
Estimation of Distribution Algorithms for
Knapsack Problem

Shang Gao
School of Computer Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Email: gao_shang@just.edu.cn

Ling Qiu
Artificial Intelligence of Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering ,Zigong

643000,China

Cungen Cao
Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of

Sciences, Beijing 100080, China
Email: cgcao@ict.ac.cn

Abstract—Estimation of distribution algorithms (EDAs) is
a new kind of evolution algorithm. In EDAs , through the
statistics of the information of selected individuals in
current group, the probability of the individual distribution
in next generation is given and the next generation of group
is formed by random sampling. A wide range of
mathematical model of the knapsack problem are proposed.
In this paper, the EDAs is applied to solve the knapsack
problem. The influence of several strategies, such as
numbers of population and better population selection
proportions are analyzed. Simulation results show that the
EDAs is reliable and effective for solving the knapsack
problem. The Maltab code is given also. It can easily be
modified for any combinatorial problem for which we have
no good specialized algorithm.

Index Terms—estimation distribution algorithm, knapsack
problem, genetic algorithm

I. INTRODUCTION

The knapsack problem or rucksack problem is a
problem in combinatorial optimization: Given a set of
items, each with a weight and a value, determine the
number of each item to include in a collection so that the
total weight is less than or equal to a given limit and the
total value is as large as possible. It derives its name from
the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most
valuable items. The 0/1 knapsack problem is proven to be
NP-complete. It is traditionally solved by the dynamic
programming algorithm, which is accepted as the most
practical way to solve this problem. With the advent of
parallel processors, many researchers concentrated their
efforts on development of approximation algorithms for
NP-complete problems based on the application of
parallel processors. For the 0/1 Knapsack problem, such
works were reported by Peters and Rudolf [1], and
Gopalakrishnan et al. [2]. Another relevant branch of

research was related to design of systolic arrays for
dynamic programming problems. This approach was
considered in works of Li et al. [3], Lipton et al. [4] and
others. A different model for the parallel computation of
the Knapsack problem with weights given by real
numbers was considered by A. Yao [5]. Currently, the
method solving knapsack problem are accurate methods
(such as dynamic programming, the recursive method,
backtracking, branch and bound method [6]),
approximation algorithms (such as the greedy method [6],
Lagrange method, etc.) and intelligent optimization
algorithms (such as simulated annealing algorithm[7],
genetic algorithms [7] genetic annealing evolutionary
algorithm [8], ant colony algorithm [9, 10]), particle
swarm optimization algorithm [11], DNA [12]）. A new
version of MOEA/D with uniform design for solving
multiobjective 0/1 knapsack problems is proposed in
reference [13].

Estimation of distribution algorithms (EDAs) are
stochastic optimization techniques that explore the space
of potential solutions by building and sampling explicit
probabilistic models of promising candidate solutions.
This explicit use of probablistic models in optimization
offers some significant advantages over other types of
metaheuristics. EDAs were successfully applied to
optimization of large spin glass instances in two-
dimensional and three-dimensional lattices, military
antenna design, multiobjective knapsack, groundwater
remediation design, aminoacid alphabet reduction for
protein structure prediction, identification of clusters of
genes with similar expression profiles, economic dispatch,
forest management, portfolio management, cancer
chemotherapy optimization, environmental monitoring
network design, and others. In this paper, a new method
for knapsack problem is put forward based on estimation
of distribution algorithms and better population selection
proportions are analyzed. Estimation of distribution

104 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.1.104-110

algorithms (EDAs) is a new area of evolutionary
computation. In EDAs there is neither crossover nor
mutation operator. New population is generated by
sampling the probability distribution, which is estimated
from a database containing selected individuals of
previous generation.

