
A Public-Key Cryptosystem Based On
Stochastic Petri Net

Zuohua Dinga, Hui Zhoua, Hui Shena, Qi-wei Geb
a Lab of ICSE, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

Email: zouhuading@hotmail.com
b Faculty of Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8513, Japan

Email: gqw@yamaguchi-u.ac.jp

Abstract— In this paper, we present a new method to build
public-key Cryptosystem. The method is based on the state
explosion problem occurred in the computing of average
number of tokens in the places of Stochastic Petri Net
(SPN). The reachable markings in the coverability tree of
SPN are used as the encryption keys. Accordingly, multiple
encryption keys can be generated, thus we can perform
multiple encryption to get as strong security as we expect.
The decryption is realized through solving a group of
ordinary differential equations from Continuous Petri Net
(CPN), which has the same underlying Petri net as that
of SPN. The decipherment difficulty for attackers is in
exponential order. The contribution of this paper is that
we can use continuous mathematics to design cryptosystems
besides discrete mathematics.

Index Terms— Public-key cryptosystem, Stochastic Petri net,
Continuous Petri net, Multiple encryption.

I. INTRODUCTION

The Internet has become so widespread that any one
can obtain and provide information easily through the
public network. To guarantee the safe communications,
the utilization of cryptography becomes very important in
order to avoid the leak of secret information or dishonest
alternation of the information.

There are two types of cryptography: private-key and
public-key cryptosystems. Private-key cryptosystem uses
a common private key to encrypt and decrypt messages,
and can process encryption and decryption very fast, but
it faces a problem to distribute the private key through the
public network without leaking of the secrecy [22] [23].
Public-key cryptosystem successfully solves this problem
by preparing a pair of keys (public and private keys) in
the way that it opens the public key to the public and
keeps the private key in secret [19].

Currently, there are a few public-key cryptosystems,
such as RSA [21], ElGamal [4], and the elliptic curve
cryptography [18]. Since the security(encryption or de-
cryption) of RSA is O(exp(c(logn)(loglogn))1/2) (c is
a constant, and n is a large factoring number), which
is subexponential order rather than an exponential order,
we may classify these crytosystems as subexponential
cryptosystems.

Manuscript received XX, XX, 2012; revised XX, XX, 2012. c⃝ 2005
IEEE.

This work is partially supported by the NSF under Grant No.
61170015 and No.61210004.

Recently, Ge and Okamoto [7] proposed a new public-
key cryptography, namely PNPKC, and Ge et al. [8] pro-
posed a Multiple-Encryption Public-Key Cryptography,
namely MEPKC. Both Cryptography use elementary T-
invariants of Petri nets as the public keys. The security
is em, where m is the number of transitions of the Petri
net. If the encryption is performed in k stages, then the
security will be (em)k. Such kind of crytosystems can be
called exponential cryptosystems.

So far, the public-key cryptosystems are designed with
discrete mathematics. In this paper we propose a new
public-key cryptography by using continuous mathemat-
ics. The encryption part is based on the well known
state explosion problem of stochastic Petri nets(SPN),
i.e. the state space will increase exponentially as the
number of places or the number of initial marking values
increases, even through many reduction skills have been
proposed to combat this problem such as [13] [26]. The
decryption part is based on a group of ordinary differential
equations, which can be easily solved by using Runge-
Kutta algorithm [9].

The encryption key is composed of a reachable marking
in the coverability tree of SPN and the average number
of tokens in the places of SPN. A brief description is
in the following: The sender randomly select a group of
initial markings from a well designed range to generate
the coverability tree of a SPN, and compute the average
number of tokens of SPN by some software such as SPNP
and GreatSPN. By combing this reachable marking and
the average number of tokens together in some way, we
will get the encryption key. This key is a number that has
integral part and decimal fraction part.

The uniqueness of reachable markings guarantee that
the encryption key is unique. The key is hidden in
a knapsack problem, which is NP-complete. Multiple
encryption keys can be generated, thus we can perform
multiple encryption to get as strong security as we expect.
Hence, we open a key generator to the public.

For the attacker to decrypt, he/she has three difficulties:
1) To compute all the average numbers of tokens of
the Petri nets that have initial marking from the given
range. If we carefully design the maximum value of the
range, then it is hard for attackers to solve all the average
number of tokens even using some software. 2) From
these average numbers of tokens, the attacker needs to

94 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.1.94-103

determine which one matches the decimal fraction, and
thus to determine the initial marking value selected by the
sender. 3) The attacker needs to generate the coverability
tree based on this initial marking value, and to determine
which reachable marking in the tree has been selected by
the sender, in other words, to determine the integral part
of of the key.

For the receiver to decrypt the ciphertext, he/she also
needs to solve all the average number of tokens of
the Petri nets that have initial marking values in the
given range. However, the receiver can get these average
numbers of tokens by solving a set of ordinary differential
equations, which is simple. In the equations, the initial
values correspond to the initial markings. The set of
equations comes from Continuous Petri Net (CPN), of
which the underlying Petri net is the same as that of
SPN. CPN is defined recently by David and Alla [2] [3]
attempting to deal with the state explosion problem of
discrete Petri net by removing the integrality constraints.
The solutions of the equations are called state measures
in the places. In this paper, we have proved that the
state measures in the places equal the average numbers
of tokens in the places.

Analysis shows that the security for our method is
v2IO(naP (k,n)bQ(k,n)), a > 1, b > 1, where v is the
length of the range of initial marking values, I is the
number of places that can be set the initial markings
from the range, n is the number of places of the Petri
net, k is the maximum number of tokens in the initial
markings, and P (k, n), Q(k, n) are two polynomials of
k, and n. If applying r-stage encryption, the security can
reach v2IrO(nrarP (k,n)brQ(k,n)).

We are not claiming that our public-key encryptosystem
is superior to the existing encryptosystems. It is our
attempt to design the public-key encryptosystem from a
different angle, and give some suggestions in this field.

The rest of the paper is organized as the following:
Section 2 briefly introduces the method to compute the
average number of tokens of SPN and gives the com-
putational complexity. Section 3 presents a method to
compute the state measures of CPN and analyzes the com-
putational complexity. Section 4 proves that the average
numbers of tokens of SPN equal the state measures of
CPN. Section 5 discusses the security of our SPN based
public-key cryptograph. In Section 6, we use a concrete
example to illustrate how to use our method to design
a public-key cryptograph. Section 7 discusses a related
work. The last section, section 8 concludes the paper by
simply describing how to combine our system with other
encryption system for digital signature, and indicating our
future work.

