
Detecting Null-dereference Bugs via a Backward
Analysis

Qian Wang

State Key Laboratory of Networking and Switching Tech, Beijing University of Posts and Telecommunications
Beijing 100876, China

Email: qwang_bupt@163.com

Dahai Jin, Yunzhan Gong, Hongbo Zhou
State Key Laboratory of Networking and Switching Tech, Beijing University of Posts and Telecommunications

Beijing 100876, China
Email: {jindh, gongyz}@bupt.edu.cn, zhouhb84@yahoo.cn

Abstract—Null dereference is a common occurring bug in
programming languages such as C. In this paper, we
propose a path-sensitive and context-sensitive approach that
performs a backward dataflow analysis to identify null-
dereference bugs. One novel feature of our approach is that
with the help of aliasing predicates, it can perform strong
updates in presence of aliasing, thus eliminating false
positives. The aliasing predicates are introduced on the
premise of a canonical representation for program being
analyzed. Moreover, a context-sensitive algorithm for inter-
procedural null-dereference analysis is also presented in this
paper, which also contributes to improve accuracy. We have
implemented this approach, and give an evaluation of it on a
set of open source benchmarks. The experimental results
verify the effectiveness of our approach, and show that it is
suitable for exploring large real programs with reasonable
accuracy.

Index Terms—Null-dereference Analysis, Aliasing, Strong
updates, Context-sensitive Inter-procedural Analysis

I. INTRODUCTION

Null dereference is a kind of bug that commonly
occurs in programs, and many static tools and approaches
have been developed for detecting such bugs (e.g. [1, 2, 5,
7, 13]). However, it’s not an easy work to achieve the
detection in an accurate and efficient way. Aliasing is
something that one cannot ignore when doing the null-
dereference analysis [19]. Failure to take into account
aliasing can limit the usefulness of an approach.
Furthermore, strong updates are required for precision,
but are difficult to perform in presence of aliasing. Even
pre-computed may-alias and must-alias information may
not enable strong updates enough, since at a given
program point two variables may be aliased under some
paths and not aliased under other paths. In addition, inter-
procedural analysis also needs to be considered, for the
occurrences of the null-dereference bugs often involve
interactions among multiple procedures, [1].

In this paper, we propose a bug-detection approach

which is context-sensitive and path-sensitive, to address
the problem of identifying the null-dereference bugs in C
programs. Starting at a dereference point in the program
be analyzed, our approach propagates a set of symbolic
states backwards along the control flow graph (CFG), to
find whether there are sufficient bases to report this
dereference as a possible bug. The symbolic state takes
predicates as a condition, under which the value held by
some witness (which represents a single memory location)
is null and will flow into the initial dereference point.
Once the condition is satisfied, a null-dereference bug is
found. During the backward analysis, the symbolic state
may be updated due to the effects of the assignment
statements, and the predicates can be evaluated according
to several custom-defined rules rather than a constraint
solver. In addition, branch correlations are also taken into
account to realize the path-sensitive analysis. A backward
analysis only explores the program paths that are relevant
to analyzing a dereference point, which makes our
approach scalable.

A novel feature of our approach is that by means of
aliasing predicates, our approach achieves to perform

Figure 1. Example code

Manuscript received May 20, 2013; accepted August 24, 2013.
Project number: 2012AA011201, 61202080

3120 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.12.3120-3131

strong updates in presence of aliasing. Considering a
certain program point at which two l-value expressions
[12] may be aliased with each other, our approach takes
advantage of aliasing predicates to give a pair of
hypotheses: one is that the aliasing relationship between
the two expressions is definitely established; and the
other is opposite. Then both the hypotheses can be
respectively validated and invalidated by the backward
analysis when it arrives at the statements that confirm or
contradict the hypotheses. As a result, superfluous
symbolic states are excluded and strong updates are
accomplished, thus reducing many false positives.

The aliasing predicates are introduced on the premise
that all the expressions in the program being analyzed are
translated into a canonical representation. Owing to this
canonical representation, our approach can explicitly
model the address of a memory location that an l-value
expression refers to. Furthermore, our approach utilizes
constraints on such addresses to determine whether l-
value expressions are aliased with each other or not.
These constraints are just the so-called aliasing predicates.

