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Abstract—Combinatorial testing is a practical and efficient 
software testing techniques, which could detect the faults 
that triggered by interactions among factors in software. 
Compared to the classic fixed strength combinatorial testing, 
the variable strength combinatorial testing usually uses less 
test cases to detect more interaction faults, because it 
considers the actual interaction relationship in software 
sufficiently. For a model of variable strength combinatorial 
testing that has been propose previously, two heuristic 
algorithms, which are based on one-test-at-a-time greedy 
strategy, are proposed in this paper to generate variable 
strength covering arrays as test suites in software testing. 
Experimental results show that, compared to some existed 
algorithms and tools, the two proposed algorithms have 
advantages on both the execution effectiveness and the 
optimality of the size of generated test suite.  
 
Index Terms—software testing, combinatorial testing, test 
generation, interaction relationship, algorithm 
 

I.  INTRODUCTION 

Software can be considered as a complex logic system, 
which may be affected by many factors or parameters, 
such as system configurations, internal events, external 
inputs etc. Rather than the single factors, the interaction 
of multiple factors may also affect the work of software 
systems. Combinatorial testing (or interaction testing) 
uses a small test suite that cover all needed parametric 
values and their combinations, to detect the faults that 
may triggered by these single factors or parameters in 
software and even the interactions of them. Many 
applications of combinatorial test approach have shown 
that, a carefully designed test suite which contains small 
number of test cases can yield high fault detection ability 
with reduced test cost. Therefore, combinatorial testing is 
an important and effective method for software testing, 
especially for those high-configurable systems.  

Existed combinatorial testing includes fixed strength 
combinatorial testing and variable combinatorial testing. 
The former requires a test suite to cover all N-way (N≥2) 
combinations of factors value, by using a fixed uniform 
strength N. And the latter allows that the strength of 
different interaction to be variable. It was proposed by 

Cohen et al in 2003 [1], since Bach and Schroeder pointed 
out most successful applications of combinatorial testing 
require the detailed analysis of characteristic for software 

[12].  In the variable strength combinatorial testing, people 
select a series of disjoint sub-sets of factor and assigning 
a higher strength for interaction among those factors in 
sub-sets. Note that the variable strength combinatorial 
testing requires all sub-sets must be disjoint, so it may be 
helpless for the cases that interaction relationship does 
not satisfy such constraint. 

Above all, to increase the effectiveness of existed 
combinatorial testing, it is necessary to mine the actual 
interaction relationship among factors and make more 
sufficient consideration on such interaction relationship. 
A new model of variable strength combinatorial testing 
(or named “interaction relationship based combinatorial 
testing” in Ref. [13]) was proposed by us previously [13][20]. 
To generate combinatorial test suite for the new model of 
variable strength combinatorial testing, two heuristic 
algorithms, which are based on one-test-at-a-time greedy 
strategy, are proposed in this paper. The theoretical 
analysis and experimental results show there are many 
advantages of the proposed algorithms.  

The remainder of this paper is organized as follows. 
Section 2 describes definitions. Section 3 reviews related 
works. Section 4 describes the framework of one-test-at-
a-time greedy strategy. And two concrete test generation 
algorithms which are based on one-test-at-a-time strategy 
are proposed in section 5. Section 6 gives experimental 
results. Finally, a conclusion remarks is given.  

II.  DEFINITIONS 

Before introducing the new model of variable strength 
combinatorial testing, we firstly review some definitions 
about existed fixed strength and “narrow sense” variable 
strength combinatorial testing [23][24].  

A.  Existing Models of Combinatorial Testing 
Suppose that the system under test (SUT) has n factors 

(or parameters), and each factor fi has ai (1≤i≤n) discrete 
values. Let F={f1, f2,…, fn} denote the set of factors, and 
Vi={1, 2,…, ai} (1≤i≤n) denote the value set of factor fi. 
If the cardinalities of all n value sets are equal, it is a 
system with fixed-level factors. Otherwise, it is a system 
with mixed-level factors. In this paper, we also assume 
that all factors are independent, which means there are no 
constraints between factors and their values. 
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Definition 1. The n-tuple test= (v1, v2,…, vn) (v1∈V1, 
v2∈V2,…, vn∈Vn) is a test case for the system.  

Definition 2. Given A=(ai,j)m×n is a m×n array, where 
the j-th column denotes the factor fj of the SUT and all 
elements of this column come from the finite set Vj (j=1, 
2,…, n), that is ai,j∈Vj. If every m×N (2≤N≤n) sub-arrays 
contain all value combinations of such N columns (or 
factors), then A is an N-way fixed strength covering array 
or a fixed strength covering array with strength N. It 
could be denoted as CA(m; N, F).  

Definition 3. For an fixed strength covering array A, if 
it contains C, a multi-set of disjoint covering arrays that 
each with a larger strength than N, then A is a “narrow 
sense” variable strength covering array that could be 
denoted as VCA(m; N, F, {C}).  

The definition of “narrow sense” variable strength 
covering array is concluded from the description of 
Cohen [1]. We call their approach that proposed by D. M. 
Cohen et al as the “narrow sense” variable strength 
combinatorial testing, since there is a limitation that it 
need a “disjoint” property, which will be demonstrated in 
next sub-section. 

B.  New Model of Variable Strength Combinatorial Testing 
In this sub-section, we introduce a new model of 

variable strength combinatorial testing, which considers 
the actual interaction relationship more sufficiently than 
“narrow sense” variable strength combinatorial testing. 