II. THE METHOD TO COMPUTE THE AVERAGE
NUMBER OF TOKENS OF SPN AND ITS

COMPUTATIONAL COMPLEXITY

A. Stochastic Petri Nets(SPN)

The following definition comes from [14].

Definition 2.1: A continuous stochastic Petri net is
a tuple SPN = (P, T,A,M0, λ), where (P, T,A,M0)
is a underlying untimed Petri net: P = {p1, p2, . . . , pn}
is the set of places, T = {t1, t2, . . . , tm} is the set of
transitions, A ⊂ (P ×T)∪ (T ×P) is the set of arcs, and
M0 is the initial marking. λ = {λ1, λ2, . . . , λm} is a set
of average firing rates of transitions satisfying exponential
distributions:

∀t ∈ T, Ft(x) = P{Xt ≤ x} = 1− e−λtx

where x represents time, Xt is a continuous random
variable representing the time delay for transition t, λt

is the average firing rate associated with transition t.
A Markov process is a stochastic process that satisfies

the Markovian property

P{X(τ) ≤ x|X(t), t ∈ [0, θ]} = P{X(τ) ≤ x|X(θ) = y}

for any τ > θ. Markov processes with a discrete state
space are called Markov chains. If the parameter t is
continuous, the process is a continuous-time Markov
chain (CTMC). The time spent in states of a CTMC is a
random variable with nonnegative exponential probability
density function(pdf).

In practice, a CTMC is described through either a
state transition rate diagram or a transition rate matrix,
denoted by Q. The state transition rate diagram is a
labelled directed graph whose vertices are labelled with
the CTMC states, and whose arcs are labelled with the
rate of the exponential distribution associated with the
transition from a state to another.

If we have the reachable graph (or coverability tree)
of SPN, then replacing the firing transition t associated
with the arc by average firing rate λt (or marking related
λt), we will get the CTMC that is isomorphic to SPN.
Actually we have the following result [15].

Theorem 2.2: Any SPN with finite places and finite
transitions is isomorphic to a Continuous Time Markov
Chain.

This result enables us to compute average number of
tokens in places of SPN.

B. Method To Compute The Average Number of Tokens
In Places of SPN

Average number of tokens in places is an important
parameter in system performance analysis. It can be
solved through the following steps [15].

(1) Constructing transition rate matrix Q = [qij]
The transition rate matrix can be constructed from the

coverability tree of SPN. For the elements aij outside the
main diagonal: if there is an arc from state Mi to state Mj ,
then the value is the rate of the exponential distribution
associated with the transition from Mi to Mj ; if there is
no arc connected, then this element is 0. For the element
aii on the main diagonal, its value is the opposite of the
sum of firing rates outputted from state Mi.

(2) Finding the steady state probability X =
(x1, x2, . . . , xl), where l is the number of all reachable
markings in the coverability tree of SPN.

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 95

© 2014 ACADEMY PUBLISHER

This can be obtained by solving the equation group{
XQ = 0,∑
i xi = 1, 1 ≤ i ≤ l.

where Q is a l dimension square matrix.
(3) Constructing place state table
Based on the coverability tree of SPN, we list all the

reachable markings. Every reachable marking is a n-
dimension vector, which is a row in the table. Thus the
table has l rows and n columns.

(4) Obtaining the token probability density function
(pdf)

That is to find in the steady state the probability of
the number of tokens contained in a place. For a p ∈ P ,
letting P [M(p) = i] denote the probability of i tokens
contained in place p, then the token pdf can be obtained
as

P [M(p) = i] =
∑
j

P [Mj],

where Mj ∈ R(M0) and Mj(p) = i.
(5) Finding the average number of tokens in places
For any p ∈ P , in the steady state, ui =

∑
j j ×

P [M(pi) = j] is the average number of tokens in place
p for any reachable marking.

C. The complexity of finding the average number of
tokens in the places

Currently, the best algorithm to solve the equation
group {

XQ = 0,∑
i xi = 1, 1 ≤ i ≤ l.

is from Harrow et al. [10] and the complexity is O(l). l
depends on n, k and can be estimated as the following. Let
k be the maximum number of tokens in the initial mark-
ings. Since the size of the reachability graph increases
exponentially with both the number of places and the
number of tokens in the initial marking, we may assume
that l = ap(k,n), a > 1, where p(k, n) is a polynomial
of k and n. Thus, the complexity to solve this equation
group is O(ap(k,n)).

From step (3) of Section 2.2, the complexity to find the
average number of tokens in a single place is O(ap(k,n))+
O(ap(k,n)) = O(ap(k,n)). Hence to find average number
of tokens in n places, the complexity is n×(O(ap(k,n))+
O(ap(k,n))) = O(nap(k,n)).

III. THE METHOD TO COMPUTE THE STATE
MEASURES OF CPN AND ITS COMPUTATIONAL

COMPLEXITY

Since the size of reachable markings in the coverability
tree increases exponentially with both the number of
places and the number of tokens in the initial marking.
As a result, we will not be able to compute the steady
state probability for very large models. We will use
some relaxation technique to overcome this difficulty.
This relaxation leads to a continuous-time formalism:
Continuous Petri Net (CPN).

A. Continuous Petri Net

Definition 3.1: A Continuous Petri Net is a tuple
CPN =< P, T,A,M0, λ >, where (P, T,A) is a un-
derlying Petri net MP: P = {p1, p2, . . . , pn} is the set
of places, T = {t1, t2, . . . , tm} is the set of transitions,
A ⊂ (P × T)∪ (T ×P) is the set of arcs, and M0 is the
initial marking. λ = {λ1, λ2, . . . , λm} is a set of average
firing rates of transitions.

In the definition, the average firing rate λt is actually
the reciprocal of firing delay of transition t. In a CPN,
the marking of a place is no longer an integer but a
nonnegative real number.

Definition 3.2: Let I = [0,∞) be the time interval and
let mi : I → [0,∞), i = 1, 2, . . . , n be a set of mappings
that associated with place pi. A marking of a Continuous
Petri Net CPN =< P, T,A, v > is a mapping
m : I → [0,∞)n,
m(τ) = (m1(τ),m2(τ), . . . ,mn(τ)).
Definition 3.3: (State Measure) Given any time mo-

ment t ∈ [0,∞), the marking value in a place is called
the State Measure of this place, denoted as m(t). State
measures take nonnegative real numbers as their values.