In addition to aliasing, interactions among multiple
procedures introduces another complication that a
dereference operation is directly or indirectly associated
with a parameter, for the possible values of the parameter
can be only known after all the call sites examined.
Furthermore, procedural side effects and return values
also have non-ignorable effects on data flows, which one
needs to pay attention to when performing inter-
procedural analysis.

Our approach achieves to perform inter-procedural
analysis in a context-sensitive manner through the way of
partial transfer functions, or summary table [9, 10], with a
few modifications to adapt backward traversal. The main
idea is that to perform efficient analysis of called
procedures, our approach computes and saves summary
information at call sites; by reusing summary information,
it avoids reanalyzing a procedure in a context in which
the procedure has been analyzed previously.

We have implemented a prototype of our approach as
an extension of Defect Testing System (DTS) [11], which
is a general automatic bug-detection framework for C
programs, especially GCC programs. To estimate the
effectiveness of our approach, we apply this prototype on
a set of open source GCC benchmarks. The preliminary
experimental results are encouraging, for more bugs
unknown before are found, and meanwhile false positives
are reduce.

In summary, the main benefit of our approach is that it
enables an accurate and efficient null-dereference
analysis for C programs. That is it detects as many
potential bugs as possible; it performs strong updates in
presence of aliasing, hence eliminates false positives that
are identified by the one depending on weak updates; and
it scales to large programs. The main contributions of this
paper include: (1) a novel set of designed features that
together enable a bug-detection approach for null
dereferences in real C programs with reasonable precision;
(2) an implementation of this approach; (3) experiment

studies, using large open-source, that illustrate the
effectiveness and usefulness of this approach.

The rest of this paper is organized as follows: Section
II explains the canonical representation introduced by our
approach. And the main features of our approach are
illustrated in section III, which also gives the algorithm
for inter-procedural null-dereference analysis. Section IV
first discusses the experimental environment and then
reports on preliminary experimental results obtained from
analyzing 5 open source GCC benchmarks. In section V,
we survey related work, and conclude the paper in section
VI.

II. CANONICAL REPRESENTATION

After the abstract syntax tree is built, all the
expressions in the program under test are translated into a
canonical representation with the following syntax:

::= *

Constant c Const
Primitive address a Addr
Allocative address t Alloc
Expression e Expr e c | a | t | e | e#f

∈
∈

∈
∈

There are five kinds of expressions in the canonical
representation: constant c, primitive address a, allocative
address t, dereference expression *e and offset expression
e#f. Constants indicate numeric constants, string
constants or sizeof expressions in the source code.
Primitive addresses and allocative addresses respectively
model symbolic addresses of variables and memory
allocation sites. What should be pay attention to is that
there is one address tmalloc per allocation site, and one
symbolic address ax for each variable x. A dereference
expression *e denotes the value of the memory location
that expression e points to. And an offset expression e#f
means an address in memory which is obtained by adding
an offset f to the base location that expression e refers to.
In addition, arithmetical and relational operations among
expressions are also taken into account, but not explained
here for simplicity. If x is a variable in the source code,
then the C expression &x is described as ax; expression x,
as *ax; expression *x, as **ax; expression x.f, as *(ax#f);
and expression x->f, as *((*ax)#f).

An l-value in C programs is a kind of expression that
refers to a memory location [12]. Such an expression is
translated into a dereference expression *e in the

Figure 2. Structure of formula. The term e denotes an arbitrary

expression in canonical representation.

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3121

© 2013 ACADEMY PUBLISHER

canonical representation. The name l-value comes from
the assignment e1 = e2 in which the left operand e1 must
be an l-value expression. Furthermore, for an l-value *e
in the canonical representation, the expression e explicitly
holds the address of the memory location that *e
represents.

Aliasing is something that one cannot ignore when
performing null-dereference analysis. And it is usually
defined as follow:
• Two l-value expressions are aliased if and only if

they refer to the same memory location [19].
Considering what has been mentioned above, in the
canonical representation, the definition of aliasing can be
evolved as:
• Two l-value expression *e1 and *e2 are aliased if

and only if the predicate e1 == e2 (which means the
address of the memory location that *e1 refers to
should be equal to the address of the one that *e2
refers to) is valid.

In the rest of the paper, such kind of predicate is
regarded as an aliasing predicate. And with the help of it,
our approach can perform strong updates in presence of
aliasing, thus enhancing precision of the null-dereference
analysis. The details will be explained in section III.A.

