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Abstract— A single polymer chain with one end tethered to 
an impenetrable flat surface is simulated by using Monte 
Carlo simulation method. The polymer chain is generated 
using self-avoiding walk method in the simple cubic lattice. 
The monomer does Brownian motion by the bond-
fluctuation method in the simulation. After a long Monte 
Carlo step, the conformation of the chain reaches 
equilibrium. There is a scaling relation between the surface 
contact number M and the chain length N at the critical 
adsorption temperature Tc. The scaling algorithm is 
presented to determine the critical adsorption point Tc by 
the variance between the interpolation value and the 
curve fitting value. The dependence of the surface contact 
number M on the chain length N is presented near the 
critical adsorption point Tc by two critical exponents φ and δ. 
The results provide a new efficient method to locate the 
critical adsorption point and to find out the critical 
exponents. 
 
Index Terms—simulation, chain, critical adsorption, scaling 
method  

I.  INTRODUCTION 

The critical adsorption of polymer chain on the surface 
is a hot research topic for polymer science, bioinformatics 
and other aspects [1-3]. The adsorption of polymers is 
complex and is influenced by many factors. The 
adsorption mechanism is still not well explained by the 
research achievements. The studies are often carried out 
by means of computer modeling. The simplest model is a 
linear polymer chain which is made up of a large number 
of monomers with the same structure as concatenation. 
The monomers move or rotate for their thermal motion 
which changes the conformation constantly. The 

molecular weight of the polymer chain is always large, so 
the number of conformations is also very large for long 
polymer chain. Hence, the conformation statistics of a 
single polymer chain is a complex computational problem 
and is often performed by computer simulation. The 
conformation and the shape of the chain depend on the 
solvent, and the environmental factors such as the 
temperature, which increases the complexity of the chain 
conformation. 

The behavior of the polymer chains on the interface 
can be applied to many fields, such as water treatment, 
solid-liquid separation and pharmaceutical materials. The 
study of polymer adsorption has important scientific and 
application value for life sciences, pharmaceutical 
sciences, materials science and other fields. The behavior 
of the polymer chains in the interface is an important 
research direction of material science, information 
science, biology and other fields [4-12]. 

The conformation of polymer is not only related to the 
structure of the molecule itself, but also related to 
external conditions, such as solvent, temperature, and the 
surface material. In this paper, self-avoiding walk method 
is used to simulate the polymer chain. And then we use 
the bond fluctuation model to simulate the random 
thermal motion of monomers. The monomer in contact 
with the surface has an attraction interaction, which is 
related to the temperature. Monte Carlo method is used to 
simulate the conformational properties of self-avoiding 
chain in different temperatures. We analyze the computer 
simulation data and calculate the critical adsorption 
temperature by the improved EKB (Eisenriegler, Kremer, 
and Binder) scale algorithm [6]. We interpolate some 
values between the simulation sample data and then do 
linear fit to calculate the critical adsorption temperature 
and the crossover exponents. We found that two 
exponents can be better to represent the surface contact 
number near the critical adsorption point than that of one 
exponent. 
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II.  ALGORITHM OF SIMULATION CHAIN 

A. Three-dimensional Lattice Space Model 
Three-dimensional space Lx × Ly × Lz is presented as 

the cubic grid space G (x, y, z) by the simple cubic lattice. 
In this cubic lattice model, each lattice point can be 
occupied by one monomer. The space coordinates (x, y, z) 
of monomers are confined at the lattice point. The 
periodic boundary conditions are performed in the x, y 
directions. An infinite large surface is placed at z = 0, and 
is not to be crossed by chain. All monomers in the chain 
are located above the surface (z> 0). 

B. Chain Growth Model 
Polymer chain is made up of many monomers that are 

joined together one by one. The chain length N means the 
polymer chain with N repeating monomers. If all the 
repeating monomers belong to one type, the polymer 
chain is referred as a homogenous polymer. In this paper, 
we consider only homogenous polymer chain. Linear 
polymer chain is the simplest structure without any 
branches. The monomers are joined together with the 
bond length and the rotation angle. From the perspective 
of the computer simulation, the polymer chain, which 
contains N repeating units, is generated by walking N step 
as shown in Fig. 1.  
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Figure 1 The sketch of a self-avoiding chain in 3D space. 
 