A transition is enabled if all the input places have
nonzero markings. Only enabled transitions can be fired.
So, if some marking is moved into a place, we say that the
state measure in this place is increasing; if some marking
is moved out from a place, we say that the state measure in
this place is decreasing. The change rate of state measure
can be calculated as the following.

Let p1 and p2 be the input places of a transition t and
their markings are m1(τ) and m2(τ), respectively. Let
λt be the firing rate associated with t, then following the
definition of Continuous Petri net defined by David and
Alla [2] [3], the marking moving out from p1 and p2 is
defined by λt × min{m1(τ),m2(τ)}. If t has only one
input p1, then marking λt × m1(τ) will be moved out
from p1.

We consider the following type of Petri net as the
underlying Petri net of SPN and CPN. It is a subclass
of normal Petri net net, namely Message Passing Petri
net, or MP for short.

Definition 3.4: A Petri net P is MP if
- P has finitely many places;
- the places of P are partitioned into two disjoint

partitions C and B;
- each place from C has one or two input transitions

and one or two output transitions, but can not have
two input transitions and two output transitions at
the same time;

- each place from B has one input transition and one
output transition;

- each transition has one input place from C and one
output place from C; and

- each transition has either
1) no input places from B and no output places

from B;
2) no input places from B and one output place

from B;

96 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

3) one input place from B and no output places
from B; or

4) one input place from B and one output place
from B.

Here C stands for ”Internal States”, while B stands
for ”Buffer”.

In a MP, the Internal States and the directly connected
transitions form one or several place/transition cycles,
namely process net. Hence a MP can also be described
as process nets that interact to each other through Buffer
B.

With such kind of Petri net structure, the state space
still increases exponentially as the number of tokens in
the Internal States or Buffer increases.

B. Solving State Measures From Ordinary Differential
Equation Model

Based on the semantics defined above, the state mea-
sure at each place can be calculated from a differential
equation. We have the following cases.

1) One place to one place. As Fig.1 shows, place p will
get marking from place p1. Let the marking at place p and
p1 be m and m1, respectively. Assume that the firing rates
at transition t1 and t are d1 and d, respectively. Then the
state measure m can be represented as

m′(τ) = d1 ×m1(τ)− d×m(τ). (1)

If at least one of t1 and t is not enabled, then m1(τ) =
0 or/and m(t) = 0. Hence the above equation is still true
in these situations.

p1

p

t1

t

m1

m

d1

d

Figure 1. One place to one place model.

2) Two place to one place. As Fig. 2 shows, place p
will get marking from place p1 and p2. Let the markings
at place p1, p2 and p be m1, m2 and m, respectively.
Assume that the firing rates at transition t1 and t are d1
and d, respectively. Then the state measure m can be
represented as

m′(τ) = d1 ×min{m1(τ),m2(τ)} − d×m(τ). (2)

If t1 is not enabled, then m1(τ) = 0 or/and m2(τ) = 0.
If t is not enabled, then m(τ) = 0. Hence the above
equation also covers these situations.

3) One place to two places. As Fig. 3 shows, place
p will get marking from place p1, but will send some
marking out together with place p2. Let the markings
at place p1, p2 and p be m1, m2 and m, respectively.
Assume that the firing rates at transition t1 and t are d1

p1

p

t1

t

m1

m

d1

d

m2

p2

Figure 2. Two places to one place model.

and d, respectively. Then the state measure m can be
represented as

m′(τ) = d1 ×m1(τ)− d×min{m(τ),m2(τ)}. (3)

p1

p

t1

t

m1

m

d1

d

m2

p2

Figure 3. One place to two places model.

If t is not enabled, then either m(τ) = 0 or m2(τ) = 0,
or both. Hence the above equation is still true.

4) Two places to two places. As Fig. 4 shows, transition
t1 has two input places m1 and m2 and transition t has
two input places m and m3. Assume the firing rates at
transition t1 and t are d1 and d, respectively. Then the
marking m can be represented as

m′(τ) = d1 ×min{m1(τ),m2(τ)}
−d×min{m(τ),m3(τ)}. (4)

p1

p

t1

t

m1

m

d1

d

m3

p3

m2

p2

Figure 4. Two places to two places model.

From the differential equation model, we see that state
measures are uniquely determined by the system structure
and the firing rates.

C. The Computational Complexity

To get the state measures of all the places, we need
to solve the initial value problem of ordinary differential
equations.

Generally speaking, it is hard to find explicit analytic
solutions for nonlinear ordinary differential equations,
thus most of the time, we turn to find numerical solutions

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 97

© 2014 ACADEMY PUBLISHER

instead. We may use function ode45 in Matlab to solve
our equations. Function ode45 is the implementation of
combined fourth and fifth-order Runge-Kutta method.
ode45 is designed to handle the following general prob-
lem

dx

dt
= f(t, x), x(t0) = x0,

where t is the independent variable and x is a vector of
dependent variables to be found.

Numerical solutions may give us computational errors
due to the algorithm and the machine. In our situation, the
computation error can come from two sources: truncation
error (because a truncated Taylor Series is used in the
computation), and rounding error (because a finite number
of binary digits is used inside the machine).

For the truncation error, since the fourth-order Runge-
Kutta method has local truncation error O(h5) and the
fifth-order Runge-Kutta method has local truncation error
O(h6), where h is the step size, thus the global truncation
error of ode45 is O(h5) [9]. Noticing that the fifth-order
Runge-Kutta method can automatically adjust the step
size, thus ode45 can approximate to the given accuracy by
setting opts with command odeset. For the rounding er-
ror, since implicit Runge-Kutta method has stable area [9],
and the algorithm is guaranteed to converge in the stable
area. Thus the rounding error of the perturbation can not
increase and will decrease to 0 in the iteration process [1].

For the complexity of Runge-Kutta method, if the
accuracy is lower than 0.00001, then Runge-Kutta method
is more efficient than Newton method. We know that the
complexity for Newton method in general is O(mn3),
where n is the number of variables and m is the iteration,
which is usually O(n) and never exceeds O(n2) [25].
Hence, the complexity for Runge-Kutta method in general
is O(n4) and never exceeds O(n5).

Thus solving the state measure needs time O(n5),
where n is the number of places.

