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Abstract—Quality assessment for stereoscopic images is a 
challenging issue in three-dimensional research. In this 
paper, we present an objective quality assessment method 
for stereoscopic images by distortion separation. In the 
method, we separate the distortion information for the 
distorted stereoscopic image (i.e., decompose the distorted 
stereoscopic image into restored and disturbed stereoscopic 
images), and use phase-amplitude description model and 
singular value decomposition model to evaluate them 
respectively. The experimental results show that compared 
with other schemes, the proposed method can achieve much 
higher consistency with the subjective assessments. 
 
Index Terms—stereoscopic image quality assessment, 
distortion separation, phase-amplitude description, singular 
value decomposition 
 

I.  INTRODUCTION 

With the great advancement of three-dimensional (3D) 
related technologies [1], 3D video [2] applications have 
drawn increasing attention in recent years. Since 
perceptual issue in 3D are completely different with that 
in 2D case, the necessity for designing 3D image quality 
assessment (3D-IQA) or stereoscopic image quality 
assessment (SIQA) approach is increasingly important [3]. 

In contrast to the 2D case, 3D quality of experience 
(QoE) needs to consider the various factors that 
contribute to the overall visual experience in 3D vision 
[4], e.g., depth perception, visual comfort, etc. Therefore, 
the direct use of 2D image quality assessment (2D-IQA) 
in measuring 3D image quality may not be 
straightforward, because the above perceptual attributes 
are not considered. A straightforward way of applying the 
state-of-the-art 2D-IQA methods to 3D-IQA is to 
evaluate the two views of the stereoscopic image and the 
estimated disparity map separately, and then combine 
them into an overall score. Boev et al. combined the 
monoscopic quality component and the stereoscopic 
quality component for developing a stereo-video quality 
metric [5]. Gorley et al. proposed a Stereo Band Limited 
Contrast (SBLC) algorithm to evaluate the stereoscopic 
image quality [6]. You et al. investigated the capabilities 
of some common 2D quality metrics, and integrated the 
disparity information into quality assessment [7]. Benoit 
et al. presented a linear combination for disparity 
distortion and the measurement of 2D image quality on 
both views [8]. However, the quality of stereoscopic 
image is not a simple combination of the qualities of left 

and right images, and it is not effective to assess the 
quality of disparity maps using 2D-IQA methods [9]. 

Many 3D-IQA methods were proposed by taking 
binocular properties into account. Maalouf et al. 
computed the cyclopean image from left and right images 
to simulate the brain perception, and used contrast 
sensitivity coefficients of cyclopean image as the basis of 
evaluation [10]. Jin et al. grouped the similar blocks from 
left and right views of stereoscopic image into a 3D stack, 
and evaluated the quality by 3D-DCT and considering 
contrast sensitive function and luminance masking [11]. 
Wang et al. proposed a metric by considering the 
binocular spatial sensitivity to reflect the binocular fusion 
and suppression properties [12], but the process of the 
binocular perception were not considered since only a 
weighted average of left and right views was used. 
Bensalma et al. proposed a Binocular Energy Quality 
Metric (BEQM) by modeling the simple cells responsible 
for the local spatial frequency analysis and the complex 
cells responsible for the generation of the binocular 
energy [13].  

In general, distortion in an image will cause the 
following two cases: 1) losing some visual information; 2) 
adding some noticeable artifacts. Different types of 
quality degradation will have different influence on the 
perceptual quality. In this paper, we try to separate the 
distortion from the distorted stereoscopic image, and use 
different models to evaluate the restored and disturbed 
stereoscopic images respectively. The rest of the paper is 
organized as follows. Firstly, the proposed objective 
quality assessment metric is described in Section II. Then, 
experimental results are shown in Section III. Finally, 
conclusions and future work are given. 

II.  PROPOSED STEREOSCOPIC IMAGE QUALITY 
ASSESSMENT METRIC 

The framework of the proposed quality assessment 
metric is illustrated in Fig.1. Given the original and 
distorted stereoscopic images (case of left and right 
images), the distorted image is first decomposed into a 
restored and a disturbed images by distortion separation 
strategy, and phase-amplitude description (PAD) model 
and singular value decomposition (SVD) model are used 
to measure their similarities with the original image 
respectively. Finally, binocular combination is made to 
get a total quality score.  
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Figure 1. The framework of the proposed quality assessment metric. 

