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Abstract—For a Chinese speech synthesis system, 
hierarchical prosody structure generation is a key 
component. The prosodic word, which is the basic prosodic 
unit, plays an important role in the naturalness and 
intelligibility of Chinese Text-To-Speech system. However, 
obtaining human annotations of prosodic words to train a 
supervised system can be a laborious and costly effort. To 
overcome this, we explore active learning techniques with 
the goal to reduce the amount of human-annotated data 
needed to attain a given level of performance. In this paper 
Active Maximum Entropy Markov Model(AMEMM) is 
used to predict Chinese prosodic word boundaries in 
unrestricted Chinese text. Experiments show that for most 
of the cases considered, active selection strategies for 
labeling prosodic word boundaries are as good as or exceed 
the performance of random data selection. 
 
Index Terms—Prosodic Word, Text-to-Speech System (TTS), 
Active Learning, Maximum Entropy Markov Model 
 

6B6B6B6B6BI.  INTRODUCTION 

In Mandarin speech, the prosodic word is the basic 
rhythmic unit rather than lexical word. In real speech, 
prosodic words should be uttered continuously and 
closely without breaks, which play an important role in 
the naturalness and intelligibility of Chinese Text-to-
Speech (TTS) system. Prediction of prosodic word from 
the text has become a key component in the prosodic 
analysis module of the TTS system. The Experiments 
show that using the prosodic word as the basic prosodic 
units improves naturalness over using lexical words[1]. 
Because the prosodic words greatly influence the rhythm 
of synthetic utterances, proper prediction of the prosodic 
word boundaries will directly affect the naturalness and 
correctness of TTS directly. 

At present, from existing research in the field there 
have been some effective methods put forward. The 
existing methods for prosodic words prediction fall into 
two categories. 

Earlier work usually adopted rule-based methods, 
beginning from Gee and Grosjean's work on performance 
structures [2]. Jianfen Cao [3,4] and Hongjun Wang [5] 
have also carried out the similar investigation for Chinese. 
The common idea of all these methods is to find some 
rules that could recreate the prosodic structure of a 
sentence from syntax, by way of a large number of 
experiments and empirical observation. The method is 
easily explicable and understandable, but it has its 
limitations. It poses strict demand for the system 
developer to summarize these rules. Moreover, it is hard 
to update and improve in practical applications, and the 
set of rules is domain specific, which hinders its general 
applicability [6]. 

With the rapid development of statistical machine 
learning, machine learning approaches have been more 
and more widely investigated for prosodic boundary 
prediction. Many different statistical methods have been 
tried, including Classification and Regression Tree 
(CART) used by Wang and Hirschberg [7], and Hidden 
Markov Model proposed by Paul and Alan [8]. Zhao has 
described methods for automatically predicting prosodic 
phrase by combining decision tree and TBL [9]. In Li’s 
experiment, he attempted to predict prosody phrase break 
based on Maximum Entropy(ME) Model [10]. In [11], a 
statistical model based on word length, part of speech 
(POS) and current word was introduced for prosodic 
word tagging. In this model, each prosodic word 
boundary will not affect the next boundary. In [12], a 
SVM based method was proposed. An HMM based 
statistical method for prosodic word prediction was used 
in [13]. In [14], Zhao has described methods for 
automatically predicting prosodic word by combining 
MEMM [15] and TBL [16]. 

However, automatically predicting prosodic word 
boundaries with high precision and recall ratio requires a 
large amount of hand-annotated data, which is expensive 
to obtain. Meanwhile unlabeled data may be relatively 
easy to collect, but there have been few ways to use them. 
Active learning overcomes this problem by using large 
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Figure 1.  HMM(a) and MEMM(b)[15] 

amounts of unlabeled data together with the labeled data, 
to build better classifiers. 

In this paper, we propose an alternative active learning 
strategy based on MEMM [15] for the prosodic word 
boundary prediction task. Without large-scale labeled 
data, the proposed method greatly reduces the training 
time and gets similar or better results when compared to 
the conventional supervised learning model. 