Firstly, we discuss the interaction among factors. One 
group of factors that have interaction with each other 
could form a subset r of F. It means that there is a |r|-way 
interaction (or an interaction with strength |r|) among all 
|r| factors in such subset. For such subset, all value 
combinations of factors in r should be covered by test 
suite. Furthermore, for the whole SUT, there should be a 
collection R={r1, r2,…, rt} that contains t subsets of F, 
and these subsets represent all interactions in such SUT. 
In combinatorial testing, all such interactions in R must 
be covered by test suite. For example, if we test a system 
with n factors by 2-way (or pair-wise) combinatorial 
testing approach, there will be |R|=n×(n-1)/2 different 2-
way interactions and R={{fi, fj}| fi, fj∈F, i≠j}.  

Definition 4. A subset rk∈R (k=1, 2,…, t) could be 
named as an interaction coverage requirement, or 
coverage requirement for short. And the collection R 
could be named as the interaction relationship of SUT.  

For simplicity, we define following rules: (i) Each 
coverage requirement rk={fk, 1, fk, 2,…, fk, nk}∈R (k=1, 2,…, 
t) has nk factors (nk>1); (ii) For any two different 
coverage requirements rk1, rk2∈R (k1≠k2), there are rk1⊄rk2 
and rk2⊄rk1; (iii) Two different factors fi, fj∈F (i≠j) 
interact with each other if and only if there is a coverage 
requirement r∈R and fi, fj∈r.  

Definition 5. Given A=(ai,j)m×n is a m×n array, where 
the j-th column denotes the factor fj of the SUT and all 
elements of this column come from the finite set Vj (j=1, 
2,…, n), that is ai,j∈Vj. For a coverage requirement rk∈R, 
if the sub-array that consists of all factos in rk contains all 
value combinations of those factors, then A satisfies rk. If 
A satisfies all coverage requirements in an interaction 

relationship R, then A is a variable strength covering 
array for R and it could be denoted as VCA(m; F, R). 

Therefore, the variable strength covering array for R 
should cover all combinations in the set:  

CombSet=Ut
k=1CombSetk 

Where the CombSetk (k=1, 2,…, t) covers the coverage 
requirement rk:  

CombSetk={(vk, 1, vk, 2,…, vk, nk)| 
vk, 1∈Vk, 1, vk, 2∈Vk, 2,…, vk, nk∈Vk, nk}. 

Definition 6. The software testing approach that 
designs and runs variable strength covering array as test 
suite is variable strength combinatorial testing approach.  

Given a SUT, the combinatorial test suite T which 
covers interaction relationship R could be obtained easily 
from the covering array A for R, by mapping each row of 
covering array to a test case of test suite. So we say that 
variable strength combinatorial test suite and variable 
strength covering array are equivalent in this paper.  

Definition 7. For a variable strength combinatorial test 
suite T, if it contains minimum possible number of test 
cases to cover R, then T is an optimal variable strength 
combinatorial test suite.  

An optimal test suite can help us to test software with 
minimal cost. But as we demonstrated before, pair-wise 
testing could be considered as a special case (R={{fi, fj}| fi, 
fj∈F, i≠j}) of variable strength combinatorial testing. 
Therefore, the problem of generating optimal test suite 
for variable strength combinatorial testing is as hard as 
NP-C, since the problem of generating optimal pair-wise 
test suite has been proven to be a NP-C problem [9].  

Different from fixed strength combinatorial testing, the 
new variable strength combinatorial testing approach 
allows the strengths of interactions to be variable. And 
such approach is also more general than existed “narrow 
sense” variable strength combinatorial testing, since it 
dose not require the property of “disjoint”. For example, 
consider a given interaction relationship R={r1, r2}, 
where two coverage requirements r1={f1, f2} and r2={f1, f3} 
intersect with each other, in a system with F={f1, f2, f3}. 
Such interaction relationship is difficult to be described 
by the “narrow sense” variable strength combinatorial 
testing, for it requires two sub-arrays of covering array 
are disjoint. 

III.  RELATED WORKS 

Except the existed “narrow sense” variable strength 
combinatorial testing, there are also many works related 
to variable strength combinatorial testing approach. E.g., 
as a special application of interaction relationship, Input-
Output relationships has been discussed by Schroeder et 
al [14][15][16]. The open-sourced tool TVG that managed by 
Software Eva1, and the tool PICT that developed by J. 
Czerwonka [6] are also both available to generate variable 
strength combinatorial test suite. 

In the model of IO relationship testing, each output 
variable is influenced by a group of input variables, 

                                                           
1 http://sourceforge.net/projects/tvg/ 
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which could be considered as a coverage requirement in 
the model of variable strength combinatorial testing. 
People need an optimal test suite, which covers all value 
combinations of input variables that influence each output 
variable. However, generating an optimal test suite to 
satisfy a IO relationship has been proven to be NP-C [15]. 
Therefore, we can conclude again that generating an 
optimal variable strength combinatorial test suite is also a 
NP-C problem, by mapping each coverage requirement to 
a output variable, which is influenced by a set of input 
variables that corresponding to factors in such a coverage 
requirement.  