Besides the work above, for facilitating subsequent
backward analysis, our approach also takes some other
measures to optimize the structure of the source code. For
instance, it introduces temporary variables to eliminate
side effects in expressions and flatten nested procedure
calls; and it converts short-circuit operators such as &&, ||,
and ?: into if-else statements to eliminate control flow
within expressions; and moreover, as shown in Figure X,
it also adds two extra expressions to explicitly denote the

true and the false branch conditions of an if-else
statement (similar measures are taken for other selection
statements).

III. NULL-DEREFERENCE ANALYSIS

Our approach is composed of a backward data-flow
analysis. Starting from a dereference point, it propagates
a series of symbolic states backwards along the control
flow graph (CFG) to identify whether there is a NULL
value that may be eventually transferred to the initial
dereference point along some path, which implies that a
null-dereference bug may occur.

The symbolic state is of the form a tuple <w, es> that
consists of two components:
• Witness: the witness w, which is generally a

dereference expression in our implementation, refers
to a single memory location. It currently holds the
value of interest that may flow into the initial
dereference point. Besides, there are two special
symbols ε and η for witness. The value of the former
is definitely NULL and the value of the latter
opposite.

• Execution state: the execution state es is a formula
which is defined in Figure 2. It represents the
condition under which a null-dereference bug might
occur. Specially, a predicate in the execution state is
called as a root predicate as long as it constraints the
witness.

EXAMPLE 1. Consider the code shown in Figure 1
and we will use it as an example to demonstrate how our
approach works. The CFG built for this code is shown in
Figure 3, where all the expression has been translated into

TABLE I.
WITNESS TRANSFORMATIONS AS WELL AS SOME CORRESPONDING ALTERNATIONS IN EXECUTION STATE.
Statement Witness transformation

Assignment

*e1 = *(e2…#f)

< w[*(e2...#f) / *e1], es[*(e2...#f) / *e1] ∧ e2 != NULL >

if *e1 ∈ Sub+(w) ∪ {w}

< w, es ∧ e0 != el >, < w[*(e2...#f) / *e0], es[*(e2...#f) / *e0] ∧ e2 != NULL ∧ e0 == e1 >

if ∃ *e0 ∈ Sub+(w) ∪ {w} s.t. MayAlias(*e1, *e0)

*e1 = a2

< η, es[a2 / *e1] >
if w =s *e1

< w[a2 / *e1], es[a2 / *e1] >
if *e1 ∈ Sub+(w)

*e1 = t2

<ε, es[t2 / *e1] >
if w =s *e1

< w[t2 / *e1], es[t2 / *e1] >
if *e1 ∈ Sub+(w)

*e1= NULL
<ε, es[NULL/ *e1] >
if *e1 ∈ Sub+(w)

Branch
condition *e1== NULL

< ε, es[NULL / *el] >
if w =s *e1

3122 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 3. CFG built for the example code shown in Figure 1 and Symbolic states propagated backwards along the CFG to check whether there exists a

null-dereference bug at label 11.

Figure 4. A comparison between weak updates and strong updates.

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3123

© 2013 ACADEMY PUBLISHER

the canonical representation, and specially two extra
nodes (5T and 5F) are added as successors of if-else
statement at label 5 to explicitly represent its true and
false branch conditions, similar measure is also taken on
the if-else statement at label 8. In order to check the
dereference operation at label 11 is a bug or not, our
approach propagates a series of symbolic states
backwards along the CFG. The initial state is <*ay, *ay
== NULL> in which the current witness is the
dereference expression *ay and the current execution state
is the root predicate *ay == NULL.

Each statement potentially transforms the symbolic
state that comes from its successor. The transfer functions
for the two components of a symbolic state are

::
 ()
updateWitness Statement Witness Execution state

Witness Execution stateρ
× ×

→ ×

and ::
 ()
updateEState Statement Execution state

Execution stateρ
×

→

which are respectively explained in section III.A and
section III.B. Then the function

::
 ()
update Statement Witness Execution state

Witness Execution stateρ
× ×

→ ×

defines the overall backward effect of an individual
statement on a state tuple:

(, ,) =
{ ', ' | ', ' (, ,)
 ', ' () }

update st w es
w es w es updateWitness st w es

w w es updateEState es

< >
< > < >∈ < >

= ∈∨

The objective of the transformation at an individual
statement is to accept a post-state φ = <w, es>, and
return a set of pre-states φ’ = <w’, es’> that are over-
approximation of the weakest preconditions [6] of φ
concerning the statement.