Since Estimation of distribution algorithms (EDAs)
were proposed by Baluja in 1994 [14], EDAs quickly
become an important branch of evolutionary algorithms
because they have better mathematical foundation than
other evolutionary algorithms. On the basis of statistical
learning theory, EDAs use some individuals selected
from the population at the current evolutionary generation
to build a probability model and then produces offspring
for the next generation by sampling the probability model
in a probabilistic way. A lot of investigations in [15-22]
show that EDAs have good optimization performance in
both combinatorial problems and numeric optimization
problems. Until now there are many studies about EDAs,
but EDAs mainly consist of several types: Population
based incremental learning (PBIL) [14], univariate
marginal distribution algorithm (UMDA), compact
genetic algorithm (CGA), mutual-information-
maximizing input clustering algorithm (MIMIC) ,
bivariate marginal distribution algorithm (BMDA),
factorized distribution algorithm (FDA), Bayesian
optimization algorithm (BOA), extended compact genetic
algorithm (ECGA) and estimation of Bayesian network
algorithm (EBNA). UMDA works well only in the
solution of linear problems with independent variables, so
it requires extension as well as application of local
heuristics for combinatorial optimizations. PBIL uses
vector probabilities instead of population and has good
performance for solving problems with independent
variables in binary search space. CGA independently
deals with each variable and needs less memory than
simple genetic algorithm. MIMIC searches the best
permutation of the variables at each generation to find the
probability distribution through using Kullback-Leibler
distance. BMDA is mainly based on the construction of a
dependency graph, which is acyclic but does not
necessarily have to be a connected graph. FDA integrates
evolutionary algorithms with simulated annealing. This
method requires additively decomposed function and the
factorization of the joint probability distribution remains
same for all iterations. BOA applies Bayesian network
and Bayesian Dirichlet metric to estimate joint
probability distributions, thus, it can take advantage of
the prior information about the problem. ECGA
factorizes the joint probability distribution as a product of
marginal distributions of variable size. EBNA employs
Bayesian network for the factorization of the joint
probability distribution and BIC score.

II. THE MODE OF KNAPSACK PROBLEM

The most common problem being solved is the 0-1
knapsack problem, which restricts the number ix of
copies of each kind of item to zero or one.

Let there be n items, 1x to nx where ix has a value

ip and weight ic . The maximum weight that we can

carry in the bag is C . It is common to assume that all
values and weights are nonnegative. To simplify the
representation, we also assume that the items are listed in
increasing order of weight.

),,2,1(},1,0{

..

max

1

1

nix

Cxcts

xp

i

n

i
ii

n

i
ii

=∈

≤∑

∑

=

=

 (1)

Maximize the sum of the values of the items in the
knapsack so that the sum of the weights must be less than
the knapsack's capacity.

The knapsack problem is one of the most studied
problems in combinatorial optimization, with many real-
life applications. For this reason, many special cases and
generalizations have been examined.

One common variant is that each item can be chosen
multiple times. The bounded knapsack problem
specifies, for each item i , an upper bound iu (which
may be a positive integer, or infinity) on the number of
times item i can be selected:

ii

n

i
ii

n

i
ii

ux

Cxcts

xp

≤≤

≤∑

∑

=

=

0

..

max

1

1

 (2)

 ix integral for all i .

 The unbounded knapsack problem (sometimes
called the integer knapsack problem) does not put any
upper bounds on the number of times an item may be
selected:

0

..

max

1

1

≥

≤∑

∑

=

=

i

n

i
ii

n

i
ii

x

Cxcts

xp

 (3)

 ix integral for all i .

The unbounded variant was shown to be NP-complete
in 1975 by Lueker.

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 105

© 2014 ACADEMY PUBLISHER

If the items are subdivided into k classes denoted iN ,
and exactly one item must be taken from each class, we
get the multiple-choice knapsack problem:

}1,0{

11

..

max

1

1

∈

≤≤=

≤

∑

∑∑

∑∑

∈

= ∈

= ∈

ij

Nj
ij

k

i Nj
ijij

k

i Nj
ijij

x

kix

Cxcts

xp

i

i

i

 (4)

If for each item the profits and weights are identical,
we get the subset sum problem (often the corresponding
decision problem is given instead):

),,2,1(},1,0{

..

max

1

1

nix

Cxpts

xp

i

n

i
ii

n

i
ii

=∈

≤∑

∑

=

=

 (5)

If we have n items and m knapsacks with capacities

iC , we get the multiple knapsack problem:

}1,0{

11

1..

max

1

1

1 1

∈

≤≤≤

≤≤≤

∑

∑

∑∑

=

=

= =

ij

m

i
ij

i

n

i
ijj

m

i

n

j
ijij

x

njx

miCxcts

xp
i

 (6)

As a special case of the multiple knapsack problem,
when the profits are equal to weights and all bins have the
same capacity, we can have multiple subset sum
problem: Quadratic knapsack problem:

}1,0{

..

max

1

1

1 11

∈

≤

+

∑

∑ ∑∑

=

−

= +==

i

n

i
ii

n

i

n

ij
jiij

n

i
ii

x

Cxcts

xxpxp

 (7)

If there is more than one constraint (for example, both
a volume limit and a weight limit, where the volume and
weight of each item are not related), we get the multiply
constrained knapsack problem, multi-dimensional
knapsack problem, or m-dimensional knapsack

problem. (Note, "dimension" here does not refer to the
shape of any items.) This has 0-1, bounded, and
unbounded variants; the unbounded one is shown below.

nix

miCxcts

xp

i

i

n

j
jij

n

i
ii

≤≤≥

≤≤≤∑

∑

=

=

10

1..

max

1

1

 (8)

ix integral for all i .

If all the profits are 1, we can try to minimize the
number of items which exactly fill the knapsack:

),,2,1(},1,0{

..

min

1

1

nix

Cxcts

x

i

n

i
ii

n

i
i

=∈

=∑

∑

=

=

 (9)

We call these problems Knapsack-like problems.

If we have a number of containers (of the same size),
and we wish to pack all n items in as few containers as
possible, we get the bin packing problem, which is
modeled by having indicator variables 1=iy ⇔
container i is being used:

}1,0{
1}1,0{

11

1..

min

1

1

1

∈
≤≤∈

≤≤=

≤≤≤

∑

∑

∑

=

=

=

ij

i

n

i
ij

i

n

j
ijj

n

i
i

x
niy

njx

niCyxcts

y

 (10)

The cutting stock problem is identical to the bin packing
problem, but since practical instances usually have far
fewer types of items, another formulation is often used.
Item j is needed jB times, each "pattern" of items

which fit into a single knapsack have a variable, ix

(there are m patterns), and pattern i uses item j ijb
times:

106 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

minx

njx

njBxbts

xx

i

n

i
ij

j

m

i
iij

m

i
i

≤≤∈

≤≤=

≤≤≤

∑

∑

∑

=

=

=

1},,1,0{

11

1..

min

1

1

1

 (11)

If, to the multiple choice knapsack problem, we add
the constraint that each subset is of size n and remove the
restriction on total weight, we get the assignment problem,
which is also the problem of finding a maximal bipartite
matching:

iij

n

j
ij

n

i
ij

k

i

n

j
ijij

Njkix

nix

njxts

xp
i

∈≤≤∈

≤≤=

≤≤≤=

∑

∑

∑∑

=

=

= =

,1}1,0{

11

11..

max

1

1

1 1

 (12)

In the Maximum Density Knapsack variant there is an
initial weight 0c , and we maximize the density of
selected of items which do not violate the capacity
constraint:

}1,0{

..

max

1

1
0

1

∈

≤

+

∑

∑

∑

=

=

=

i

n

i
ii

n

i
ii

n

i
ii

x

Cxcts

xcc

xp

 (13)

III. BASIC ESTIMATION OF DISTRIBUTION ALGORITHMS

Estimation of distribution algorithms (EDAs),
sometimes called probabilistic model-building genetic
algorithms (PMBGAs), are stochastic optimization
methods that guide the search for the optimum by
building and sampling explicit probabilistic models of
promising candidate solutions[12]. Optimization is
viewed as a series of incremental updates of a
probabilistic model, starting with the model encoding the
uniform distribution over admissible solutions and ending
with the model that generates only the global optima [13].

EDAs belong to the class of evolutionary algorithms.
The main difference between EDAs and most
conventional evolutionary algorithms is that evolutionary
algorithms generate new candidate solutions using an
implicit distribution defined by one or more variation
operators, whereas EDAs use an explicit probability

distribution encoded by a Bayesian network, a
multivariate normal distribution, or another model class.
In EDAs the new population of individuals is generated
without using neither crossover nor mutation operators.
Instead, the new individuals are sampled starting from a
probability distribution estimated from the database
containing only selected individuals from the previous
generation. Figure 1 illustrates the flowchart of EDA.

Randomly generate an initial
individual

Select the number of
individuals

Estimate the probability
distribution among the

selected individuals

Move the particles in the
search space and evaluate

their fitness

Output the optimal individual

Maximum number of
iteration?