Each lattice point can only be occupied by one 

monomer in the lattice chain model, so the monomer 
walking method is known as self-avoiding walk (SAW). 
At some time, the conformation of polymer chain is 
completely random. So Monte Carlo method is 
performed as follows: 

Step 1: Initialize all the grid space G (x, y, z) = 0 (x, y, 
z for the coordinate of space lattice). The first monomer 
of the chain is fixed at the grid points (0,0,1), i.e. G (0,0,1) 
= 1, then the chain grows step by step using self-avoiding 
walk in the cubic lattice space with the walking step unit. 

Step 2: The n-th monomer walking direction kn is 
generated randomly according to  

kn=INT[（b-a+1）*rn]+a                  (1) 
from the integer sequence among [a, b]. Each lattice has 
six nearest neighbors in three-dimensional cubic space, so 
we set a = 1 and b = 6. Then an integer kn generates 
randomly among [1, 6] as a walk direction and the 

pseudo-random number rn belong to (0, 1). INT is  a 
rounding function. 

Step 3: The position of ( n + 1 )-th monomer is decided 
by the n-th monomer position and the direction to walk. 
The coordinate position of ( n + 1 )-th monomer is 
presented as (xn+1, yn+1, zn+1) = (xn+Δx, yn+Δy, zn+Δz), 
where (xn, yn, zn) is the n-th monomer coordinate, (Δx, Δy, 
Δz) is the shift of the n-th monomer. The walking 
direction kn is corresponding to the shift as shown in 
Table I. 

 

Step 4: Overlap is ascertained by whether the lattice is 
occupied by more than one monomer, which can be 
described as the follows: 

if (G(xn+1, yn+1, zn+1) == 0)  
{ / * walking success* / 
G(xn+1, yn+1, zn+1) = n+1;  
n = n + 1; 
ntry = 0; 
} 

else  
{/ * walking failure* / 
ntry = ntry+1; 

if (ntry > 2*b) 
 {   G(xn, yn, zn) = 0; 

ntry = 0; 
if (n>0)  n = n-1; 

}  
Exit the loop to re-walk, skip to step 2. 

} 
Step 5: Repeat the above steps from step 2 to step 4 

until all N monomers of the polymer chain generated. The 
conformation of linear chain is generated by self-avoiding 
walk in the three-dimensional space, as shown in Fig. 1. 

 

C. Bond Fluctuation and Chain Movement 
Considering the fluctuation of the bond length, any 

nearest neighbor monomers are located at two vertices of 
one cubic lattice unit. The bond length between two 
nearest neighbor monomers may be one of three cases: 
the length of one side (1), the diagonal of one unit square 
( 2 ) and the cube diagonal ( 3 ). The coordination 
number of each lattice is z = 26. 

Every monomer does Brownian motion. The monomer 
may be to move one step at one of six coordinate axes 
directions which is selected randomly one of the 

TABLE I.   
THE WALKING DIRECTION AND THE SHIFT VALUE. 

kn (Δx, Δy,Δz) 
1 (1, 0, 0) 
2 (-1, 0, 0) 
3 (0, 1, 0) 
4 (0, -1, 0) 
5 (0, 0, 1) 
6 (0, 0, -1) 
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directions. Each monomer in contact with the surface, 
where the distance of the monomer from the surface is 
one unit, has an energy E. The trial move is accepted if 
all the following conditions are satisfied: 

(a) The r-th monomer is selected randomly, ],2[ Nr∈ . 
(b) Six nearest neighbor lattices of the r-th monomer 

are detected whether they are free. And all the free 
lattices are recorded. 