There are totally 3 different test generation algorithms 
proposed to generate test suite for IO relationship testing 
[15]. Except a brute force algorithm that generates optimal 
test suite, other two heuristic ones UNION and GREEDY. 
The UNION can generate a result very quickly with time 
complexity O(∑t

k=1(m×n×|CombSetk|)), but the generated 
test suite is usually very big. The GREEDY can generate 
much smaller test suites than UNION, but the worst time 
complexity is bad as O(m×(∑t

k=1|CombSetk|)×(∏n
i=1 ai)). 

To make the algorithm become more efficient, a color 
graph based problem reduction method was proposed [16]. 
However, the reduction technique is suitable only when 
IO relationships are “simple”, which means that the 
number of edges in color graph is much smaller than that 
of complete graph. Another limitation of such reduction 
technique is that it may lead to the redundancy of 
generated test cases.  

Test Vector Generator (TVG) is a project-based MDI 
application managed by Software Eva. TVG provides a 
test generation tool with GUI to generate combinatorial 
test suite based on the input-output relationship or fixed 
strength coverage. The main disadvantage of TVG, which 
will be displayed in our experiment, is that the size of 
generated test suite is usually not as small as expected. 
PICT is a combinatorial test generation tool. By editing 
the option of command line and the “Sub-Models” field 
of “model file”, it can also generate variable strength (or 
“mixed strength” described in [6]) combinatorial test 
suite. The limitation of PICT, which will be shown in 
experimental results, is that its performance in variable 
strength combinatorial test generation is much worse than 
that in fixed strength combinatorial test generation for 
some unidentified reasons.  

In recent years, we have made study on combinatorial 
testing. Especially, the characteristic of factor interaction 
relationship has been considered in our works [13][17][20]. 
E.g., we proposed the new model of variable strength 
combinatorial testing (or called “interaction relationship 
based combinatorial testing” in Ref. [13]) [20]. And 
correspondingly, several variable strength combinatorial 
test suite generation algorithms, including the ReqOrder 
with a worst time complexity O(∑t

k=1(m× |CombSetk|×|rk|)) 
[13], the ParaOrder with a worst time complexity 
O(∑t

k=1(m×ai×|CombSetk|×max1≤k≤t{|rk|})) [13][20], and the 
Density [20], which can be considered as an initial version 
of algorithms that will be described in this paper, were 
proposed previously. This paper will mainly improve the 
Density to generate smaller test suite.  

IV. ONE-TEST-AT-A-TIME GREEDY STRATEGY 

Generating optimal fixed strength combinatorial test 
suite has been proved to be NP-C [9], and many heuristic 
strategies were proposed. The one-test-at-a-time strategy 
is one that has been most widely used for its simplicity, 
accuracy, efficiency, and consistency. Rather than test 
generation, it could provide some additional functions 
such as seed test cases, constraint handling, and test 
prioritization, etc. Therefore, we apply one-test-at-a-time 
strategy on problem of variable strength combinatorial 
test generation. 

In one-test-at-a-time strategy, a set of combinations 
that should be covered by combinatorial test suite is 
required, which is just the set CombSet that has been 
mentioned before. The process starts with an empty initial 
test suite. Then at each time, one single test case will be 
selected and added into test suite, and the covered 
combinations will be removed form set CombSet. Such 
step repeats until set CombSet becoming empty. The 
framework of one-test-at-a-time strategy is described as 
Algorithm 1. 

 
Algorithm 1. One-test-at-a-time Strategy 
Start with an empty test suite T;  
Initialize the set CombSet according to SUT;  
While (CombSet ≠ ∅)  

Select a single test case, and add it into T;  
Modify CombSet by deleting combinations that 
covered by selected test case;  

End While 
 
To generate test suite as small as possible, some people 

adopt a greedy strategy in one-test-at-a-time strategy, 
which selects a “best” single test case each time to cover 
the greatest number of uncovered combinations in 
CombSet. This “best” greedy method may generate a 
small test suite in fixed strength and variable strength 
combinatorial testing. For example, in theory, D. M. 
Cohen et al proved that the size of fixed strength 
combinatorial test suite that generated by the “best” 
greedy method grows logarithmically in the number of 
factors [2]. And in experimental, the GREEDY, which 
adopts the “best” greedy method, could generate much 
smaller variable strength combinatorial test suite than 
other heuristic algorithms [15].  

But unfortunately, selecting such a “best” test case is 
difficult too. C. J. Colbourn proved that, in pair-wise 
testing, for a given set of uncovered pairs and a given 
positive integer p, the problem that determining whether 
there exists a test case which covers p pair-wise 
combinations is a NP-C problem. It means that there 
exists no efficient polynomial time algorithm to select 
such a “best” test case to cover the greatest number of 
pair-wise combinations [2][5]. Note that fixed strength 
combinatorial testing could be considered as special cases 
of variable strength combinatorial testing, so selecting 
such a “best” test case in variable strength combinatorial 
testing is also a NP-C problem. E.g., the GREEDY, 
which is an exponential-time algorithm, can be hardly 
used in practice.  
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SUT:  
F={f1, f2 , f3} 

V1=V2=V2={1, 2} 
R={r1={f1, f2}, r2={f1, f3}}
CombSet1={(1, 1), (1, 2)}

CombSet2=∅ 

Priority(r1) > Priority(r2) 
Order:   r1   →   r2 

test1: 
 

test2: 

1 1 - 
 

1 2 - 
 

→
 

→

1 1 1
 

1 2 2

//cover (1, 1)
 

//cover (1, 2)
 

Size of test suite is 2. 

