum 
problem: Quadratic knapsack problem: 
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If there is more than one constraint (for example, both 
a volume limit and a weight limit, where the volume and 
weight of each item are not related), we get the multiply 
constrained knapsack problem, multi-dimensional 
knapsack problem, or m-dimensional knapsack 

problem. (Note, "dimension" here does not refer to the 
shape of any items.) This has 0-1, bounded, and 
unbounded variants; the unbounded one is shown below. 
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ix  integral for all i . 

If all the profits are 1, we can try to minimize the 
number of items which exactly fill the knapsack: 
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We call these problems Knapsack-like problems. 

If we have a number of containers (of the same size), 
and we wish to pack all n items in as few containers as 
possible, we get the bin packing problem, which is 
modeled by having indicator variables 1=iy  ⇔  
container i is being used:  
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The cutting stock problem is identical to the bin packing 
problem, but since practical instances usually have far 
fewer types of items, another formulation is often used. 
Item j  is needed jB  times, each "pattern" of items 

which fit into a single knapsack have a variable, ix  

(there are m patterns), and pattern i  uses item j  ijb  
times:  
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If, to the multiple choice knapsack problem, we add 
the constraint that each subset is of size n and remove the 
restriction on total weight, we get the assignment problem, 
which is also the problem of finding a maximal bipartite 
matching: 

iij

n

j
ij

n

i
ij

k

i

n

j
ijij

Njkix

nix

njxts

xp
i

∈≤≤∈

≤≤=

≤≤≤=

∑

∑

∑∑

=

=

= =

,1}1,0{

11

11..

max

1

1

1 1

                (12) 

In the Maximum Density Knapsack variant there is an 
initial weight 0c , and we maximize the density of 
selected of items which do not violate the capacity 
constraint:  
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III. BASIC ESTIMATION OF DISTRIBUTION ALGORITHMS 

Estimation of distribution algorithms (EDAs), 
sometimes called probabilistic model-building genetic 
algorithms (PMBGAs), are stochastic optimization 
methods that guide the search for the optimum by 
building and sampling explicit probabilistic models of 
promising candidate solutions[12]. Optimization is 
viewed as a series of incremental updates of a 
probabilistic model, starting with the model encoding the 
uniform distribution over admissible solutions and ending 
with the model that generates only the global optima [13].  

EDAs belong to the class of evolutionary algorithms. 
The main difference between EDAs and most 
conventional evolutionary algorithms is that evolutionary 
algorithms generate new candidate solutions using an 
implicit distribution defined by one or more variation 
operators, whereas EDAs use an explicit probability 

distribution encoded by a Bayesian network, a 
multivariate normal distribution, or another model class. 
In EDAs the new population of individuals is generated 
without using neither crossover nor mutation operators. 
Instead, the new individuals are sampled starting from a 
probability distribution estimated from the database 
containing only selected individuals from the previous 
generation. Figure 1 illustrates the flowchart of EDA. 

Randomly generate an initial 
individual

Select the number of 
individuals

Estimate the probability 
distribution among the 

selected individuals

Move the particles in the 
search space and evaluate 

their fitness

Output the optimal individual

Maximum number of 
iteration?

Generate the next generation 
by probabilistically selecting 
particles to produce offspring

 
Figure 1.  Illustrates the flowchart of EDA. 
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The general procedure of an EDA is outlined in the 
following[16]: 
    Step 1 t = 0; 
    Step 2 initialize model M(0) to represent uniform 
distribution over admissible solutions  

Step 3  while (termination criteria not met)  
Step 3.1 P = generate N>0 candidate solutions by 

sampling M(t)  
Step 3.2 F = evaluate all candidate solutions in P  
Step 3.3 M(t+1) = adjust_model(P,F,M(t))  
Step 3.4 t = t + 1 

Using explicit probabilistic models in optimization 
allowed EDAs to feasibly solve optimization problems 
that were notoriously difficult for most conventional 
evolutionary algorithms and traditional optimization 
techniques, such as problems with high levels of epistasis. 
Nonetheless, the advantage of EDAs is also that these 
algorithms provide an optimization practitioner with a 
series of probabilistic models that reveal a lot of 
information about the problem being solved. This 
information can in turn be used to design problem-
specific neighborhood operators for local search, to bias 
future runs of EDAs on a similar problem, or to create an 
efficient computational model of the problem. 

IV. SOLVING 0/1 KNAPSACK PROBLEM BY EDAS 
Firstly, we transform (1)(constrained problem) into a 

single unconstrained problem. 
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where 0>M is a large number. 
The other knapsack problem models can also transform. 

For example, we transform (13)(constrained problem) 
into a single unconstrained problem. 
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The estimation of distribution algorithms for 
0/1knapsack problem is as follows: 

Step 1 Using the uniform design technique, for each 
variable are the probability of random values within 

TT
nppp )5.0,,5.0,5.0(),,,( 21 = . Generate N 

individuals constitute the initial population. 
Step 2 Assess the fitness of all individuals in the 

initial population, and retain the best solution. 
Step 3 Order the population by fitness in descending 

sorting, and choose the optimal m individuals (m ≤ N). 