A symbolic state is propagated backwards along the
control flow graph until one of the following conditions
encountered: a) the witness is updated to η; b) the
execution state evaluates false; c) the witness is updated
to ε and the execution state evaluates to true. In the first
two cases, the analysis abandons traversal, since either
there is no NULL value that flows into the initial
dereference point, or the path that the analysis currently
traces is infeasible. In the third case, a null-dereference
bug is identified and a bug-found message will be emitted.

What should be emphasized is that: a symbolic state is
regarded as invalid if it satisfies either of the first two
cases; otherwise, a symbolic state is regarded as valid.
Moreover, a symbolic state is called as a bug-found state
whenever it satisfies the third case.

A. Witness Transformations and Strong Updates
In this subsection, we begin to discuss the witness

transformations as well as some corresponding alterations
in the execution state.

The idea behind the transformations is based on the
observation that at every program point, there is only a
single witness l-value that currently holds the value of

interest, such that subsequent statements will copy the
value of interest from this l-value to the dereference point
being detected. Therefore, when proceeding backward
analysis, our approach re-traces the chain of assignment
statements that cause the value of interest to be
transferred among l-values, and then accordingly updates
the witness along with some corresponding alterations in
the execution state.

In some simple cases, such transformations can be
easily regarded as performing substitutions going
backwards.

EXAMPLE 2. As shown in Figure 3, we start the null-
dereference analysis from the statement at label 11 to
identify whether there exists a bug or not. *ay is taken as
the initial witness. At label 10, we find that the value of
*ay is copied from *((*ax)#f), thus we substitute *((*ax)#f)
for the witness accordingly and meanwhile replace every
occurrence of *ay in the execution state with *((*ax)#f). In
addition, an predicate *ay != NULL is introduced into the
execution state to ensure that the value of the witness can
be transferred to the dereference point at label 11 without
any exception. Similar transformation also occurs at label
9.

Besides the cases above, aliasing is something that one
cannot ignore when doing the null-dereference analysis;
failure to take into account aliasing can limit the
usefulness of an approach. Furthermore, strong updates
are required for precision but difficult to perform. Even
precise pre-computed may-alias and must-alias
information may not enable strong updates enough, since
at a given program point two l-values may be aliased
under some paths and not aliased under other paths.

Owing to the canonical representation, we can
explicitly model the address of a single memory location
that an l-value refers to. Moreover, for two l-value *e1
and *e2, we utilize the predicate e1 == e2 and e1 != e2 to
respectively represent two incompatible condition: the
former under which *e1 and *e2 are aliased; and the latter
under which they are not. Such predicates are the so-
called aliasing predicates mentioned in previous section.
With the help of them, our approach achieves to perform
strong updates in presence of aliasing. Consider an
assignment *el = *er and suppose the witness *ew is not
syntactically equal to but may be aliased with *el. We (i)
hypothesize that *ew and *el are aliased, then substitutes
*er for the witness and add an aliasing predicate ew == el
into the execution state (in which every occurrence of *ew
is replaced with *er) through logical AND operation; and

Figure 5. Definition of sub-expressions

3124 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

also (ii) hypothesize that *ew and *el are not aliased, then
keep *ew as the witness and add an aliasing predicate
ew != el into the execution state (which has no other
alterations) through logical AND operation too. Either of
the hypotheses can be confirmed or contradicted by the
subsequent analysis when it arrives at the statement that
validates or invalidates the corresponding aliasing
predicate.

EXAMPLE 3. Let’s explore the symbolic states
presented in Figure 3. *az is one witness following the
statement at label 4. We don’t have a syntactic match
between **ap and *az, but a query to pre-computed may-
alias information shows that they may be aliased. To
handle this situation soundly, we take measure as talked
above to obtain two updated symbolic states: one in
which an aliasing predicate az == *ap is introduced and
the witness is accordingly updated to *((*ax)#f); one in
which an opposite aliasing predicate az != *ap is
introduced and the witness is kept as *az. Subsequently at
label 3, we abandon the second symbolic state, for its
corresponding aliasing predicate gets invalidated due to
the find that the value of *ap comes from az.

Moreover, we give a comparison between strong
updates and weak updates in Figure 4 (the code shown in
Figure 4 is a fragment of the one shown in Figure 1), and
the weak updates presented here are very similar as the
approaches adopted by PSE [21] and Xylem [7].The main
difference between the two is whether to apply aliasing
predicates during the analysis. The strong updates are
able to exclude the spurious states generated at label 4. In
contrast, the weak updates cannot, hence yield a false
positive at label 2.