Priority(r1) > Priority(r2) 
Order:   r2   →   r1 

test1:
 

test2:
 

test3:

1 - 1
 

2 - 1
 

1 - 2

→
 

→
 

→

1 1 1 
 

2 2 2 
 

1 2 2 
 

//cover (1, 1)
 

//cover none
 

//cover (1, 2)

Size of test suite is 3. 

Figure 1. Different priorities of coverage requirements  
(Values of factors in r2 are selected randomly) 

For above limitations, instead of selecting the “best” 
test case by searching the exponential number (∏n

i=1 ai) of 
usable candidates, a feasible approach is to generate 
approximate “best” test case with some more efficient 
heuristic approaches, such as determining an order of 
factors and fixing values in the determined turn [10]. This 
kind of approximate algorithms include AETG[2], TCG[3], 
DDA[5], and PICT[6]. The algorithms that will be 
proposed in this paper are approximate algorithms too.  

V.  ALGORITHMS TO GENERATE SINGLE TEST CASE IN 
ONE-TEST-AT-A-TIME STRATEGY 

We proposed two concrete deterministic algorithms, 
which are based on “density”, to generate single test 
cases in one-test-at-a-time strategy. The concept of 
“density” was firstly proposed by C. J. Colbourn et al 
firstly [5], but it is only available for fixed strength 
combinatorial test generation. Therefore, we define a new 
concept of “density” for variable strength combinatorial 
test generation. 

When generating a single test case with one-test-at-a-
time strategy, the priorities of different coverage 
requirements are different. For a coverage requirement 
(assuming it is rk (1≤k≤t) without loss of generality), if 
there are a greatest number of uncovered combinations in 
CombSetk, then it should be handled as early as possible 
in our intuition. We can illustrate it by an extreme 
example. Support two coverage requirements r1={f1, f2} 
and r2={f1, f3} in R. Considering a step that there are two 
uncovered combinations (f1=1, f2=1) and (f1=1, f2=2) in 
CombSet1 but none in CombSet2. In such situation, the 
values of factors in r2 could be selected randomly. If we 
fix values for r2 firstly and the fixed value of f1 is 2, the 
generated test case will not cover any uncovered 
combination, and the final test suite may be redundant 
(see Figure 1). Therefore, a priority number, which 
should grow as the growth of the number of uncovered 
combinations, is required to measure such priority. And 
for a given coverage requirement rk, the priority number 
could be selected as a density of such coverage 
requirement: a ratio of current number of uncovered 
combinations in CombSetk to the max1≤k≤t{∏fi∈rk ai}. It is 
evident that such ratio ranges from 0 to 1. 

Note that there may be intersection between two 
different coverage requirements. It means that, when 
handle a given coverage requirement, the value of some 
factors in such coverage requirement may have been 

fixed already. And it is reasonable that only the available 
combinations, in which the values of such factors are 
equal to the fixed values in current test case, should be 
counted when calculating density. And in the extreme 
case that the values of all factors have been fixed, there 
will be at most one available combination. If such 
available combination exists, which means that it covers a 
new uncovered combination, the density should be the 
upper bound 1; else it should be the low bound 0. 
Therefore, after the values of all factors have been fixed 
in current test case, the density of each coverage 
requirement should be as big as possible to make test case 
cover more combinations.  

And in another aspect, only the factors, whose values 
have not been fixed, should be counted when calculating 
density. So we could construct a sub coverage 
requirement by collecting these factors, and then 
calculate density for the sub coverage requirement to 
instead original one. The number of factors in sub 
coverage requirement is less than that in original one, so 
the denominator of density should also be modified to a 
smaller value, in order to increase the density of coverage 
requirement to a balanced level.  

Therefore, we could define the density (local density) 
of a given coverage requirement rk as:  

kkk

ki

npn
rf itk

k
k a

numLD )(
1 }){(max −

∈≤≤ ∏
=  

In which, the symbol numk is the number of available 
uncovered combinations in set CombSetk, and the symbol 
pk is the number of factors whose values have been fixed. 
The special case of pk=nk means that the values of all 
factors in rk have been fixed already.  

For simplicity, we call the density of coverage 
requirement as the local density. And based on the 
definition of local density, we define the global density 
for the whole system as:  

∑ =
= t

k kLDGD 1  
After introducing the concept of “density”, we will 

present two different algorithms to generate single test 
case. And when generating a single test case, we 
endeavor to take the global density as great as possible, to 
make the generated test case cover uncovered 
combinations as most as possible.  

A.  Fix Value in The Order of Coverage Requirements 
To generate a single test case with one-test-at-a-time 

strategy efficiently, the value of factors should be fixed in 
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turn. In the first proposed algorithm DA-RO, the values 
will be fixed in the order of coverage requirements, and 
such order will be determined by the local densities of 
each coverage requirement.  

At each stage, one coverage requirement, in which 
there is at least one factor whose value has not been fixed, 
will be selected for its greatest local density. Once a 
coverage requirement (assuming it is rk (1≤k≤t) without 
loss of generality) is selected, then the values of factors in 
selected coverage requirement should be fixed according 
to the global density. For each one of totally ∏fi∈rk ai 
combinations in set CombSetk, if it is available in current 
test case, then calculate the global density that assume we 
fix values for factors in rk as such combination. The 
available combination that takes the greatest global 
density will be selected and assigned to the corresponding 
factors. Note that the local and global density may change 
after fixing values for factors in a coverage requirement, 
so the densities should be modified over again.  