Step 4 Build a probability vector 
T

nppp ),,,( 21  based on the statistical information 
extracted from the selected m solutions in the current 
population.  

Step 5 Sample N new solutions from this build 
probability models T

nppp ),,,( 21 . 
Step 6 If the given stopping condition (up to the 

required number of iterations nmax) is not met, go to step 
2. 

The estimation of distribution algorithms’ time 
complexity is estimated as follows: The time to calculate 
the fitness operation is the longest, so the time 
complexity of algorithm is about O(N.nmax). 
     The estimation of distribution algorithms for other 
knapsack problem models is similar to above algorithm. 

V. NUMERICAL EXAMPLE 

We solve a typical knapsack problem of literature 
[9]. n = 10, C = 269 g, {p1, p2, …, 
p10}={55,10,47,5,4,50,8,61,85,87}, and {c1, c2, …, 
c10}={95,4,60,32,23,72,80,62,65,46}. 

The program of EDAs is implemented by 
MATLAB. The MATLAB implementation is given 
below: 

—————————————————— 
%EDA_Knapsack.m 
%EDAs for Knapsack Problem 
clear all 
n=10; 
p=[55 10 47 5 4 50 8 61 85 87]'; 
c=[95 4 60 32 23 72 80 62 65 46]'; 
G=269; 
M=1; 
N=1000; 
m=0.4*N; 
r=[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]'; 
for nn=1:20 
    for j=1:N 
        X(j,:)=Xrand(r,n); 
    end 
    for j=1:N 
        fknapsack(j)=objknapsack(n,c,p,X(j,:),G,M); 
        ffknapsack(j)=X(j,:)*p; 
    end 
    SX=X; 
    SX(:,n+1)=fknapsack'; 
    B=sortrows(SX,n+1); 
    fmin=B(1,n+1); 
    xmin=B(1,1:n); 
    for k=1:m 
        SelectX(k,1:n)= B(k,1:n); 
    end 
    r=sum(SelectX)/m; 
    for i=1:N 
        if ffknapsack(i)>295 
           ffknapsack(i)=0; 
        end 
    end 
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    opf(nn)=max(ffknapsack); 
    meanf(nn)=mean(ffknapsack); 
end 
opf 
meanf 
plot(1:20,opf,'-.',1:20,meanf,'-') 
legend('Best values','Average values'); 
xlabel('The time of iteration') 
ylabel('The value of knapsack') 
—————————————————— 
Xrand.m is is given below: 
—————————————————— 
function y=Xrand(r,n) 
for i=1:n 
    if rand<=r(i) 
        y(i)=1; 
    else 
        y(i)=0; 
    end 
end 
—————————————————— 
Objknapsack.m is is given below: 
—————————————————— 
function f=objknapsack(n,c,p,x,G,M) 
f=-x*p+M*(min(0,G-x*c))^2; 
—————————————————— 
 
When N = 100, m = 0.4 * N, the procession of value 

is shown in Figure 1. The main parameters affecting the 
performance of the EDA are the number N of the 
population and selected population number m. 

0 5 10 15 20
100

150

200

250

300

The time of iteration

Th
e 

va
lu

e 
of

 k
na

ps
ac

k

Best values
Average values

 
Figure 2.  Figure2. The iterative process of the best values and the 

average values 

 
When m=N/2, it test 100 times, and the statistics are 

shown in Table 1. When N = 100, sometimes the 
algorithm goes into the local optimal solution and not to 
reach the global optimum value 295, so we can’t give 
statistics. Seen from Table 1, N is smaller, the effect is 
not good. N is greater, the effect is better. Of course, the 
greater the time is needed. We set N to moderate, such as 
N of 800. 

TABLE I.   
COMPARISON RESULTS OF N 

N Average 
number of 
iterations 

Minimum 
number of 
iterations 

Maximum 
number of 
iterations 

100 - - - 
200 3.3 1 10 
300 2.82 1 6 
400 2.53 1 6 
500 2.13 1 5 
600 1.99 1 5 
700 1.71 1 5 
800 1.69 1 5 
900 1.59 1 4 

1000 1.56 1 4 
 

When N = 800, it test 100 times, and the statistics 
are shown in Table 2. From Table 2, if the ratio of m/N is 
the greater, the effect is the worse. Of course, the ratio 
m/N is too small, it is easy to fall into local minima. So 
the ratio of m/ N is 10% -30%, the results were quite 
good. 

TABLE II.    

COMPARISON RESULTS OF M/N 

N Average 
number of 
iterations 

Minimum 
number of 
iterations 

Maximum 
number of 
iterations 

2.5% — — — 
5% 1.42 1 2 
10% 1.37 1 2 
20% 1.53 1 3 
30% 1.56 1 3 
40% 1.60 1 4 
50% 1.69 1 5 
60% 1.71 1 5 

VI. CONCLUSIONS 

The estimation of distribution algorithms can not only 
solve the knapsack problem, but also the algorithm can be 
applied for integer programming problem. Estimation of 
distribution algorithms can be slightly modified to solve 
similar nonlinear mixed integer programming problem. 
The estimation of distribution algorithms can be further 
improved, such as adding the crossover operators and 
mutation operators, so the performance may be better. 
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