(c) The direction k is randomly selected from the free 
nearest neighbor lattices of the r-th monomer. The self-
avoiding walking condition is satisfied after the trial 
move whether each lattice is occupied by up to only one 
monomer, which can be described as  

if (G(xr+Δxk, yr+Δyk, zr+Δzk)! = 0) 
         { Skip to (a) and re-select the trial monomer. } 
(d) Whether the new position of the r-th monomer is 

located above the surface is satisfied, which can be 
described as the follows: 

if ((zr+Δzk) <= 0) 
{Skip to (a) and re-select the trial monomer.} 

(e) Whether the bond between the r-th monomer and 
its nearest neighbors meets the allowable conditions of 
the bond length (1, sqrt (2), sqrt (3)) where | ... | indicates 
the distance between two points, which can be described 
as the follows: 
if (r > 1 and ( |G(xr+Δxk, yr+Δyk, zr+Δzk)- G(xr-1,yr-1,zr-1)| 
< 1 or |G(xr+Δxk,yr+Δyk,zr+Δzk)-G(xr-1,yr-1,zr-1)| > sqrt(3))) 

{Skip to (a) and re-select the trial monomer.} 
if (r < N and (|G(xr+Δxk, yr+Δyk, zr+Δzk)- G(xr+1,yr+1,zr+1)| 
<1 or |G(xr+Δxk,yr+Δyk,zr+Δzk)-G(xr+1,yr+1,zr+1)| > 
sqrt(3))) 

{Skip to (a) and re-select the trial monomer.} 
(f) ΔE is the energy shift before and after the move. 

The following conditions are satisfied. 
If ( (ΔE > 0) and (exp(-ΔE/kBT) > rn) ) 

{Skip to (a) and re-select the trial monomer.} 
rn is a random number among (0, 1). kB is the 

Boltzmann constant. 
 (g) At each trial movement, the counter may be auto-

incremented once, which can be described as  
counter = counter+1; 
G(xr+Δxk, yr+Δyk, zr+Δzk) = r; 
G(xr, yr, zr) = 0. 

A Monte Carlo time step (MCS) means each monomer 
of the chain which attempts to move once. 

If (counter == N)  
{t = t +1, count = 0}. 

The Monte Carlo Step is unit of movement time. 
Repeat (a) to (g) until the movement time t reaches the 
required time. 

D. Model Parameters 
In this paper, physical properties of self-avoiding chain 

are studied at the different temperature T. The program is 
performed from high temperature T = 6 to low 
temperature T = 0.1. The temperature is reduced with step 
ΔT. In this article, ΔT is taken near at the critical 
adsorption point ΔT = 0.05, but ΔT slightly larger at other 
temperature. The conformation changes with MCS time. 

Each sample runs the first time τ = 2.5N2.13MCS for 
relaxation and then runs 100τ MCS for statistic in which 
the physical properties are recorded at every 0.1τ. 

III. SCALING ALGORITHM OF CRITICAL ADSORPTION  

A. Preliminary Estimates of the Critical Point Tc  
In the previous study, the critical adsorption point 

(CAP) can be roughly estimated by the mean square end-
to-end distance <R2> and the mean square radius of 
gyration <Rg

2> that reaches a minimum near at the CAP 
[4-5]. We found 10.065.1 ±=cT  where there is a 
minimal value of <Rg

2>, as shown in Fig. 2. The 
calculation method of the mean square gyration radius 
<Rg

2> can be expressed as  

])()()[(1 22
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22
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i
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N
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 ,     (2) 

where (xi, yi, zi) is the coordinate of the i-th monomer and 
(xc, yc, zc) is that of the center of polymer chain.      
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Figure 2 The dependence of the mean square radius of gyration 

<Rg
2> on the temperature T. 

B. Scaling Method 
The relation between the adsorption energy E and the 

number of monomers contacting with the surface M 
exists scaling relation E ~ M. The scaling relation is 
proposed between the energy E and the chain length N by 
Eisenriegler (EKB) [6], which can be expressed as 

      
⎪
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⎪
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⎧

<<
=

>>

∝
)(    

)(  

)(  

)(

0

c

c

c

TTN
TTN

TTN

TE φ  .                  (3) 

At the critical adsorption point Tc, there is a 
relationship φNM ∝  between the surface contact 
number M and the chain length N. So the scaling relation 
between M and N is almost applicable at near Tc. To 
further determine the relationship among M, N near Tc, 
we improve the algorithm based on EKB. We take five 
temperatures in the vicinity of the critical adsorption 
point Tc: T = 1.55, 1.60, 1.65, 1.70, and 1.75. At cTT = , 
the dependence of the surface contact number M on the 
chain length N can be expressed as 
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       φNaM 0= .                        (4) 

 
The surface contact number M(T, N) is enumerated for 

different chain length N at the different temperature near 
Tc in Table II. The first row represents the chain length N, 
which means that the temperature T lies in the first 
column. The other data in the table means the surface 
contacts number M(T, N). The dual logarithmic 
relationship diagram between M and N is shown in Fig. 3.  
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Figure 3 The dependence of the surface contact number M on the 
chain length N. 