Active learning has been studied in the context of 
many natural language processing (NLP) applications 
such as information extraction [17,18], text classification 
[19,20], word segmentation [21-23], named entity 
recognition(NER) [24]  and chunking [25]. Active 
learning has also been applied to support-vector machines 
[26,27].  In the language processing framework, 
uncertainty-based methods have been used for automatic 
speech recognition [28]. To the best of our knowledge, 
active learning has not been used for prosodic word 
prediction. 

The paper unfolds as follows: Section 2 describes 
MEMM; the principles and mathematical representation 
of MEMM are introduced. Section 3 presents the MEMM 
based method to predict the prosodic word boundary in 
detail. Section 4 gives the description of the active 
learning model. Section 5 gives the evaluations on each 
method. And the experiment results and discussion are 
made in Section 6. Section 7 presents the conclusion and 
the view of future work. 

7B7B7B7B7BII.  MAXIMUM ENTROPY MARKOV MODEL 

The Hidden Markov model (HMM) is a powerful tool 
for predicting sequential data, and has achieved great 
success in the last decade.  

However, HMM assumes that features are  
independent. As a generative model, HMM defines a 
joint distribution over label and observation sequences 
means that all possible observation sequences must be 
enumerated; as a result, richer features are not easily 
added. The second problem is that it sets the HMM 
parameters to maximize the likelihood of the observation 
sequence; however, it is inappropriately uses a generative 
joint model to solve a conditional problem in which the 
observations are given. 

Compared with HMM, maximum entropy Markov 
model(MEMM) and other discriminative finite-state 
models can easily use more features. As an alternative to 
HMM, we offer MEMM to address two HMM problems. 
First, MEMM maximizes the conditional probability of 
the sequential data rather than the joint probability, as 
HMM does. As sequence labeling task is usually taken as 
a problem of conditional probability, MEMM is the more 
appropriate tool to use. Second, MEMM can exploit 
overlapping features by estimating the probability under 
the maximum entropy framework.  

MEMM is a conditional probability model in which 
the HMM transition and observation functions are 
replaced by a single function 1( | , )i iP s s o−  that provides 

the probability of the current state is  given the previous 

state 1is −  and the current observation o . In contrast to 
HMM, in which the current observation only depends on 
the current state, in this model the current observation 
may also depend on the previous state, as shown in 
Figure 1[15]. 

 
MEMM estimates the probability for 1( | , )i ip s s o−  

under the ME principle in order to utilize the overlapping 
features. The ME principle assumes that the trained 
model is consistent with certain constraints derived from 
the training data, and it makes the fewest assumptions 
about the data. To predicate the current state s, the 
context information of s is extracted from the training 
data and represented as the feature function [29]: 

* *1
( , )

0
if h h and s s

f h s
otherwise

            =  =
=  

         
             (1) 

where h  is the context information of s , and *h  (or 
*s ) is the concrete instance of h  (or s ).The following 

constraints are imposed so that the expectation for each 
feature in the learned model is consistent with its 
empirical value in the training corpus. More formally, the 
constraints can be expressed as [29]: 

( ) ( )p pE f E f=                                                       (2) 

where   ( )pE f  is the empirical expectation defined as 




,
( ) ( , ) ( , )p

h s
E f p h s f h s= ∑                                    (3) 

( )pE f  is the expectation model defined as 

,
( ) ( , ) ( , )p

h s
E f p h s f h s= ∑                                    (4) 

( , )p h s is further decomposed according to the 
multiplication rule: 

( , ) ( ) ( | )p h s p h s h= ×                                            (5) 
For efficiency, the following modification is usually 

made: 
( , ) ( ) ( | )p h s p h p s h≈ ×                                        (6) 