Above operations will repeat until all coverage 
requirements have been handled in current test case. The 
process of generating a single test case is also described 
as the Algorithm 2. After run such algorithm, there may 
still be some independent factors, which are not involved 
in any coverage requirement, have not been assigned. 
Note that these factors can not reduce the coverage ability 
of generated test suite, so we can fix values for them after 
all test cases have been generated, to guarantee all valid 
values of each independent factor appear at least once. 

 
Algorithm 2. Generate One Test Case by Fixing Value 

in the Order of Coverage Requirements 
Start with an empty test case test, in which the values 
of all factors have not been fixed;  
While (there are coverage requirements not been dealt)  

For k=1 to t  
If (in rk, there are factors whose value has not 
been fixed) then  

Calculate local density for rk∈R;  
End If  

End For  
Select a new coverage requirement rk with the 
greatest local density;  
For Each combination comb∈CombSetk  

If (comb is available in test) then  
Calculate the global density by assuming the 
values of factors in rk are fixed as comb;  

End If  
End For  
Select a combination comb that takes the greatest 
global density;  
Fix factors in rk as the selected combination;  

End While 
 
The step, which selecting the coverage requirement 

with the greatest local density, may suffer from the 
problem of ties that there exist more than one coverage 
requirements with the equal greatest local densities. 
There are several methods to break ties, such as the First 
strategy that selecting the first one that with the greatest 

local density, the MostFactor strategy that selecting the 
one that with most fixed factors, and the Random strategy 
that selecting one from all that with greatest local density 
randomly. Another step that may suffer from ties is the 
step that selecting combination for the selected coverage 
requirement to increases global density as great as 
possible. The possible available tie-break methods in 
such step are similar to above three strategies. We did 
some experiments to test tie-break methods in above two 
steps, and the results showed that there are not obvious 
differences between different methods in aspect of size of 
generated test suite. To make algorithm to be simple and 
deterministic, we usually adopt the First strategy in both 
two steps.  

Then we analyze the time performance of algorithm 
DA-RO. It is very difficult to find the time complexity of 
calculating a local density, but we can find a upper bound 
O(|rk|×|CombSetk|). When selecting coverage requirement, 
the local density of at most t coverage requirements 
should be compared, that is O(∑t

k=1(|rk|×|CombSetk|)). 
And the time complexity of selecting combination for a 
selected ri is O(|CombSeti|×∑t

k=1(|rk|×|CombSetk|)), since 
the time complexity of calculating global density is also 
O(∑t

k=1(|rk|×|CombSetk|)). So the worst time complexity of 
DA-RO is O(∑t

i=1∑t
k=1(|rk|×|CombSetk|×|CombSeti|)).  

A.  Fix Value in The Order of Factor 
By analyzing the time complexity of algorithm DA-RO, 

we can conclude that the time performance of DA-RO is 
not as good as expected. Therefore, a concrete test 
generation algorithm with a better time performance is 
required. This sub-section proposes the DA-FO, another 
variable strength combinatorial test generation algorithm. 
The new algorithm is similar to DDA, which is a pair-
wise test generation algorithm, for they both generate 
single test case by fixing value one by one as a given 
order of factors.  

To fix value in the order of factors, the order of factors 
must be determined firstly, so we should define a priority 
number to measure the priority of different factors and 
determine such an order. We define a factor density, 
which could be described as the summation of local 
densities of coverage requirements that contain such a 
factor, to measure the priority of factors:  

∑ =
= t

k ki LDFD 1 '  
Where, the mutation of local density LD’k (k=1, 2,…, t) is 
defined as:  

⎩
⎨
⎧

∉
∈=

ki

kik
k rf

rfLDLD ,0
,'  

It is evidently that the factor, which involved in large 
number of coverage requirements that with high priorities 
and great local densities, will have a great factor density. 
And such a factor should have a high priority to be 
handled when generating a single test case.  

Therefore, after a factor, whose value has not been 
fixed, with the greatest factor density is selected, the 
value of selected factor should be fixed. Without loss of 
generality, assume that the selected factor is fi and the 
value could be selected from Vi (1≤i≤n). Then for each 
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possible value in Vi, calculate the global density that 
assume the value of factor fi is fixed as such a value. The 
value in Vi that takes the greatest global density will be 
selected and assigned to factor fi. The same as the 
algorithm DA-RO, local densities, factor densities, and 
the global density should be modified after fixing value 
for each factor.  

Above operation will repeat until all factors have been 
selected and the values of all these factors have been 
fixed. The process of generating a single test case is also 
described as the Algorithm 3. The problem of tie-
breaking in steps that selecting factor and fixing value 
can be treated similar as the DA-RO. 

 
Algorithm 3. Generate One Test Case by Fixing Value 

in the Order of Factors 
Start with an empty test case test, in which the values 
of all factors have not been fixed;  
While (there exists at least one factor whose value has 
not been fixed)  

For i=1 to n  
If (value of fi has not been fixed) then  

Calculate factor density for fi∈F;  
End If  

End For  
Select a new factor fi with the greatest factor 
density;  
For Each value v∈Vi  

Calculate global density by assuming the value 
of fi is fixed as v;  

End For  
Select a value v that takes the greatest global 
density;  
Fix factor fi as the selected value v;  

End While 
 
Next, we analyze the time performance of algorithm 

DA-FO to check whether it is better than that of DA-RO. 
According to the definition of factor density, in the worst 
case, there are t local densities of all t coverage 
requirements should be calculated to obtain a factor 
density. So the worst time complexity of selecting a 
unfixed factor is O(n×t×tm_ld), for all unfixed factors are 
required to be compared. And there are ai global densities 
required to be calculated when selecting value for the 
selected factor fi (1≤i≤n), for there are ai possible values 
in Vi. So the worst time complexity of DA-FO to generate 
a single test case is O(t×tm_ld×(n2+∑n

i=1 ai)), which is 
better than DA-RO when (n2+∑n

i=1 ai)<(t+∑t
k=1∏fi∈rk ai). 