Generate the next generation
by probabilistically selecting
particles to produce offspring

Figure 1. Illustrates the flowchart of EDA.

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 107

© 2014 ACADEMY PUBLISHER

The general procedure of an EDA is outlined in the
following[16]:
 Step 1 t = 0;
 Step 2 initialize model M(0) to represent uniform
distribution over admissible solutions

Step 3 while (termination criteria not met)
Step 3.1 P = generate N>0 candidate solutions by

sampling M(t)
Step 3.2 F = evaluate all candidate solutions in P
Step 3.3 M(t+1) = adjust_model(P,F,M(t))
Step 3.4 t = t + 1

Using explicit probabilistic models in optimization
allowed EDAs to feasibly solve optimization problems
that were notoriously difficult for most conventional
evolutionary algorithms and traditional optimization
techniques, such as problems with high levels of epistasis.
Nonetheless, the advantage of EDAs is also that these
algorithms provide an optimization practitioner with a
series of probabilistic models that reveal a lot of
information about the problem being solved. This
information can in turn be used to design problem-
specific neighborhood operators for local search, to bias
future runs of EDAs on a similar problem, or to create an
efficient computational model of the problem.

IV. SOLVING 0/1 KNAPSACK PROBLEM BY EDAS
Firstly, we transform (1)(constrained problem) into a

single unconstrained problem.

+−= ∑
=

n

i
ii xpf

1
min

2

1
,0min

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−∑

=

n

i
ii xcCM (14)

where 0>M is a large number.
The other knapsack problem models can also transform.

For example, we transform (13)(constrained problem)
into a single unconstrained problem.

2

1

1
0

1

,0min

min

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−+

+
−=

∑

∑

∑

=

=

=

n

i
ii

n

i
ii

n

i
ii

xcCM

xcc

xp
f

 (15)

The estimation of distribution algorithms for
0/1knapsack problem is as follows:

Step 1 Using the uniform design technique, for each
variable are the probability of random values within

TT
nppp)5.0,,5.0,5.0(),,,(21 = . Generate N

individuals constitute the initial population.
Step 2 Assess the fitness of all individuals in the

initial population, and retain the best solution.
Step 3 Order the population by fitness in descending

sorting, and choose the optimal m individuals (m ≤ N).

Step 4 Build a probability vector
T

nppp),,,(21 based on the statistical information
extracted from the selected m solutions in the current
population.

Step 5 Sample N new solutions from this build
probability models T

nppp),,,(21 .
Step 6 If the given stopping condition (up to the

required number of iterations nmax) is not met, go to step
2.

The estimation of distribution algorithms’ time
complexity is estimated as follows: The time to calculate
the fitness operation is the longest, so the time
complexity of algorithm is about O(N.nmax).
 The estimation of distribution algorithms for other
knapsack problem models is similar to above algorithm.

V. NUMERICAL EXAMPLE

We solve a typical knapsack problem of literature
[9]. n = 10, C = 269 g, {p1, p2, …,
p10}={55,10,47,5,4,50,8,61,85,87}, and {c1, c2, …,
c10}={95,4,60,32,23,72,80,62,65,46}.

The program of EDAs is implemented by
MATLAB. The MATLAB implementation is given
below:

——————————————————
%EDA_Knapsack.m
%EDAs for Knapsack Problem
clear all
n=10;
p=[55 10 47 5 4 50 8 61 85 87]';
c=[95 4 60 32 23 72 80 62 65 46]';
G=269;
M=1;
N=1000;
m=0.4*N;
r=[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]';
for nn=1:20
 for j=1:N
 X(j,:)=Xrand(r,n);
 end
 for j=1:N
 fknapsack(j)=objknapsack(n,c,p,X(j,:),G,M);
 ffknapsack(j)=X(j,:)*p;
 end
 SX=X;
 SX(:,n+1)=fknapsack';
 B=sortrows(SX,n+1);
 fmin=B(1,n+1);
 xmin=B(1,1:n);
 for k=1:m
 SelectX(k,1:n)= B(k,1:n);
 end
 r=sum(SelectX)/m;
 for i=1:N
 if ffknapsack(i)>295
 ffknapsack(i)=0;
 end
 end