The expectation model is then reformulated as 


,
( ) ( ) ( | ) ( , )p

h s
E f p h p s h f h s= ∑                          (7) 
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西方 很 程度 忽视 非洲 债务国家 在 上 了 的大

PW PW PW PW PW PW PW

PP PP PP

U

 
Figure 2.  Prosodic structure tree (U for intonation phrase, PP for 

prosodic phrase, PW for prosodic word) 

Under these constraints, the ME principle guarantees a 
learned model that is as uniform as possible. It can be 
obtained by maximizing the conditional entropy of the 
training data [29]: 


,

( ) ( ) ( | ) log ( | )
h s

H p p h p s h p s h= −∑                (8) 

So it defines each state-observation transition function 
to be a log-linear model: 

'
1( | ) exp( ( , ))

( , ')s i i
i

P s o f o s
Z h s

λ= ∑                (9) 

In Formula(9), ( , ')Z h s is a normalization factor. iλ is 
the multiplier parameter with respect to each feature 
function which can be estimated by Generalized Iterative 
Scaling (GIS), Improved Iterative Scaling (IIS) [30] or L-
BFGS[31] algorithms. 

Finally the Viterbi dynamic programming algorithm is 
used to search for the best sequence of states. 

8B8B8B8B8BIII.  MEMM BASED METHOD FOR PREDICTION OF PROSODIC 
WORD BOUNDARIES 

0B0B0B0B0BA.  Prosodic Words 
Experiments show that Chinese utterance is structured 

in a prosodic hierarchy. As proposed by Cao [32], 
prosodic word(PW), prosodic phrase(PP) and intonation 
phrase(IP) are the three prosodic units, which are in a 
hierarchical relation, utilized in the prosodic scheme for 
our Mandarin speech synthesis system. An utterance can 
contain several IPs, an IP can contain several PPs, and a 
PP can contain several PWs respectively. It is shown that 
the prosodic word is more likely to be two syllables long 
and very few prosodic words will have more than 3 
syllables. Figure 2 shows the prosodic structure of a 
Chinese sentence. 

In the prosodic hierarchy tree, the lexicon word is the 
smallest unit. The task of building prosodic structure 
could be reduced to deciding the type for each syntactic 
word boundary, which is actually a classification problem. 

For automatic prediction of prosodic word boundaries, 
the sentences in training corpus are labeled with follows: 

XiFang/s/S GuoJia/n/S Zai/p/B Hen/d/I Da/a/E 
ChengDu/n/B Shang/m/E HuShi/v/B Le/u/E 
FeiZhou/ns/B De/u/E ZhaiWu/n/S。/w 

(Western Countries have ignored African’s debt to a 
large degree) 

Here ‘B’(Beginning) represents the beginning of a 
prosodic word, ‘E’(End) is the end of a prosodic word, 
‘I’(Inside) represents the middle of a prosodic word. 
‘S’(Single) means that the prosodic word includes one 
lexicon word or the prosodic word is only a part of a 
lexicon word. 

Therefore, the prosodic word prediction converts to a 
sequence data labeling problem. Due to the achievement 
of the MEMM, MEMM  is adopted to model this labeling 
process. 

1B1B1B1B1BB.  Feature Selection in Prosodic Word Prediction 
Like Li [9], a semi-automatic approach is used for 

feature selection in the paper. Features are obtained by 
two steps, the first of which is to establish feature 
templates, and the second is to extract features from 
training corpus according to the feature templates. 

Feature templates are established manually from 
context information. For our specific application, most 
commonly used features include the part-of-speech(POS), 
the length in syllables and the word itself of the words 
surrounding the boundary. The neighbor words are 

restricted to two words before the boundary and one word 
after the boundary. 

The features used in the model are shown in Table 1. 
Because prosodic word prediction is a complicated 

labeling problem, atomic features of words and POS tags 
are not sufficient to describe actual language 
phenomenon. Based on the atomic features, combined 
features are created to describe the context relationship. 
Some examples of combined templates are shown in 
Table 2. 