What has been mentioned above is all covered in the
function updateWitness. It accepts a statement st and a
witness w as well as an execution state es, and computes
a set of l-values that are copied by st to w, meanwhile
there are some corresponding alterations in es. Table I
defines this function for some statements; and it is
identity for others. The notations are as follow: the term
e0, e1 and e2 refer to arbitrary expressions in the canonical
representation; a2 denotes a primitive address, and t2
represents a allocative address; for a witness w and
expression e1 and e2, w[e1/e2] denotes w in which every
occurrence of e2 is replaced by e1, and es[e1/e2] has a
similar meaning; Sub+(e), which is defined in Figure 5,
represents a set that includes all the sub-expressions of

expression e, and one can easily deduce that any element
in Sub+(e) maps a prefix of the C expression that e
corresponds to; *(e…#f) is used to represent either *e or
*(e#f). The transformations at assignments are not
repeated again for the idea behind them has been
discussed above. Given branch condition *e1 == NULL,
it is regarded as equivalent to assignment *e1 = NULL in
case that it is a null check for the witness, then the
witness is updated according to what occurs at
assignment *e1 = NULL.

B. Execution State Transformations and Grouping
Symbolic States

In this subsection, we first talk about the function
updateEState, which is used to perform the
transformations for the execution state. It accepts a
statement and an execution state, and then returns a set of
possible execution states just preceding the statement.

Table II defines this function for assignments and
branch conditions; and it is identity for other statements.
Given an execution state es which is of the form a
formula, the notation Term(es) means a set that includes
all the terms in es; and as shown in Figure 5 the sub-
expressions of each term in es together constitute
Sub+(es).

Similar as what changes happen to a witness, every
term in an execution state is potentially updated due to
the effect of an assignment statement. And in respect to
the transformation that occurs at a branch condition such
as e1 == e2, the updated execution state is of the form a
conjunct which contains the branch condition and the
predicates in the incoming state. In this way, our
approach keeps correlation among different branches and
achieves path-sensitive analysis.

EXAMPLE 4. As shown in Figure 3, the symbolic
state coming from the true branch of the if-else statement
at label 8 cannot be propagated to the true branch of the
if-else statement at label 5, for the branch condition
contained in its execution state is invalidated by the
statement at label 6.

TABLE II.
EXECUTION STATE TRANSFORMATIONS AT SOME STATEMENTS

Statement Execution state transformation

Assignment *e1 = e2

es[e2 / *e1]

if *e1 ∈ Sub+(es) ∪ Term(es)

es ∧ (e0 != e1), es[e2 / *e0] ∧ (e0 == el)
if ∃ *e0 ∈ Sub+(es) ∪ Term(es)

s.t. MayAlias(*e1, *e0)

Branch
condition e1 op e2 es ∧ (e1 op e2)

Figure 6. Simplification rules

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3125

© 2013 ACADEMY PUBLISHER

Besides what has been mentioned above, in order to
avoid an exponential blow-up of paths, our approach
takes a measure that inspired by the forward analysis in
ESP [4] to group the symbolic states. The function Merge,
which is defined as follow,

[]() { , () | }

 [] { | () }

 []s ss dMerge ss w es s w LVs

where ss d w s ss w witness s

ss w∈ ∅= < > ∈

= ∈ =

∨ ∧ ≠

∧

is used to accomplish the process. The term LVs means a
set of l-value expressions in a procedure; witness(s) and
es(s) are separately used to obtain the witness and
execution state of a symbolic state s. This function
accepts a set of symbolic states, and then groups the
elements of the set based on the witness. All the
execution states in one group are merged together to
construct a formula by logical OR operation. For
example, after the merging of < *e, e == NULL ∧ *ac == 0 > and < *e, e == NULL ∧ *ac != 0 >, the
symbolic state < *e, e == NULL > is obtained.

C. Simplification Rules
After the above transformations, each predicate in an

execution state can be evaluated to true, false or
unknown according to some custom-defined rules; and
furthermore, the formula can be validated, invalidate or
simplified.