VI. EXPERIMENTS 

To assess the efficiency of proposed algorithms, we 
compare them to some existed algorithms and tools. We 
experiment with a computer consisting of 2.66GHz 
Pentium IV processor and 1G memory. 

In first experiment, in order to assess their practicality 
in variable strength combinatorial test generation, we 
compare two proposed algorithms to UNION, GREEDY, 
PICT, and TVG. Besides, the ReqOrder and ParaOrder, 

two algorithms that were proposed in our earlier paper [13], 
are also included in this experiment. The tools PICT and 
TVG are both downloaded from internet. The algorithms 
UNION and GREEDY are implemented according to 
their description [15]. In the implementation of UNION, 
when constructing test suite for a single coverage 
requirement, the values of factors that excluded in such 
coverage requirement will be selected randomly. And in 
the implementation of GREEDY, although the problem 
reduction technique is not included, but the time and 
space performance of this version has been improved to 
be much better than that of earlier version[13].  

Though there are some published experimental results 
about UNION and GREEDY in relevant literature [15], but 
the inputs of this experiment are not published. Therefore, 
the inputs of experiment have to be designed ourselves. 
In the first step, two factor set F1={310} and 
F2={23×33×43×5} are chosen to represent the systems 
with fixed-level factors and mixed-level factors 
respectively. And in the second step, we create the 
interaction relationship by selecting a given number of 
coverage requirements from a pool of coverage 
requirements (see Appendix). There are two reasons why 
the sizes of all coverage requirements in the pool range 
from 2 to 4. First, D. R. Kuhn et al claimed that the FTFI 
number (strength of failure-triggering fault interaction) in 
most systems are usually less than 4~6, and most faults 
were triggered by the interactions with low strength [18][19]. 
Second, rather than capabilities of different algorithms, 
coverage requirements with high strength may have a 
greater impact on size of generated test suite.  

Table 1 and Table 2 show the sizes of generated test 
suites and the time consumed of each algorithm. The size 
of test suite generated by TVG is obtained by selecting a 
best one from totally 10 runs. The consumed time of 
TVG is not available, since we can not measure it from 
GUI exactly. And for PICT, though it is claimed that 
“people can define as many sub-models as they want” in 
model file, but in fact, PICT is too inefficient to use in 
practice when the number of coverage requirements is 
much (especially when it is more than 2) and there is 
intersection between different coverage requirements. So, 
the most data about PICT is not available since it require 
excessive amount of time (more than 1 hour). 

As displayed in those tables, though GREEDY can 
generate the smallest test suite almost all the time, its 
consumed time is much longer than that of all the other 
algorithms. DA-RO generates the smallest test suites for 
more than half cases (9 of all 16 inputs), and DA-FO 
generates smallest test suites 7 times. In the aspect of 
time performance, the consumed time of DA-FO is 
always less than that of DA-RO, which supports the 
theoretical results about the time complexity of each 
algorithm. We can also find out that for some inputs, the 
ParaOrder and TVG can also generate small test suite 
with an excellent time performance. And the sizes of test 
suite generated by the ReqOrder and UNION are always 
much bigger than others.  

Rather than the first experiment, some further ones are 
also designed to assess the practicality of proposed 
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algorithms in fixed strength and “narrow sense” variable 
strength combinatorial test generation, which could be 
considered as the special cases of variable strength 
combinatorial test generation. In the following 
experiments, the UNION and ReqOrder will not be 
included, since the sizes of test suite that generated by 
them are always much bigger.  

Table 3 depicts the sizes of 3-way combinatorial test 
suites that generated by two proposed algorithms and 11 
existed algorithms and tools. In such table, the data of 
AETG, GA (generic algorithm) and ACA (ant colony 
algorithm) is collected from [11], and that of GA-N and 
IPO-N is collected from [7]. The data of IPO[8] is 
obtained by running a tool TConfig1, which integrates an 
algebraic recursive algorithm and an in-parameter-order 
strategy based algorithm. And the data of Jenny2 is 
obtained by running an open-sourced program. 

As displayed in Table 3, DA-FO can generate smallest 
test suite for S2, and generate smaller test suites, which 
are only a bit larger than the smallest ones, for some 
inputs such as S6, S7 and S8. And for most inputs except 
S2 and S8, the test suites generated by DA-RO are a bit 
larger than that generated by DA-FO. Therefore, it could 
be concluded that, the performance of two proposed 
algorithms approximate to many classic algorithms for 
fixed strength combinatorial testing. And compared to 
ParaOrder, PICT and TVG, two proposed algorithms can 
generated smaller test suite almost all the time. GREEDY 
can generate the smallest test suites sometimes, but its 
bad time performance is also a main shortcoming. For 
example, it consumed nearly 1 hour for input S5.  