A. Distortion Separation From Stereoscopic Image 
It is known that distortion in image will cause two 

cases: 1) losing some visual information; 2) adding some 
noticeable artifacts. In this work, we classify the types of 
distortions into two group, information-loss distortion 
and artifact-additive distortion. Specifically, we separate 
the distorted image into a restored image and a disturbed 
image, and measure the detail and redundancy 
degradation. Firstly, considering that wavelet transform 
decomposes image into different frequency, we use 
discrete wavelet transform (DWT) to decompose the 
original and distorted images into a set of subbands. In 
this work, we adopt block-based image restoration in 
wavelet domain. Supposed that D(λ,θ,i,j) (8×8 block in 
the experiment) denotes the DWT coefficients on 
different scales and along different orientations of the 
(i,j)-th block of the distorted image (denoted by spatial 
scale index λ and orientation index θ), and O(λ,θ,i,j) 
denotes the corresponding DWT coefficients of the 
original image. The scale factors are given by [14] 
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Since only DWT coefficients in the orientations (θ≠1) 
are restored, the detail information of the original image 
is preserved in the restored image while the added 
redundancy information is discarded. 

The DWT coefficients of the redundancy image is 
obtained by 

( , , , ) ( , , , ) ( , , , )A i j D i j R i jλ θ λ θ λ θ= −                   (3) 
The disturbed image is described by 

'( , , , ) ( , , , ) ( , , , )D i j O i j A i jλ θ λ θ λ θ= +                  (4) 
    Finally, the restored images and the disturbed 

images are generated by inverse-transforming their 
respective DWT coefficients. Fig.2 illustrates the results 

of the proposed separation method for different distortion 
types.  

B.  Quality Assessment Metric 
For the restored image, the detail is preserved while 

the redundancy is discarded. Therefore, structural 
similarity between the original and restored images is 
expected to give a reasonable estimation of quality 
degradation. We get the local phase (LP) and local 
amplitude (LA) referring to the method in [15]. Then, the 
phase and magnitude similarities for each pixel in the left 
image are defined as 
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where C1 and C2 are constants to avoid the denominator 
being zero. Finally, the final quality score for the left 
image is obtained by summing the scores of all pixels 
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                                                                                       (7) 
For the disturbed image, the redundancy information is 

added on the original image. Therefore, energy similarity 
between the original and restored images is used to 
measure the quality degradation. In this work, we use the 
singular values as feature basis for the task [16]. The 
energy change between the original and disturbed images 
in the singular values is calculated 
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where ( )org
kS and ( )res

kS denote the singular value vectors of 
the original and restored images, respectively, and ⋅  
denotes the inner product. Finally, the final quality score 
for the left image is obtained by averaging the changes 
over all the blocks  
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Figure 2. Results of the proposed separation method for different types of distortion, from top to bottom row: the distorted images, the restored 
images, the redundancy images, and the disturbed images. For left to right: JPEG, JPEG2000, Gaussian Blur, White Noise and H.264. 
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Considering that the detail and redundancy losses in 
the distorted image are superimposed, the above two 
quality scores l

PAQ and l
SVDQ are combined into an overall 

score by a linear weighted sum method, i.e., 
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where w1 and w2 are parameters used to adjust the 
relatively importance of redundancy adjunction and detail 
loss in the quality degradation. In this paper, the 
parameters can be determined by training. Similarly, the 
quality score QR for the right image can be measured by 
the same manner.  

C.  Binocular Combination 
After having obtained the quality scores QL and QR, the 

next step is to combine the two quality scores into a final 
score. The direct way is to combine the quality scores QL 
and QR by average weighting. However, the weight-
averaged method is not effective because binocular 
combination property is not well considered. In this work, 
we use two-stage gain control model to combine the two 
quality scores [17] 
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and p, q, m, z are model parameters. In the experiment, 
the same parameter setting with [17] is used.  