Figure 6 shows a few of sampling rules used in our
simplifier. The notations e1 and e2 refer to different
arbitrary expressions in the canonical representation; and
either a1 or a2 means a primitive address that denotes the
address of a variable; t1 and t2 are distinct allocative
addresses for different memory allocation sites; as for the
symbols f, p and q, they are used to describe distinct
offsets away from some base locations.

Rule 1 is straightforward.
Rule 2-3 hold the observation that no matter a

primitive address or an allocation address is unique, since
the memory locations allocated at different sites are
disjoint and different variable are stored in distinct
memory locations. Furthermore, Rule 4 denotes that the
primitive address for any variable is never equal to
NULL. But as for an allocative address, because of the
potential failure of memory allocation, it is considered to
be equal to NULL for conservation. Rule 5 keeps this
idea and it is reasonable, for many develop standards (e.g.
MISRA C [20]) demand there must be a null check after
each dynamic allocation in C program.

Rule 6 shows that for two offset expressions, as long
as their offsets are different, no matter their bases are
equal or not, they are distinct.

Rule 7 is based on the fact that a conjunct with a pair
of conflicting predicates is invalid and evaluated to false.

Rule 8 demonstrates a kind of simplification method.
That is for a conjunct with a predicate in the form of e1 == c1, it replaces the other occurrences of e1 in the
conjunct with c1. Considering the conjunct shown in Rule
8, after the replacement, if the constant c1 is really greater
than the constant c2, then the conjunct is reduced to e1 == c1; otherwise it is evaluated to false, for its sub
predicate c1 > c2 is invalid.

Figure 7. Algorithm for inter-procedural analysis

3126 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

Rule 9 takes a similar method of Rule 8 to do the
simplification.

What should be pay attention is that our approach
repeatedly applies these simplification rules on a formula
until a fix pointer is reached.

D. Inter-procedural Algorithm and Optimizations
The algorithm for inter-procedural null-dereference

analysis is presented in Figure 7. Our approach achieves
to perform inter-procedural analysis in a context-sensitive
manner through the way of partial transfer functions, or
summary table [9, 10], with a few modifications to adapt
backward traversal. The reason why partial transfer
functions are used is that: an effective and classical way
to do inter-procedural analysis is by means of transfer
functions to summarize the behavior of procedures for all
possible inputs [10]; however, for null-dereference
analysis that relates to pointers, enumerating all the
possible aliasing combinations for every input to form
complete transfer functions is impractical, moreover,
most of those combinations typically never occur in the
program under test; thus we compute partial transfer
functions to summarize the procedures for relevant inputs
that occur in the program.

The main idea behind the algorithm is as follow:
suppose we are processing procedure foo and we
encounter a call to another procedure bar. We would like
to apply a transfer function to map the symbolic state s at
the exit of bar to associated states that would result at the
entry of bar after propagating s through the procedure
(and its transitive callees). However, since the body of

bar contains multiple statements, the transfer function
must be generated dynamically by analyzing bar. This is
done be maintaining and updating a summary table ∑ for
bar. When a call to bar is encountered in foo with
symbolic state s, the summary table for bar is consulted.
If no corresponding summary information exits, the
algorithm descends into bar to analyze it. A call stack CS
is used to ensure context-sensitive processing of called
procedure. After returning from bar, the algorithm saves
the summary information to reuse in subsequent analysis.

On reaching the entry of foo, the algorithm collects the
symbolic states propagated here. If foo is not being
analyzed in a specific context (i.e. the call stack is empty),
the algorithm continues to propagate these states through
all the predecessors of foo (and its transitive callers) until
they can be validated or invalidated. This process is
accomplished with the help of a container Γ.

Because of the trade-off among efficiency, cost and
accuracy, we take some optimization measures to
determine the extent to which a symbolic state is explored.

First, we bound the number of predicates in an
execution state. To deal with this, we associate an age
with every predicate, which is the number of statements it
has been propagated through; we have a threshold k1, and
drop (i.e. reduce to true) a predicate whenever its age
increase beyond k1. The idea behind dropping old
predicates is such an observation that branch correlations
in paths typically occur between branches that are near
each other in the code. What should be emphasized is that
the root and aliasing predicates are never dropped.

Second, we restrict the length of l-value expressions in
a symbolic state. Another threshold k2 is used here. If the
length of an l-value expression exceeds k2, we switch that
expression to an abstract location. The abstract location
representation is an identifier taken from a finite partition
of all memory locations obtained from a pre-computed
flow-insensitive points-to analysis. This representation is
less precise, since a single abstract location may represent
a set of memory locations. We use abstract locations to
ensure termination of the analysis (e.g. on programs with
recursive data structures).