IV. AVERAGE NUMBERS OF TOKENS OF SPN = STATE
MEASURES OF CPN

SPN and CPN describe the events of the system,
execution time of events, and the relations between events.
In both models, the average execution time of events
represent the firing rates of the corresponding transitions.
The difference is located in: 1) In SPN, the average
number of tokens are obtained by computing Markov
chain, while in CPN, the state measures are obtained
by solving ordinary differential equations; 2) The com-
putational complexity for SPN is exponential while the
computational complexity for CPN is polynomial.

The following result gives us the relation of SPN and
CPN.

Theorem 4.1: If SPN and CPN are modeling the same
system, then the average number of tokens in places of
SPN equal the state measures in places of CPN.

Proof 4.2: Our proof is on the basis of [12]. We
consider three situations.

(1) Net with single input

m(t) p

d tt

Figure 5. A transition with single input.

Fig. 5 shows a transition with a single input. In the
figure, p is the input place of transition tt, m(t) represents
the state measure of p at time t, d is the average firing
rate of tt, W is the time delay of tt. Assume that p has
initial value k1 at time t0. In SPN, a transition needs time
from enabled to firing, and this time is represented by a
random variable W , which is subjected to an exponential
distribution function: Ftt(∆t) = P [W ≤ ∆t] = 1 −
e−d∆t, ∆t > 0. Assume that after ∆t time, the average
number of tokens of p is k′1, then

k′1 = E[m(p)] = k1P [W > ∆t] = k1e
−d∆t.

In CPN, for this net, we have equation x′ = −dx and
x(t0) = k1. Solving this equation, we get m(t0 +∆t) =
k1e

−d∆t.
Thus in this case, our result is correct.
(2) Net with two inputs

m1(t) p1

d tt

m2(t)p2

Figure 6. A transition with two inputs.

Fig. 6 shows a transition with two input places. In the
figure, p1 and p2 are two input places of transition tt,
m1(t) and m2(t) represent state measures of p1 and p2
at time t, respectively. d is the average firing rate of tt,
W is the delay of tt. Assume that p1 has initial value k1
at time t0 and p2 has initial value k2 at time t0.

In SPN, let k′1 and k′2 be the new average numbers of
tokens of p1 and p2 after time ∆t, respectively. Then

k′1 = E[m(p1)]

= k1 −min{k1, k2}P [W ≤ ∆t]

= k1 −min{k1, k2}(1− P [W > ∆t])

= k1 −min{k1, k2}(1− e−d∆t).

In CPN, for this net, we have equations:

x′
1 = −d×min{x1, x2}, x′

2 = −d×min{x1, x2}

with the initial values: x1(t0) = k1, x2(t0) = k2. Since
min{x1, x2} is nondeterministic at every time t, it is hard
to give analytic solution. With numerical solution, we
may partition ∆t into several small intervals ∆ti, such
that on each such interval, min{x1, x2} will take a fixed

98 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

value. Now we solve the equations on interval ∆t1 as the
follows.

i) If x1(t0) < x2(t0), or k1 < k2, then x′
1 =

−dmin{x1, x2} = −dx1, and k′1 = x1(t0 + ∆t1) =
k1e

−d∆t1 .
ii) If x1(t0) ≥ x2(t0), or k1 ≥ k2, then x′

1 = −dx2,
x′
2 = −dx2, then x2(t0 + ∆t1) = k2e

−d∆t1 . Since in
the steady state, the output markings from p1 and p2 are
equal, and the output marking from p2 is k2−k2e

−d∆t1 =
k2(1−e−d∆t1), so the output marking from p1 should be
k2(1− e−d∆t1). Thus k′1 = k1 − k2(1− e−d∆t1).

Combining i) and ii), we get k′1 = k1 −
min{k1, k2}(1 − e−d∆t1), which is the same as the
average marking of SPN. We will get similar results
on other intervals. Hence in this case, our result is also
correct.

(3) Now consider the general cases for Fig. 1, Fig.2,
Fig.3, and Fig.4. In SPN, for ∀t ∈ T , its marking flow
rate, i.e. average marking moving to the output place in
unit time, is R(t, s) = W (t, s)×

∑
M∈E P (M)×λ, where

E is the set of all reachable markings that make t enable,
λ is the average firing rate of t, W (t, s) is the weight
attached to the arc from transition t to place s. From the
proof of (1) and (2), we know that R(t, s) = d ×m, or
R(t, s) = d × min{m1,m2}, where m,m1,m2 are the
input places of tt, and d is the average firing rate.

Hence for the place m in Fig. 1, Fig.2, Fig.3, and
Fig.4, at time t, the average number of markings of
a place = average number of markings to this place
- average number of markings out this place, i.e.,∫ t

0
(d1m1 − dm)dt for Fig. 1;

∫ t

0
(d1min{m1,m2} −

dm)dt for Fig.2;
∫ t

0
(d1m1−dmin{m2,m})dt for Fig.3;∫ t

0
(d1min{m1,m2}−dmin{m3,m})dt for Fig.4. These

expressions are actually the solutions of Equation (1),
Equation (2), Equation (3), and Equation (4) in Section
3.2, respectively. Hence, the average number of tokens of
m in SPN = state measure value of m in CPN.

Hence, we complete the proof.

V. PUBLIC-KEY CRYPTOSYSTEM

A. Public Key and Private Key

1) Public Key: Let ⟨
∑

, H⟩ be a public key, where∑
= (P, T,A,M0, λ) is a bounded Stochastic Petri Net

that has an MP as the underlying Petri net. H is a Hash
fucntion which will be defined in the following.

For any pi ∈ P , let M0(pi) represent the initial marking
value for place pi with the range n1 ≤ M0(pi) ≤
n2, n1, n2 ∈ N+, i = 1, . . . , n. Assume that the sender
randomly selects the initial markings M+

0 (pi) from these
range. Define

M ′
0(pi) =

{
H1(M

+
0 (pi)), M0(pi) ̸= 0;
0, M0(pi) = 0.

Here H1 is usually a linear function depending on the
size of SPN, the maximum number of tokens in the
initial markings, and the memory size. Let CT (

∑
(M ′

0))
be the coverability tree of the net. Define V by V =

H(M+
0 (pi), Ji, U) = V2 + V3 = R1J

T
i + 10−pR2U

T ,
where

- Ji is the row vector of n dimension of CT (
∑

(M ′
0));

JT
i is the transpose of Ji; R1 is a n dimension vector

with positive integers; V2 = H2(Ji) = R1J
T
i , where

H2 is 1-1 mapping; R2 is a randomly selected n
dimension vector with positive integers.