108 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

 opf(nn)=max(ffknapsack);
 meanf(nn)=mean(ffknapsack);
end
opf
meanf
plot(1:20,opf,'-.',1:20,meanf,'-')
legend('Best values','Average values');
xlabel('The time of iteration')
ylabel('The value of knapsack')
——————————————————
Xrand.m is is given below:
——————————————————
function y=Xrand(r,n)
for i=1:n
 if rand<=r(i)
 y(i)=1;
 else
 y(i)=0;
 end
end
——————————————————
Objknapsack.m is is given below:
——————————————————
function f=objknapsack(n,c,p,x,G,M)
f=-x*p+M*(min(0,G-x*c))^2;
——————————————————

When N = 100, m = 0.4 * N, the procession of value

is shown in Figure 1. The main parameters affecting the
performance of the EDA are the number N of the
population and selected population number m.

0 5 10 15 20
100

150

200

250

300

The time of iteration

Th
e

va
lu

e
of

 k
na

ps
ac

k

Best values
Average values

Figure 2. Figure2. The iterative process of the best values and the

average values

When m=N/2, it test 100 times, and the statistics are

shown in Table 1. When N = 100, sometimes the
algorithm goes into the local optimal solution and not to
reach the global optimum value 295, so we can’t give
statistics. Seen from Table 1, N is smaller, the effect is
not good. N is greater, the effect is better. Of course, the
greater the time is needed. We set N to moderate, such as
N of 800.

TABLE I.
COMPARISON RESULTS OF N

N Average
number of
iterations

Minimum
number of
iterations

Maximum
number of
iterations

100 - - -
200 3.3 1 10
300 2.82 1 6
400 2.53 1 6
500 2.13 1 5
600 1.99 1 5
700 1.71 1 5
800 1.69 1 5
900 1.59 1 4

1000 1.56 1 4

When N = 800, it test 100 times, and the statistics
are shown in Table 2. From Table 2, if the ratio of m/N is
the greater, the effect is the worse. Of course, the ratio
m/N is too small, it is easy to fall into local minima. So
the ratio of m/ N is 10% -30%, the results were quite
good.

TABLE II.

COMPARISON RESULTS OF M/N

N Average
number of
iterations

Minimum
number of
iterations

Maximum
number of
iterations

2.5% — — —
5% 1.42 1 2
10% 1.37 1 2
20% 1.53 1 3
30% 1.56 1 3
40% 1.60 1 4
50% 1.69 1 5
60% 1.71 1 5

VI. CONCLUSIONS

The estimation of distribution algorithms can not only
solve the knapsack problem, but also the algorithm can be
applied for integer programming problem. Estimation of
distribution algorithms can be slightly modified to solve
similar nonlinear mixed integer programming problem.
The estimation of distribution algorithms can be further
improved, such as adding the crossover operators and
mutation operators, so the performance may be better.

ACKNOWLEDGMENT

This work was supported by the Open Project Program
of Key Laboratory of Intelligent Computing &
Information Processing (Xiangtan University), Ministry
of Education (No. 2011ICIP05), Artificial Intelligence of
Key Laboratory of Sichuan Province(2012RYJ04),
Jiangsu 333 Project , Qing Lan Project. and the National
Natural Science Foundation of China under Grant
51008143.

REFERENCES

[1] J. Peters, L. Rudolph. Parallel Approximation Schemes for
Subset Sum and Knapsack Problems. In 22nd Annual

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 109

© 2014 ACADEMY PUBLISHER

Allerton Conference on Communication, Control and
Computing, 1984, pp.671-680.

[2] P.S. Gopalakrishnan, I.V. Ramakrishnan, L.N. Kanal.
Parallel Approximate Algorithms for the 0-1 Knapsack
Problem. In Proceedings of the International Conference
on Parallel Processing, 1986, pp 444-451.

[3] Guo-jie Li, Benjamin W.Wah. Systolic Processing for
Dynamic Programming Problems. In Proceedings of the
International Conference on Parallel Processing, 1985,
pp.434-441.

[4] Richard J. Lipton, Daniel Lopresti. Delta Transformations
to Simplify VLSI Processor Arrays for Serial Dynamic
Programming. In Proceedings of the International
Conference on Parallel Processing, 1986, pp.917-920.