 
The two different situations are apparent in Fig. 3. It 

can be seen that the curve is concave upward when T ∈ 
(1.55, 1.60), but downward convex curve when T ∈ (1.70, 
1.75). Therefore, the critical adsorption point Tc can be 
further determined in the interval T ∈ (1.60, 1.70). The 
above phenomenon can be explained that the M - N curve 
is showing different when T is greater or less than Tc. The 
relationship between M and N can be expressed as  

)))((()((N 2
c1c10 TTcOTTccM −+−+= φ .      (5) 

Since the second item )( c1 TTc −  in the right of (5) 
changes the sign when T changes from cTT >  to cTT < . 

  

C. Interpolation Method 
In the interval [1.55, 1.75], we want to get the surface 

contact number M with the temperature step ΔT = 0.001. 
However, it takes a very long calculation time to simulate 
such a multi-temperature sample. In order to reduce the 

simulation time, values of M at different temperatures are 
using quadratic interpolation to approximate from the five 
temperatures T = 1.55, 1.60, 1.65, 1.70, and 1.75. 

We use the equidistant interpolation for different chain 
length N = Nj included in the range [10, 400]. The values 

),( jiM NTfM =  are known at the n equidistant 

temperatures, ),,(  1-n , 1 0i ihTT 0i =+=  where T0 = 
1.55, h = 0.05, n = 5. The surface contact number M is 
calculated by using the parabolic interpolation formula 
for T ∈  (1.55,1.75) with ΔT = 0.001.  In order to 
distinguish between the previous variables Ti, we use 
another symbol T′ to present the temperature, which 
means that the calculated temperature values Tk′ to be 
interpolated, )/)(,,(  TT-T , 1 0k T kTT 01-n0k Δ=Δ+=′ , 
where T0 = 1.55, Tn-1 = 1.75, ΔT = 0.001. In order to 
calculate an approximation of M at temperature T = Tk′, 
the three temperatures are selected near the interpolation 
point T = Tk′. In the case of 1iki TTT +<′< ,  if 

1iTTTT +−′>′− kki
, three temperatures Ti, Ti+1, and Ti+2 are 

selected and if 
1ikki TTTT +−′<′−  , three temperatures Ti-1, 

Ti, and Ti+1 are selected. Then the approximation of the 
surface contact number M is calculated by parabolic 
interpolation formula, which can be described as 

if ( 1iki TTT +<′< ) 

{if ( 1ikki TTTT +−′>′− ) 
 t = k; 

   else  
t = k - 1; 

 ∏∑
+

≠=

+

=

−−′=
2t

ij,tj

2t

ti
i )]/()[()( jijk TTTTTMM  

}. 
 

D. Fitting Curve M=a0Nφ 
When cT  = kT ′ , there is a relationship φNaM 0= . For 

every temperature kT ′ , there are a set of corresponding 
data (

jN , ),( jkM NTf ′ ). For these data (N, M), we fit 

the curve φNaM 0= . If we set lnMM = , 00 lnaa =  and 

lnNN = , the curve is changed to linear fitting 
NaM 0 φ+= . We use the least squares method, which 

can be expressed as  

  ∑ ′−′−′=′′′
j

k0Mk0k )ln)()(a),(l())(),(a,(g jkjkk NTTNTnfTTT φφ .  (6) 

For 0
T
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))(())(( φ
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as 

∑
=
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))((
,     (7) 

∑
=

′−′−′−=
′∂

∂ n

1j
k0M ln)ln)()()(l(2

))((
g

jjkjk
k

NNTTa,NTnf
T

φ
φ

.     (8) 

  
Solution of the equation can be expressed as 

TABLE II.   
THE SIMULATION VALUE OF M (T, N) 