TABLE I.   
ATOMIC FEATURES USED IN MEMM 

Feature tag Feature explanation 

W-1 previous lexicon word 

W0 current lexicon word 

W+1 next lexicon word 

P-1 Part-of-speech of the previous lexicon word 

P0 Part-of-speech of the current lexicon word 

P+1 Part-of-speech of the next lexicon word 

WL-1 The length of the previous lexicon word, in Chinese 
characters 

WL0 The length of the current lexicon word, in Chinese 
characters 

WL+1 The length of the next lexicon word, in Chinese 
characters 

 

TABLE II.   
 EXAMPLES OF COMBINED FEATURES USED IN MAXIMUM 

ENTROPY MARKOV MODEL 

Combined 
features 

P-1P0P+1,W-1W0W+1, W-1W0,W0W+1,W-1W+1,W-
1P+1,P-1P+1,P-1W+1, P0P+1,W0P+1,W0P0,P-

1W0,P0W+1 
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9B9B9B9B9BIV.  ACTIVE LEARNING ALGORITHM 

Using the supervised learning methods, large number 
of labeled data is required for training these models. 
Labeling-required training data is a time-consuming job. 
Reduction of the dependence on large amount labeled 
training data relies on great growth of learning ability. 
Active learning is a solution for the problem with scarce 
labeled data and rich unlabeled data in supervised 
learning. 

In the active learning framework, the statistical 
learning model iteratively selects the instances on which 
it is going to be trained on. In the widely used pool-based 
approach, we start with a small labeled training set L and 
a large pool of unlabelled dataU . In each round, a model 
is trained on L and it is used to select a batch n of 
instances fromU which are considered to be informative. 
Then these selected samples are annotated by domain 
expert, added to L and the loop is repeated. The iteration 
becomes halt when the stopping criterion is met. The 
active data selection is expected to improve the system 
accuracy compared with the random data selection. 

Generally an active learning approach consists of two 
independent parts: ( ,f q ), where f denotes the learning 
machine, namely some model as mentioned before, and 
q denotes the query function ,i.e. selection function 
which implements the selection to select the most 
informative samples from U . So the most important part 
in active learning method is the query function q which 
mainly decides an algorithm performance of active 
learning. 

2B2B2B2B2BA.  Selection Algorithm 
Unlabeled samples which a classifier labels with low 

confidence are considered to not have been learned well 
enough and considered good candidates for labeling in 
order to refine the classifier’s expertise. We utilize the 
probabilistic confidence of the MEMM to assign the 
degree of uncertainty to an example. In the case of a 
probabilistic classifier, such as the MEMM employed in 
this work, confidence can be directly assessed via the 
posterior probability assigned to an observation by the 
following Equation. 

* *
1arg max(1 ( | , )x P y x λ= −                            (10) 

Let x be some observed input data sequence, such as a 
sequence of words in training data, where *

1y  is the most-
likely label sequence obtained by the Viterbi decoder. 

The entropy criterion can be approximated instead over 
the set N of N -best sequences, leading to the following 
expression: 

* arg max ( )
arg max ( | ; ) log ( | ; )

arg max ( | ; ) log ( | ; )
y

y N

x x
P y x P y x

P y x P y x

ϕ
λ λ

λ λ
∈

=
     = −

     ≈ −

∑
∑

 (11) 

But the function mentioned above has its limitation 
[33]. In our study, we prefer not only the most 
informative example in terms of uncertainty measure, but 
also the most representative example in terms of density 
measure. The density measure can be evaluated based on 
how many examples there are similar or near to it. 

To address these issues, we propose a modified 
information density query strategy based on MEMM, 
which is formulated as (12). 