- V3 = H3(U) = 10−pR2U
T , where U =

(u1, u2, . . . , un), ui is the average number of tokens
in place pi of SPN, that can be solved by the sender.
p(∈ N) is an integer depending on the selection
of R2 and M0(pi), n1 ≤ M0(pi) ≤ n2, which can
determine as the following. The receiver calculates
the maximum value of all R2U

T by solving the
equation groups as discussed in Section 3.3. Let
M be the maximum. Then take p = min{q ∈
N |10q ≥ M}. This p can guarantee that the number
10−pmax{R2U

T } is a decimal fraction, thus the
number V3 = H3(U) = 10−pR2U

T = g from the
sender is also a decimal fraction. The receiver then
computes all the V3, and finds which V3 is the most
closest one to this g. The initial markings for this
closest V3 are exactly the initial markings selected by
the sender. However, the attacker does not know how
to generate p. In order to get p, the attacker has to has
to try every possible initial marking, and calculate all
possible V3 from CT (

∑
(M ′

0)). The complexity for
the attacker will be in multiple exponential.

2) Private Key: The private key is designed as <
E,H2 >, where E is a set of equations consisting of
the following six types of ordinary differential equations
generated from Petri net MP:

• Type 1 [Internal]. m′
i = d̃i−1mi−1− d̃imi. Here mi

and mi−1 are the states of the same process net.
• Type 2 [Input-before]. m′

i = d̃i−1min{mi−1, xk}−
d̃imi. Here mi and mi−1 are the states of the same
process net. mk is the input to this process net from
buffer.

• Type 3 [Input-after]. m′
i = d̃i−1mi−1 −

d̃imin{mi,mk}. Here mi and mi−1 are the states of
the same process net. mk is the input to this process
net from buffer.

• Type 4 [Input-before-after]. m′
i =

d̃i−1min{mi−1,mk} − d̃imin{mi,ml}. Here
mi and mi−1 are the states of the same process net.
mk and ml are the inputs to this process net from
buffer.

• Type 5 [Asynchronous]. m′
k = d̃imi −

d̃i′min{mi′ ,mk}. Here mi and mi′ are the states
of two different service nets respectively. mk is the
message between these two service nets.

• Type 6 [Synchronous]. m′
k = d̃imin{mi,ml} −

d̃i′min{mi′ ,mk}. Here mi and mi′ are the states
of two different service nets respectively. mk and
ml are the messages between these two service nets,
where ml is usually indicates the request that can be
calculated by Type 5 and mk is the reply.

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 99

© 2014 ACADEMY PUBLISHER

H2 : V2 → Ji is a mapping which can be determined
based on the reachable marking set of coverability tree
through the formula V2 = R1J

T
i .

We claim that it is almost impossible to derive private
key from public key. The reason is as the following. If we
design the k(the maximum number of tokens in the initial
markings) and the range of H1 big enough, the attacker
needs to try all possible initial markings to determine
M+

0 (pi), and then further to determine CT (
∑

(M ′
0)) and

all the Ji, and finally to determine the Ji in the private
key. The whole process is multiple exponentially hard.

B. Encryption and Decryption

1) Steps of Encryption: There are five steps in the
encryption.

(1) For a plaintext P , the sender generates cipertext C ′
1

using symmetric cryptosystems such as AES and 3DES.
(2) Randomly select the initial value M+

0 (pi) of pi, i =
1, 2, . . . , I from the range n1 ≤ M0(pi) ≤ n2, n1, n2 ∈
N+. Following the method to calculate the average num-
ber of tokens of SPN in the steady state and using some
software such as SPNP or GreatSPN, we can compute
U = (u1, u2, . . . , un).

(3) Compute M ′
0(pi), and then get the coverability

tree CT (
∑

(M ′
0)) of SPN

∑
(M ′

0). Randomly select
a row vector Ji which corresponds to the node i in
CT (

∑
(M ′

0)). Based on the function V2 = H2(Ji) =
R1J

T
i in the public key, we compute V2 and thus obtain

the value of V = V2+V3, which is a number with integral
part and decimal part.

(4) The cipertext C1 = (C ′
1, V) is obtained which can

be regarded as the result of the first stage encryption.
(5) Multiple encryption: Regarding C1 as the plaintext,

randomly choose a row vector different from the first time
vector from the coverability tree CT (

∑
(M ′

0)). Repeating
the steps (1)-(4), eventually after r stages, we will get the
cipertext Cr = (C ′

r, Vr).
2) Steps of Decryption: There are four steps in the

decryption.
(1) After receiving the cipertext Cr = (C ′

r, Vr), based
on the initial marking range n1 ≤ M0(pi) ≤ n2, n1, n2 ∈
N+ and the semantics of CPN, we can build an ordi-
nary differential equation group. Applying Runge-Kutta
algorithm, we calculate many values of V3 = H3(U) =
10−pR2U

T at different initial marking values. Then we
find the most closest V3 to the decimal fraction from the
sender. The initial markings M0(pi) for this most closest
V3 are the initial markings selected by the sender.

(2) Based on the value of M+
0 (pi), and

M ′
0(pi) =

{
H1(M

+
0 (pi)), M0(pi) ̸= 0;
0, M0(pi) = 0.

in the public key, we can determine the coverability tree
CT (

∑
(M ′

0)) of SPN
∑

(M ′
0) from the sender.

(3) Building the mapping H2 : V2 → Ji, where
V2 = H2(Ji) = R1J

T
i , and Ji is the row vector of

CT (
∑

(M ′
0)). Find the V2 that matches the integral part

of Vr, thus from mapping H2, we can determine the row
vector Ji selected by sender.

(4) Using Ji for the decryption to C ′
r, we will get the

r − 1 stage cipertext Cr−1 = (C ′
r−1, Vr−1). Repeat the

above steps until we get the plaintext P .