[5] Andrew Chi-Chin Yao. On the Parallel Computation for
the Knapsack Problem. In 13th Annual ACM Symposium
on Theory of Computing, 1981, pp. 123-127.

[6] Wang Xiaodong. Algorithm design and analysis. Beijing:
Electronic Industry Press,2001, pp.92-168.(In Chinese)

[7] Wang Ling. Intelligent optimization algorithm and its
application, Beijing: Tsinghua University Press,2001:17-59.
(In Chinese)

[8] Jin huimin,Ma Liang. Genetic annealing evolutionary
algorithm applied to the knapsack problem. Journal of
University Of Shanghai for Science And Technology, 2004,
vol.26, no.6, pp.561-564. (In Chinese)

[9] Ma Liang,Wang Longde. Ant optimization algorithm for
knapsack problem, Computer Applications . 2001, 21(8),
pp. 4-5. (In Chinese)

[10] Yu Yongxin,Zhang Xinrong. Optimization algorithm for
multiple-choice knapsack problem based on ant colony
system. Computer engineering, 2003, 29(20), pp.75-76, 84.
(In Chinese)

[11] Gao Shang, Yang Jingyu. Solving Knapsack Problem by
Hybrid Particle Swarm Optimization Algorithm.
Engineering science,2006,.8(11), pp. 94-98. (In Chinese)

[12] Ye Lian, Zhang Min. Solution to the 0-1 knapsack problem
based on DNA encoding and computing method. Journal
of Computers, 2013, 8(3), p 669-675.

[13] Tan Yan-Yan, Jiao Yong-Chang. MOEA/D with uniform
design for solving multiobjective knapsack problems.
Journal of Computers, 2013, 8(2),pp.302-307.

[14] Shumeet Baluja. Population based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning. Technical Report,
No. CMU-CS-94-163, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 1994.

[15] Zhou shude, Sun zengqi. A Survey on Estimation of
Distribution Algorithm. Acta Automatica Ainica,
2007,33(2), pp.113-124．(In Chinese)

[16] H. Muhliebe, G. Paass. From recombination of genes to the
estimation of distributions I. binary parameters. In Lecture

notes in computer science. Berlin, Germany: Springer
Verlag, 1996 ,vol.1141, pp.178-187.

[17] M. Pelikan, D. E. Godberg, E. C. Paz. Linkage problem,
distribution estimation, and Bayesian networks.
Evolutionary Computation. 2000, 8(3), pp.311-340.

[18] T K Paul, H. Iba. Linear and combinatorial optimizations
by estimation of distribution algorithms. In 9th MPS
Symposium on Evolutionary Computation, IPSJ, Japan,
2002.

[19] Haina Rong, Yuquan Li. A Novel Estimation of
Distribution Algorithm with Multiple Probability Models.
AISS: Advances in Information Sciences and Service
Sciences, 4(17), pp. 308- 315, 2012.

[20] Guolin Yu. Multi-objective estimation of Estimation of
Distribution Algorithm based on the Simulated binary
Crossover. JCIT: Journal of Convergence Information
Technology, 7(3), pp. 110-116, 2012.

[21] Rui Zhang. A Rule-Based Estimation of Distribution
Algorithm for Solving Job Shop. JCIT: Journal of
Convergence Information Technology, 6(8), pp. 220-227,
2011.

[22] Rong Haina, Cheng Jixiang, Li Yuquan. Radar emitter
signal analysis with estimation of distribution algorithms.
Journal of Networks, 2013, 8(1), p 108-115.

Shang Gao was born in 1972, and received his M.S. degree in
1996 and Ph.D degree in 2006. He now works in school of
computer science and technology, Jiangsu University of Science
and Technology. He is a professor and He is engage mainly in
systems engineering and soft computing.

Ling Qiu was born in 1980, and received his M.S. degree in
mathematics in 2008. She now works in Artificial Intelligence
of Key Laboratory of Sichuan Province, Sichuan University of
Science and Engineering. She is engage mainly in soft
computing.

Cungen Cao was born in 1964, and received his M.S. degree in
1989 and Ph.D. degree in 1993 both in mathematics from the
Institute of Mathematics, the Chinese Academy of Sciences.
Now he is a professor of the Institute of Computing Technology,
the Chinese Academy of Sciences. His research area is large
scale knowledge processing.

110 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