III.  EXPERIMENTAL RESULTS 

A.  Stereoscopic Image Quality Database 
In the experiment, we have used the database presented 

in [18]. Twenty-six non-expert adult viewers were 
participated in the subjective evaluation of the database. 
According to Double Stimulus Continuous Quality Scale 
(DSCQS) testing method described in ITU-R 
recommendation BT.500-11, the subjective ratings for the 
distorted stereoscopic images were obtained on a scale of 
0-10. The database includes 12 original stereoscopic 
image pairs, from which 312 distorted stereoscopic 
images are generated with five types of distortion: JPEG, 
JPEG2000, Gaussian Blur, White Noise and H.264. The 
symmetric distortions are added on left and right images. 
More specifically, there are 60, 60, 60, 60 and 72 
distorted stereoscopic images in the database with JPEG, 
JPEG2000, Gaussian Blur, White Noise and H.264 
distortions, respectively; there are different distortion 
levels for each distortion type. The corresponding 
differential mean opinion score (DMOS) values are 
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 (a) Akko&Kayo                                (b) Altmoabit                                       (c) Balloons                                  (d) Doorflower 

    
(e) Newspaper                                    (f) Kendo                                          (g) Xmas                                        (h) Lovebierd1 

                       Figure 3. Eight selected reference left images in the 3D database [18]. 

provided. Eight selected reference left images used in the 
database are shown in Fig.3.  

B.  Performance Determination 
In the experiment, four commonly used performance 

indicators are employed to further evaluate the metric: 
Pearson linear correlation coefficient (PLCC), Spearman 
rank order correlation coefficient (SROCC), Kendall 
rank-order correlation coefficient (KROCC), and root 
mean squared error (RMSE), between the objective 
scores after nonlinear regression and the subject scores. 
Among these four criteria, SROCC and KROCC are 
employed to assess prediction monotonicity, and PLCC 
and RMSE are used to evaluate prediction accuracy. For 
a perfect match between the objective and subjective 
scores, PLCC=SROCC=KROCC=1 and RMSE=0. To 
obtain the relationship between the objective scores and 
the subjective scores, we use the nonlinear regression 
with four-parameter logistic function by 

1 2
2

3 4
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1 exp( ( ) / )pDMOS

x
β β

β
β β

−
+

+ − −
            (12) 

where β1, β2, β3 and β4 are determined by using the 
subjective scores and the objective scores. 

In the experiment, in order to determine the parameters 
w1 and w2, we select a subset of the database to train the 
parameters by optimizing the PLCC values between the 
objective and subjective scores. The final parameter 
determination results is w1=0.9208, w2=0.0792. It is 
obvious that the restored image is more important than 
the disturbed image in measuring the quality degradation. 

C.  Overall Assessment Performance 
In order to evaluate the performance of the proposed 

scheme, we compare the evaluation results with two 2D-
IQA metrics MSSIM [19], SVD [20], and one SIQA 
metric (named as Wang-SIQA) [12]. The former two 
schemes directly estimate the quality of each view 
separately and generate a weighted average score. The 
results of PLCC, SROCC, KROCC and RMSE are 
presented in Table I. From the table we can see that the 
proposed scheme outperforms the other schemes. For 

MSSIM and SVD metrics, since they are directly 
extended from the 2D case and do not take the binocular 
properties into account, the overall performance is far 
worse than the proposed scheme. For Wang-SIQA metric, 
even though it may be effective for some individual 
distortion types, the overall assessment performance is 
not very high; the reason is that uniform assessment is 
adopted for the left and right images, while in the 
proposed scheme, the similarity measured from the 
restored image and disturbed image respectively will 
have a good correspondence with the subjective scores. 
Fig.4 gives the scatter plots for the MSSIM, SVD and 
Wang-SIQA metrics. Fig.5 gives the scatter plots for the 
independent and overall distortion types for the proposed 
scheme, respectively. The vertical axis denotes the 
subjective ratings of the perceived distortions and the 
horizontal axis denotes the predicted objective scores. 
From the figures, the high accuracy fitting results show 
the effectiveness of the proposed scheme. 

IV.  CONCLUSIONS 

This paper presents a quality assessment method for 
stereoscopic images by distortion separation. The 
prominent advantage of the proposed method is that we 
separate the distortion from the distorted stereoscopic 
image, and use different singular value decomposition 
(SVD) model and phase-amplitude description (PAD) 
model to evaluate the restored and disturbed stereoscopic 
images respectively. The experimental results show that 
the proposed method can achieve much higher 
consistency with the subjective assessments. In this 
research, only simple image separation model is used for 
stereoscopic image without considering the binocular 
characteristics. In the future work, more comprehensive 
study of various distortions affecting depth perception, 
visual comfort is needed, and these cues should be fully 
considered in the separation model. 
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Figure 5. Scatter plots of objective scores vs. subjective scores for the proposed scheme: (a) JPEG; (b) JPEG2000; (c) Gaussian Blur; (d) White Noise; 
(e) H.264; (f) All distortions. 
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