C. Security Measure

1) The Decryption Complexities For The Attacker and
For The Receiver: In order to decipher the text, the
attacker must know the initial marking values selected
by the sender. Normally people will use the method in
section 2.2 to compute average number of tokens for
SPN. The time complexity to compute one time average
number of tokens is O(naP (k,n)), a > 1, here k is
the maximum number of tokens in the initial markings,
P (k, n) is a polynomial of k and n. Since each of
those places pi, i = 1, 2, . . . , I that can be assigned the
initial markings from the range n1 ≤ M0(pi) ≤ n2

has n2 − n1 + 1 possibilities to take the initial values,
thus the computing complexity to get all possible v3 is
(n2 − n1 + 1)IO(naP (k,n)), a > 1. Since the number of
states will increase exponentially as the number of places
and the number of initial markings of places increase, we
assume time to calculate the states is O(bQ(k,n)), where
Q(k, n) is a polynomial of k and n, and b > 1. There
are (n2 − n1 + 1)I possibilities for the sender to select
the initial markings. Since every selected initial marking
M+

0 (pi) corresponds a coverable tree CT (
∑

(M ′
0)), thus

there are also (n2 − n1 + 1)I possibilities to select trees.
Hence, for one time decryption, the complexity is (n2 −
n1+1)I ×O(bQ(k,n))× (n2−n1+1)I ×O(naP (k,n)) =
(n2 − n1 + 1)2I ×O(naP (k,n)bQ(k,n)), a > 1, b > 1.

However, the receiver only needs to solve a group of
ordinary differential equation group and the complexity is
O(n5). When the initial markings are changed, the initial
values to the ordinary differential equation group will be
changed, but the complexity to solve the equation group
still stays the same. Thus to determine the initial marking
of places selected by sender, the receiver at most needs
to solve the equation group (n2 − n1 + 1)I times, so the
complexity for the decryption is (n2 − n1 + 1)IO(n5).

2) The Complexity for Multiple Encryption: In order
to increase the decryption difficulty, we may adopt multi-
stage encryption. The corresponding complexity is as the
following.

(1) Since in every stage the selected row vectors Ji
are different, then the complexity to decipher r-stage
encryption plain text is (n2 − n1 + 1)2rI O(nrarP (k,n)

brQ(k,n)), a > 1, b > 1.
(2) We may increase the process nets in the Petri net,

i.e. to increase the index I in the expression (n2 − n1 +
1)IO(naP (k,n)bQ(k,n)), then as the number of process
nets increase, the complexity will increase exponentially.

(3) We may increase the the maximum number k of
tokens in the initial marking, accordingly, the state space
will expand quickly and attackers can not compress this
expanding state space caused by the increasing number
of tokens.

100 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

In summary, the computing time for an attacker to
compute the average number of tokens is exponential, thus
it is hard to get the coverability tree selected by sender. On
the other hand, in our public key, based on the knapsack
problem (NP-complete problem [6]), we have designed a
Hash function V2 = H2(Ji) = R1J

T
i . Thus the attacking

to our encryption is also a NP-complete problem.

VI. AN EXAMPLE TO DESIGN A PUBLIC-KEY
CRYPTOSYSTEM

A. Preparing Public Key and Private Key

(1) Choose a bounded Petri net as shown in Fig. 7.
Fig. 8(a)(b) can be used for multiple encryption, where
(a) is to increase the number of process nets and (b)
is to increase the Internal States in the process net. In
Fig. 7, M0(p2) = M0(p4) = M0(p5) = M0(p6) = 0,
and the firing rates for the transitions t1, t2, t3 and t4 are
1. M0(p1) and M0(p3) are in the range: 1 ≤ M0(p1) ≤
M0(p3) ≤ 10,M0(p1),M0(p3) ∈ N+.

p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

Figure 7. Petri net for encryption.

p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

(a)
(b)

Figure 8. Extended Petri net for multiple encryption.

(2) Design Hash function H.
i) Define new initial markings:

M ′
0(pi) = V1 =

{
H1(M

+
0 (pi)), M0(pi) ̸= 0;
0, M0(pi) = 0.

=

{
2(M0(pi)), M0(pi) ̸= 0;

0, M0(pi) = 0.

Note that here we design H1(M
+
0 (pi)) = 2(M0(pi)) only

for the convenience, and H1 in the real time is designed
based on the ability to decipher the text, memory and the
calculation speed.

ii) Randomly select R1 = (1, 5, 13, 17, 7, 23) for V2 =
H2(Ji) = R1J

T
i .

iii) Randomly select R2 = (1, 2, 3, 4, 5, 6). Based on
the formula V3 = H3(U) = 10−pR2U

T , we deter-
mine p by calculating the maximum value of R2U

T .
Let M0(p1) = M0(p3) = 10, M0(p2) = M0(p4) =
M0(p5) = M0(p6) = 0, we build the following set of
equations:

m′
1 = min{m2,m6} −m1,

m′
2 = m1 −min{m2,m6},

m′
3 = min{m4,m5} −m3,

m′
4 = m3 −min{m4,m5},

m′
5 = m1 −min{m4,m5},

m′
6 = min{m4,m5} −min{m2,m6},

with the initial values: m1(0) = m3(0) = 10, m2(0) =
m4(0) = m5(0) = m6(0) = 0. Using Matlab, we get
U = (3.3333, 6.6667, 3.3325, 6.6675, 3.3342, 3.3325).
Thus, R2U

T = 90.0002. Since p = min{q ∈ N |10q ≥
90.0002} = 2, we get V3 = H3(U) = 10−2 ×
(1, 2, 3, 4, 5, 6)UT .

Thus the Hash function H would be

V = H(M+
0 (pi), Ji, U) = V2 + V3

= R1J
T
i + 10−pR2U

T

= (1, 5, 13, 17, 7, 23)JT
i + 10−2 × (1, 2, 3, 4, 5, 6)UT .

(3) Private key. First to determine E, which is a set of
ordinary differential equations as the following:

m′
1 = min{m2,m6} −m1,

m′
2 = m1 −min{m2,m6},

m′
3 = min{m4,m5} −m3,

m′
4 = m3 −min{m4,m5},

m′
5 = m1 −min{m4,m5},

m′
6 = min{m4,m5} −min{m2,m6},

with the initial values: 1 ≤ m1(0),m3(0) ≤ 10, m2(0) =
m4(0) = m5(0) = m6(0) = 0. Next to determine H̄2,
which is to determine Ji.