Table 4 displays the size of “narrow sense” variable 
strength combinatorial test suites that generated by 7 

                                                           
1 http://www.site.uottawa.ca/~awilliam/ 
2 http://burtleburtle.net/bob/math/jenny.html 

algorithms and tools. In which, the data of SA (simulated 
annealing) is collected from [1]. And some data about 
GREEDY is not available since it require excessive 
amount of time (more than 1 hour). 

As demonstrated in Table 4, we find out SA generates 
the smallest test suite for all inputs. When ignoring the 
data about SA, DA-RO generates the smallest test suites 
for 17 of all 22 inputs, and DA-FO generates the smallest 
ones for 12 inputs. Besides, the PICT, TVG and 
ParaOrder can generate the smallest test suites for 1, 4 
and 7 inputs respectively, and GREEDY can generate the 
smallest ones for only 1 of 8 valid inputs. Therefore, it 
could be concluded from experimental result that, the test 
suites generated by two proposed algorithms are much 
smaller than that generated by PICT, TVG, ParaOrder, 
and even GREEDY, though their performances are worse 
than that of SA in the field of “narrow sense” variable 
strength combinatorial test generation.  

In a conclusion, it is clear that two proposed 
algorithms have some advantages in variable strength 
combinatorial test generation. Besides, they are also 
competitive in fixed strength and “narrow sense” variable 
strength combinatorial test generation. The experiment 
results also suggest that DA-RO usually generate smaller 
test suite than DA-FO in variable strength (include 
“narrow sense” variables strength) combinatorial test 
generation, while DA-FO is usually better in fixed 
strength combinatorial test generation. 

VII. CONCLUSION 

Variable strength combinatorial testing, which has 
been proposed in our earlier paper, may avoid some 
limitation of existing classic combinatorial testing models 
including fixed strength combinatorial testing and 
“narrow sense” variable strength combinatorial testing. 

TABLE 1.  
COMPARISON OF DIFFERENT ALGORITHMS FOR F={310} AND DIFFERENT SIZE OF R 

|R| DA-RO DA-FO ReqOrder ParaOrder Union Greedy TVG PICT 
2 81 (0.08s) 81 (0.02s) 81 (0.01s) 81 (0.01s) 162 (0.01s) 81 (1.04s) 81 (-) 81 (0.69s)
3 81 (0.11s) 81 (0.02s) 81 (0.01s) 81 (0.01s) 242 (0.01s) 81 (1.91s) 84 (-) - 
10 86 (0.44s) 84 (0.07s) 99 (0.01s) 96 (0.01s) 503 (0.01s) 93 (6.77s) 86 (-) - 
20 95 (0.98s) 99 (0.14s) 128 (0.01s) 105 (0.02s) 858 (0.02s) 91 (18.0s) 105 (-) - 
30 116 (1.98s) 120 (0.30s) 157 (0.01s) 111 (0.04s) 1599 (0.04s) 109 (34.0s) 125 (-) - 
40 126 (3.02s) 123 (0.44s) 163 (0.01s) 120 (0.05s) 2057 (0.06s) 111 (50.7s) 135 (-) - 
50 135 (3.74s) 135 (0.60s) 172 (0.04s) 132 (0.06s) 2635 (0.10s) 125 (70.2s) 139 (-) - 
60 141 (4.96s) 142 (0.77s) 190 (0.05s) 144 (0.08s) 3257 (0.15s) 141 (110s) 150 (-) - 

TABLE 2.  
COMPARISON OF DIFFERENT ALGORITHMS FOR F={23×33×43×5} AND DIFFERENT SIZE OF R 

|R| DA-RO DA-FO ReqOrder ParaOrder Union Greedy TVG PICT 
2 64 (0.04s) 64 (0.01s) 64 (0.01s) 64 (0.01s) 104 (0.01s) 64 (1.35s) 64 (-) 64 (0.71s)
3 144 (0.24s) 144 (0.04s) 144 (0.01s) 144 (0.01s) 248 (0.01s) 144 (2.06s) 144 (-) - 
10 144 (0.71s) 144 (0.11s) 144 (0.01s) 144 (0.02s) 505 (0.01s) 144 (8.60s) 144 (-) - 
20 160 (1.78s) 160 (0.23s) 166 (0.01s) 161 (0.03s) 929 (0.01s) 160 (26.3s) 161 (-) - 
30 165 (4.35s) 175 (0.50s) 204 (0.01s) 179 (0.06s) 1861(0.06s) 162 (66.8s) 179 (-) - 
40 165 (5.67s) 172 (0.65s) 209 (0.02s) 183 (0.11s) 2244(0.08s) 167 (111s) 181 (-) - 
50 182 (7.96s) 186 (0.87s) 229 (0.02s) 200 (0.14s) 2820(0.13s) 183 (161s) 194 (-) - 
60 197 (11.15s) 200 (1.22s) 237 (0.05s) 204 (0.16s) 3587(0.21s) 197 (259s) 209 (-) - 
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TABLE 3.  