 10 50 100 150 200 250 300 400

1.75 3.63 7.56 9.99 11.72 12.95 13.98 14.77 16.07
1.70 3.69 7.99 10.91 13.21 14.53 15.79 17.11 18.97
1.65 3.76 8.48 11.88 14.44 16.52 18.4 20.22 22.97
1.60 3.83 9.06 13.15 16.34 19.19 21.79 23.98 28.6
1.55 3.92 9.7 14.71 18.84 22.53 25.98 29.13 35.48
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 )(
0 kTa ′ can be obtained from (9), which can be 

expressed as 
 ))(exp()( k00

TaTa k ′=′ .               (11) 
Fitting formula can be expressed as 

 )(
0 )(),(g kT

jkjkM NTaNT ′′=′ φ  .            (12) 
 

E. Variance (between Interpolation and Fitting value), to 
Determine Crossover-exponent 

    We calculate the variance between the interpolation 
value and the fitting value, which can be expressed as  

∑∑
==

′−′==′
n

1j

2
n

1j

2
jk

2 ))()(()( jkMjkM ,NTg,NTfT σσ  . (13)  

The temperature where the variance is a minimum is 
the critical adsorption point, as shown in Fig. 4. 
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Figure 4 The variance between the interpolation value and the fitting 
value. 

 
We get Tc = 1.625, φ = 0.52 calculated respectively by 

the formulas, which are expressed as 

))}((   where| { k
2

/)(

0k
k min TTT

TTT

c

0n-1

′′=
Δ−

=

σ  ,     (14) 

and 

φ = }|)({ k ck TTT =′′φ .       (15) 

 

F. Another Ciritical Exponent  δ 
φ−MN  can be obtained from (5) divided by Nφ on both 

left and right sides, which can be expressed as 
2

c2c10 TTcTTccMN )()( −+−+=−φ .   (16) 

The dependence of MN-φ on (T-Tc) is listed for chain 
length from N = 10 to N = 400 near the critical adsorption 
point Tc in Fig. 5. Near at Tc, the curves can be expressed 
by a second order polynomial which is defined as 

 2
2c10 TTNTTNMN ))((c))((ca cjjj −+−+=−φ .   (17) 

-0.10 -0.05 0.00 0.05 0.10 0.15

0.8

1.0

1.2

1.4

1.6

 

 

M
N

 -φ

T-Tc

 10     50
 100   200
 300   400

 
Figure 5 The relationship between MN-φ and T-Tc 

 
We can calculate the coefficient c1(Nj) using (17) to fit 

the curves between the relationship (T-Tc) and MNj
-φ. The 

dependence of c1(N) on N is shown in Fig. 6. We can get 
c1(N)=a1N1/δ. Then we calculated another critical 
exponent δ = 1.63. There is only one critical exponent in 
EKB scaling method [6], which is equivalent to our 
scaling method δ= 1 /φ. However, we found that 1/δ is 
not close to φ  in the scaling method. Whether it is 
efficient that we get two critical exponents φ, δ and the 
critical adsorption point Tc. 
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Figure 6 The relationship between the coefficient c1 and the chain 
length N. 

 
The dependence of MN-φ on δ/1)( NTT c−  is calculated 

for chain length N ∈ [10,400] near Tc, as shown in Fig. 7. 
These curves are satisfied by the relationship which can 
be expressed as 

 ))N)(((N)((N 2 1 δδφ /
c

1/
c10 TTOTTaaM −+−+=− .    (18) 

We obtain  

 ))N)(((N)((N 2 1 δδφ /
c

1/
c10 TTOTTaaM −+−+=      (19) 

by multiplying N-φ  on both sides of (18) near the critical 
adsorption point Tc. We found that two critical exponents 
present well the properties near at Tc. 
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IV. CONCLUSIONS 

The polymer chain is generated by self-avoiding walk 
in the simulation. The chain movement is simulated by 
bond-fluctuation model. The attraction interaction 
between the polymer chain and the surface is related to 
the temperature T. The critical adsorption point Tc is 
calculated by scaling between the surface contact number 
M and the chain length N. Using the interpolation method 
replace simulating large samples, which is to ensure 
highly accurate and to reduce the computation time. Our 
scale algorithm represents well properties of the polymer 
chain by two critical exponents φ and δ near at the critical 
adsorption point Tc. The scaling algorithm provides a new 
method to determine the critical adsorption point and the 
critical exponents. 
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