1

1( *) cos( , ) ( ( | ; ) log ( | ; ))U u
u

DS x x x P y x P y x
U

λ λ
=

= × − ×∑ ∑ (12) 

An example with larger value *( )DS x means the 
node has the larger uncertainty and is more useful 
information for the system. The density uncertainty 
measure is used to rank the unlabeled instances and select 
a certain number of unlabeled instances to update the 
training instance set for the next iteration. 

10B10B10B10B10BV.  EXPERIMENT 

3B3B3B3B3BA.  The Experiment Corpus 
In our experiments, a speech corpus for training and 

testing are used. 11000 sentences are randomly selected 
from the People’s Daily corpus read by a 
radiobroadcaster. The sentences with three-level prosodic 
boundaries are labeled manually by listening to the record 
speech. 

To check consistency of annotation across different 
people, an exploratory experiment was carried out. Three 
annotators were first trained on the same 100 sentences. 
At this stage, they were required to discuss criteria for 
annotation so that they could achieve agreement on most 
of the annotations in the 100 sentences. Then they were 
asked to annotate a small subset of the corpus. All three 
annotators achieved agreement on 85%. That is to say 
pretty good consistency existed among the three 
annotators. 

The sentences of the corpus are also processed with a 
text analyzer, where Chinese word segmentation and 
part-of-speech tagging are accomplished in one step using 
a statistical language model. The segmentation and 
tagging yields a gross accuracy rate over 96.5%. 

4B4B4B4B4BB.  The Evaluation Criteria 
The precision, recall ratio and F1-score are adopted as 

the evaluation criteria. The precision and recall are 
defined as: Pre= 1 2/C C , Rec= 1 3/C C . 1C  is the number 
of prosodic phrase boundaries correctly recognized, 2C  is 
the total number of prosodic phrase boundaries 
recognized, and 3C represents the total number of real 
prosodic phrase boundaries in the test corpus. 

The F1-score is calculated 
as: 2 Pr Re /(Pr Re )F e c e c= × × + . 

11B11B11B11B11BVI.  RESULTS AND DISCUSSION 

Two factors may influence the performance of active 
learning. One is the size of the initial labeled instance set, 
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and the other one is the number of classified unlabeled 
data selected for the next iteration. 

A set of experiments are developed for active learning 
with different sizes of initial labeled instance sets. The 
testing size is the same. The stopping point is 100. During 
each iteration, the top 100 most informative samples were 
picked up, labeled by annotators and added into the 
training set. The experimental results of F1-score are 
shown in Table 3. The second column shows the 
performance of the MEMM using just the initial data. 
And the performance after active learning is shown in the 
third column in Table 3. 

Then, we design the experiments of active learning 
with different numbers of selected unlabeled data for the 
next iteration. In the experiment, the size of initial 
training set L  is 100.The experimental results of F1-
score are shown in Table 4. 

In order to show the effective of active learning, the 
results on the active learning method for MEMM are 
compared with the results when the instance is chosen 
randomly from the training corpus in Table 5. The results 
are also obtained based on MEMM when the instance is 
chosen randomly from the training corpus. It is easy to 
see that the active learning approach outperforms the 
random sampling, in spite of the result of active learning 
is lower than the result of the general MEMM with total 
10,000 sentences. 

Due to difference in the corpus and evaluation metric, 
these results may not be comparable in all respects. Yet 
from the statistics above, we could safely say that 
MEMM model combined with active learning method is 
more efficient to resolve prosodic word prediction 
problem. 

 

A. Results 

 
 
 
 
 
 
 
 
 
 

 

12BVII.  CONCLUSION 

In this paper, we introduce an active learning method 
to solve the task of prosodic word prediction. To the best 
of our knowledge, the presented work is the first to apply 
AMEMM to Chinese prosodic word prediction. 
Experiments show that the method can achieve 
comparable performance to the supervised learning 
models for prosodic word prediction. 

Our future work is to incorporate more contextual 
information into the models. How to integrate that 
information into MEMM and further improve the 
performance of prediction in terms of the precision, recall 
and F1-score is one of the directions in the future. 
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