SIZES OF GENERATED 3-WAY FIXED STRENGTH COMBINATORIAL TEST SUITES 
 DA-RO DA-FO ParaOrder Greedy TVG PICT AETG GA ACA GA-N IPO-N IPO Jenny

S1 50 47 53 43 48 48 38 33 33 52 47 48 51 
S2 64 64 106 64 120 111 77 64 64 85 64 64 112 
S3 213 211 225 184 239 215 194 125 125 223 173 200 215 
S4 362 359 363 325 409 369 330 331 330 389 371 366 373 
S5 1592 1587 1624 1474 1949 1622 1473 1501 1496 1769 1502 1678 1572
S6 242 237 225 220 269 241 218 218 218 336 199 239 236 
S7 119 116 108 106 133 119 114 108 106 120 113 120 130 
S8 365 369 377 388 429 368 377 360 361 373 368 464 397 

(S1: 36; S2: 46; S3: 56; S4: 66; S5: 106; S6: 57; S7: 524232; S8: 101624331) 

 
TABLE 4.  

SIZES OF GENERATED “NARROW SENSE” VARIABLE STRENGTH COMBINATORIAL TEST SUITES 

 C DA-RO DA-FO ParaOrder Greedy TVG PICT SA 

VSCA(m;2, 315,C) 

∅ 21 20 33 - 22 35 16 
CA(3, 33) 28 29 27 - 27 81 27 
CA(3, 33)2

 28 29 33 - 30 729 27 
CA(3, 33)3 28 30 33 - 30 785 27 
CA(3, 34) 32 34 27 - 35 105 27 
CA(3, 35) 40 42 48 - 41 131 33 

CA(3, 34), CA(3, 35), CA(3, 36) 46 46 49 - 53 1376 34 
CA(3, 36) 46 46 53 - 48 146 34 
CA(3, 37) 53 53 54 - 54 154 41 
CA(3, 39) 60 60 62 - 62 177 50 
CA(3, 315) 70 78 82 - 81 83 67 

VSCA (m;2, 435362,C) 

∅ 41 40 40 44 44 43 36 
CA(3, 43) 64 64 64 67 67 384 64 

CA(3, 4352) 131 132 140 119 132 781 100 
CA(3, 53) 125 125 125 126 125 750 125 

CA(3, 43), CA(3, 53) 125 125 129 126 125 8000 125 
CA(3, 435361) 207 211 220 209 237 1266 171 
CA(3, 5162) 180 180 180 181 180 900 180 

CA(3, 435362) 256 261 264 258 302 261 214 

VSCA (m;2, 320102,C) 
∅ 100 100 100 - 101 100 100 

CA(3, 320) 100 105 119 - 103 940 100 
CA(3, 320102) 401 409 445 - 423 423 304 

 

 

The reason is that such a new model makes more 
sufficient consideration on actual interaction relationship 
in software. To address the problem of variable strength 
combinatorial test generation, this paper proposed two 
test generation algorithms based on one-test-at-a-time 
strategy. The experience results show the advantages of 
two proposed algorithms in both the aspect of size of 
generated test suite and the aspect of time performance. 
And rather than the variable strength combinatorial test 
generation, two proposed algorithms are also available in 
fixed strength and “narrow sense” variable strength 
combinatorial test generation. 

Above all, many works on combinatorial testing have 
been done in recent years, but there are also many 
problems to study in the future. The first one is test 
generation for different model of combinatorial testing, 
and there is a limitation that most works in this field 
focus on pair-wise testing. Secondly, the combinatorial 
testing techniques for test prioritization, constraint 

handling, and fault location are also important. 
Furthermore, automatic integration tool for combinatorial 
testing, which need to support the automation of test 
generation, execution, measurement, and fault location 
etc, is also required to be developed. 

APPENDIX 

There are totally10 factors in both F1 and F2, that is 
F={f1, f2, f3, f4, f5, f6, f7, f8, f9, f10}. We map these 10 
factors to its sequence number for simplicity, so we could 
described them as F={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.  

The pool of coverage requirements that used in our 
first experiment is: 

 POOL={{1, 2, 7, 8}, {0, 1, 2, 9}, {4, 5, 7, 8}, {0, 1, 3, 
9}, {0, 3, 8}, {6, 7, 8}, {4, 9}, {1, 3, 4}, {0, 2, 6, 7}, {4, 
6}, {2, 3, 4, 8}, {2, 3, 5}, {5, 6}, {0, 6, 8}, {8, 9}, {0, 5}, 
{1, 3, 5, 9}, {1, 6, 7, 9}, {0, 4}, {0, 2, 3}, {1, 3, 6, 9}, {2, 
4, 7, 8}, {0, 2, 6, 9}, {0, 1, 7, 8}, {0, 3, 7, 9}, {3, 4, 7, 8}, 
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{1, 5, 7, 9}, {1, 3, 6, 8}, {1, 2, 5}, {3, 4, 5, 7}, {0, 2, 7, 
9}, {1, 2, 3}, {1, 2, 6}, {2, 5, 9}, {3, 6, 7}, {1, 2, 4, 7}, 
{2, 5, 8}, {0, 1, 6, 7}, {3, 5, 8}, {0, 1, 2, 8}, {2, 3, 9}, {1, 
5, 8}, {1, 3, 5, 7}, {0, 1, 2, 7}, {2, 4, 5, 7}, {1, 4, 5}, {0, 
1, 7, 9}, {0, 1, 3, 6}, {1, 4, 8}, {3, 5, 7, 9}, {0, 6, 7, 9}, 
{2, 6, 7, 9}, {2, 6, 8}, {2, 3, 6}, {1, 3, 7, 9}, {2, 3, 7}, {0, 
2, 7, 8}, {0, 1, 6, 9}, {1, 3, 7, 8}, {0, 1, 3, 7}}. 
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