We need to solve the above differential equations
covering all the cases that m1 and m3 take values from
1 to 10. Without loss of generality, we only calculate the
solutions of the differential equation group for the range
1 ≤ M0(p1),M0(p3) ≤ 2. If M0(p1) = M0(p3) = 1,
V3 ≈ 0.09; If M0(p1) = 1,M0(p3) = 2, V3 ≈ 0.13;
If M0(p1) = 2,M0(p3) = 1, V3 ≈ 0.16; If M0(p1) =
2,M0(p3) = 2, V3 ≈ 0.18. Since the decimal fraction of
V3 from sender is 0.092, by comparing with all the cases
of V3 here, we choose the most closest one V3 ≈ 0.09.
From this value, we imply that the sender uses M0(p1) =
M0(p3) = 1 as the initial markings.

Since

M ′
0(si) = V1 =

{
2(M+

0 (si)), M0(si) ̸= 0;
0, M0(si) = 0.

we determine the coverability tree in the situation
M0(s1) = M0(s3) = 2, which is shown in Fig. 9.

Since there are 18 reachable markings in the tree, we
will have 18 row vectors. Based on the formula V2 =

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 101

© 2014 ACADEMY PUBLISHER

202000

112010 201100

022020 111110 111110 200200

021120 021120 110210 112001 110210

020220 022011 020220 111101 022011 202000 111101

021111 112010 021111 021111 201100 110201

111110 020211 022002 111110 200200 020211 200200

021120 110210 112001 110210 021102 112001 021102 110210

Figure 9. Part of the coverability tree.

H2(Ji) = R1J
T
i = (1, 5, 13, 17, 7, 23)JT

i , we define the
mapping H2 : V2 → Ji by Table I.

TABLE I.
INVERSE FUNCTION H2 : V2 → Ji

V2 J1 J2 J3 J4 J5 J6

28 2 0 2 0 0 0
32 2 0 1 1 0 0
36 2 0 0 2 0 0
39 1 1 2 0 1 0
43 1 1 1 1 1 0
47 1 1 0 2 1 0
50 0 2 2 0 2 0
54 0 2 1 1 2 0
55 1 1 2 0 0 1
58 0 2 0 2 2 0
59 1 1 1 1 0 1
63 1 1 0 2 0 1
66 0 2 2 0 1 1
70 0 2 1 1 1 1
74 0 2 0 2 1 1
82 0 2 2 0 0 2
86 0 2 1 1 0 2
90 0 2 0 2 0 2

B. Encryption

The encryption contains the following steps:
(1) With AES, the sender transforms plaintext P to

cipertext C ′
1.

(2) Randomly select M0(p1) = M0(p3) = 1.
By using the method in Section 2.2 and software
SPNP or GreatSPN to calculate the average number
of tokens of SPN, we get U = (u1, u2, . . . , um) =
(0.3077, 0.6922, 0.3076, 0.6923, 0.3846, 0.3076). Thus
V3 = H3(U) = 10−2 × (1, 2, 3, 4, 5, 6)UT ≈ 0.092.

(3) Since

M ′
0(pi) = V1 =

{
2(M+

0 (pi)), M0(pi) ̸= 0;
0, M0(pi) = 0.

=

{
2, M0(pi) ̸= 0;
0, M0(pi) = 0.

we build the the coverability tree of SPN
∑

(M+
0) as

shown in Fig. 9. In the figure we only given part of the
tree. In the tree, the sender randomly choose row vector
(0, 2, 2, 0, 1, 1) as the encryption vector Ji. Since V2 =

H2(Ji) = R1J
T
i = (1, 5, 13, 17, 7, 23)(0, 2, 2, 0, 1, 1)T =

66, we get V = V2 + V3 ≈ 66 + 0.092 = 66.092.
(4) Finally, we get the cipertext (C ′

1, V) =
(C ′

1, 66.092).
Note: For the computing convenience, we only choose

M0(p1) = M0(p3) = 1, and only perform one time
encryption.

C. Decryption

After getting the cipertext C1 = (C ′
1, 66.092), the

receiver knows that the integral part of V is 66. By
checking the table of function H2, we find that the
sender has chosen the vector J13 = (0, 2, 2, 0, 1, 1) for
encryption. Using J13 as the decryption key of AES, we
will get the plaintext P .

VII. RELATED WORK

RSA [21] is the most extensively used public-key
crytosystem, and its security relies on the difficulty
of factoring the large integer problem. Its complexities
of encryption, decryption and attacking are the same:
O(exp(c(logn)(loglogn))1/2), c is a constant and n is a
large factoring number. This expression is subexponential,
not exponential. In our public-key crytosystem, we first
use private key cryptosystem such as AES or 3DES to en-
crypt the plaintext, which belongs to a NP-problem [22].
Then based on the knapsack problem, we design a Hash
function: V = H(M+

0 (pi), Ji, U) = V2 + V3 = R1J
T
i +

10−pR2U
T , where the computing of Ji from V,R1, and

R2 also belongs to a NP-complete problem [6]. Thus the
security of our method is higher than that of RSA after
one time encryption. If applying r-stage encryption, the
security can reach (n2−n1+1)2rIO(nrarP (k,n)brQ(k,n)).

PGP [5] is a protocol for email text encryption. Its core
part is RSA. When encrypting, PGP first compresses plain
text, and then encrypts the compressed plaintext with
session key, finally encrypts the session key with RSA.
Our technique is also based on session key. However,
PGP is based on RSA, while ours is based on NP-
complete problem, thus our security is higher than PGP.
Also because PGP is based on RSA, the encryption is
slow. Since our encryption requires computing average
number of tokens in places of SPN, and decryption is to
solve a group of differential equations, our encryption and
decryption are comparably faster.

MEPKC [8] is designed based on elementary T-
invariants of the Petri net. Petri nets are used as a key-
generator and elementary T-invariants are used as the
encryption keys. After r-stage encryption, the security
is (em)r, which is still an exponential expression. In
MEPKC, the sender needs to construct a small Petri net
such that the net contains as many as possible elementary
T-invariants, where elementary T-invariants are used as the
entryption keys. In our technique, we use the reachable
markings of coverability tree to generate key, and the
coverability tree is comparably easy to get from SPN,
so our encryption is faster than MEPKC.

102 JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

VIII. CONCLUSION

We have developed a new public-key cryptosystm
based on the difficulty to solve average number of tokens
in places of SPN for a given range of initial marking
values, and used CPN to perform the decryption. The
reachable markings in coverability tree of SPN are used as
the encryption key, and the plaintext can be encrypted in
multiple stages. Comparing with the traditional public-key
cryptosystms such as RSA, PGP, our technique has higher
security. Moreover, the encryption and the decryption are
easier.

Usually both the public key and the private key in the
public-key cryptosystem can be used to encrypt plaintext,
such as RSA, ECC, etc. However, in our technique, only
public key can be used for the encryption, so our tech-
nique can not be used for digital signature. To overcome
this shortcoming, we may combine our system with those
public-key cryptosystems that are qualified for digital
signature. Now we use DSA as the example to illustrate
the encryption and decryption process. Assume that the
sender A(with DSA) sends the plaintext P to the receiver
B(with our technique). The public key and private key of
A are KeA and KdA, and public key and private key of
B are KeB and KdB , respectively. A first uses its own
private key KdA to encrypt the plaintext P , and the result
is S = E(P,KdA); then A uses the public key KeB of B
to encrypt S, and the result is C = E(S,KeB); finally A
sends C to B. After B receives C, B uses its own private
key KdB to decrypt C, and obtain S = D(C,KdB);
then uses the public key KeA of A to decrypt S, and
obtain P = D(S,KeA). Thus the secret and the reality
are promised. In this way, our technique can also be used
for digital signature.

In order to increase the attack difficulty, we may
design more complicated hash function H in the public
key. We may also combine our cryptosystem with other
cryptosystems to increase the security. One may notice
that while our technique increase the decryption difficulty
for attackers, it also increase the computing work for the
receivers. Two issues will be solved in the future: 1) How
to store all reachable markings in the coverability tree of
SPN; 2) How to estimate security if the key itself gets
brute force attack.

REFERENCES

[1] U. M. Ascher, L. R. Petzold, Computer methods for
ordinary differential equations and differential-algebraic
equations, Society for Industrial & Applied Mathematis,
Philadelphia, PA, USA, 1998.

[2] R. David and H. Alla, Continuous Petri nets, Proceedings
of 8th European Workshop on Application and Theory of
Petri nets, Zaragoza, Spain, pp.275-294, 1987.

[3] R. David and H. Alla, Autonomous and timed continuous
Petri nets, Proceedings of 11th Intl Conference on Appli-
cation and Theory of Petri nets, Paris, France, pp.367-381,
1990.

[4] T. ElGamal, A public key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Transactions in
Information Theroey, vol.IT-31, no.4, pp.469-472, 1985.

[5] S. Garfinkel, PGP: Pretty Good Privacy, O’Reilly & Asso-
ciates, 1994.

[6] M. R. Garey, D. S. Johson, Computers and Intractability (A
Guide to the Theory of NP-Completeness), W. H. Freeman
and Company, New York,1991.

[7] Q. W. Ge, T. Okamoto, A Petri net based public-key
cryptography: PNPKC, IEICE. Trans. Fundamentals, vol.E-
84-A(6), pp.1532-1535, 2001.

[8] Q. Ge, C. Shigenaga, and R. Wu, A Petri net based
new conception of publickey crytography, Proceedings of
ICFS’02, pp.37-42, 2002.

[9] E. Hairer, S.P. Nϕrsett, G. Wanner, Solving Ordinary Differ-
ential Equations(I)(II), Nonstiff Problems, Second Edition,
Springer-Verlag, 1993.

[10] A. W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm
for solving linear systems of equations, Phys. Rev. Lett.,
vol.103, no. 15, pp.150502-150506, 2009.

[11] W. Henderson, D. Lucic, P. G. Taylor, A net level perfor-
mance analysis of Stochastic Petri Nets, J. Austral. Math.
Soc. Ser. B, vol.31, 176-187, 1989.

[12] K. Hiraishi, Performance evaluation of workflows using
continuous Petri nets with interval firing speeds, Petri
Nets’08, LNCS, vol.5062, pp.231-250, 2008.

[13] C. Lin, D. C. Marinescu, Stochastic high-level Petri nets
and applications, IEEE Transactions on Computers, vol.37,
no.7, pp.815-825, 1988.

[14] M. K. Molloy, Performance analysis using stochastic Petri
nets, IEEE Transactions on Computers, vol. C-31, no.9,
pp.913-917, 1982.

[15] M. K. Molloy, On the integration of delay and throughput
measures in distributed processing models. Ph.D. disserta-
tion, Univ. of California, Los Angeles, 1981.

[16] M. A. Marsan, A. Bobbio, S. Donatelli, Petri nets in per-
formance analysis: An introduction, Petri Nets’98, LNCS,
vol.1491, pp.211-256, 1998.

[17] B. B. Nich, S. E. Tavores, Modelling and analyzing crypto-
graphic protocols using Petri nets, Advance in Cryptology-
LNCS, vol.718, pp.275-295, 1992.

[18] T. Okamoto and S. Uchiyamaa, Recent topics of public-key
cryptography: 1. On the security of elliptic curve cryptosys-
tems, IPSJ Magazine, vol.39, no.12, pp.1252-1257, 1998.

[19] T. Okamoto, E. Fujisaki, and S. Uchiyamaa, Recent topics
of public-key cryptography: Provably secure and practical
public-key encryption, IPSJ Magazine, vol.40, no.2, pp.170-
177, 1999.

[20] L. Recalde, S. Haddad, M. Silva, Continuous Petri nets:
expressive power and decidability issues, ATVA’07, LNCS,
vol.4762, pp.362-377, 2007.

[21] R. L. Rivest, A. Shamir, L. Adleman, A method of
obtaining digital signatures and Public-Key cryptosystems,
Comm. of ACM, vol.21, no.2, pp.120-126, 1978.

[22] A. Salomaa, Public-Key Cryptograpghy, Springer-Verlag,
Berlin, Heidelberg, 1990.

[23] T. Shitayama, A survey of block ciper AES and a view of
the future, IPSJ Magazine, vol. 40, no.2, pp.139-145, 1999.

[24] D. R. Stinson, Cryptography: Theory and Practice, CRC
Press Inc., 1995.

[25] S. A. Teukolsky, W. H. Press, W. T. Vetterling, Numerical
recipes in C++ (2nd edition), Cambridge Univ Press, 1993.

[26] S. Tu, S. M. Shatz, and T. Murata, Applying Petri net re-
duction to support Ada tasking deadlock analysis, Proceed-
ings of the 11th International Conference on Distributed
Computing Systems, pp.96-103, Paris, France, 1990.

JOURNAL OF SOFTWARE, VOL. 9, NO. 1, JANUARY 2014 103

© 2014 ACADEMY PUBLISHER