Beside the above two, we group the symbolic states
propagated to the same point in the program. This process
has been discussed in section III.B and will be not
repeated again here.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
We have implemented a prototype of our approach as

an extension of Defect Test System (DTS), which is a
general automatic bug-detection framework for C
programs, especially GCC programs. In the next
subsection, to estimate the effectiveness and the accuracy
of our approach, we conduct two experiments to compare
it with the original approach that DTS used to perform
null-dereference detection. That approach depends on a
forward interval analysis and has been verified as a
reliable approach [11]. All the two experiments are run
on a dual-processor 1.80GHZ Pentium E2160 with a 2GB Figure 8. Experimental sample code.

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3127

© 2013 ACADEMY PUBLISHER

physical memory, and have been measured with enough
repetitions to avoid mistakes. Besides, for simplicity, the
notation DTS-F and DTS-B are used to respectively
indicate the approach that DTS ever used and the
approach that we propose in this paper.

B. Experimentation Analysis and Discussion
EXPERIMENTAION 1. We first select some sample

codes inserted with null-dereference bugs manually as
experimental object to prove the effectiveness of our
approach in some extent.

There are four inspection points in the sample code
that is demonstrated in Table III. The BP entries denote
which one is confirmed as a genuine bug by artificial
identification. As shown in Table III, DTS-F reports three
bugs at L9, L21 and L22, among which the first two are
both false positives. Since DTS-F takes a conservative
measure to deal with the aliasing situation, it believes that
the value of y at L9 may be NULL, therefore leading to a
false positive. Due to the context-insensitive manner
taken by DTS-F to do inter-procedural analysis, it cannot
distinguish the distinct context conditions at different call
sites, and then it asserts not only the invoking at L22 but
also the one at L21 causes a null-dereference bug inside
of procedure f2. By contrast, DTS-B finds the genuine
bug at L22 with no false positive, which owns to strong
updates in presence of aliasing and inter-procedural
analysis in a context-sensitive manner.

 EXPERIMENTAION 2. In this part, to investigate
the capability of DTS-B that detects null-dereference
bugs in practice, we apply both DTS-B and DTS-F on 5
open source benchmarks. We believe all the benchmarks
to be challenging and interesting, since they all contain
many complex structures.

The experimental result is presented in Table IV, in
which: the LINE(s) entries indicate the total lines of
source code; the term REP and DEF respectively denote
the number of bugs reported by an approach and the
corresponding number of genuine bugs identified by
manual confirmation; the FPR entries represent the false
positive rate of an approach, whose computational
formula is FPR=(REP-DEF)/REP*100% ; and the FNR
entries show the false negative rate of an approach,
whose computational formula is

FNR(DTS-F)=

OTHER(DTS-B)/(DEF(DTS-F)+DEF(DTS-B)-SAME)*100%

and
FNR(DTS-B)=

OTHER(DTS-F)/(DEF(DTS-F)+DEF(DTS-B)-SAME)*100%
.

According to the statistics, there are 100725 lines of
source code together in all the benchmarks. DTS-F
reports 377 bugs with 321 bugs identified, whereas DTS-
B finds 405 bugs with 365 bugs confirmed. In contrast,
DTS-B detects 13.71% more bugs (365 → 321); and its
FPR drops by 4.98%, meanwhile its FNR decreases by
9.26%. All those imply that DTS-B can improve the
accuracy of detection. Some details are given below.

No surprising, both the approaches find some common
bugs. For instance, such kind of bug “p = malloc(); *p
= …;”, which means that there exists no null check
between a memory allocation and its relevant dereference
operation, is frequently detected. Moreover, DTS-B
eliminates some false positives and also finds some fresh
bugs unknown before. Considering the code fragment
presented in Figure 9, at line 99 in file antiword-
0.37/worddos.c, DTS-F reports a null-dereference bug
that occurs inside the callee vGetPropertyInfo, for its
second actual parameter is NULL. But in fact, this bug
can happen only when the second parameter is NULL and
meanwhile the last parameter is equal to 7 or 8. Owing to
context-sensitive inter-procedural analysis, DTS-B
eliminates this false positive. As for the dereference
operation at line 384 in Figure 10, DTS-B excludes its
possibility as a null-dereference bug, since the false
branch condition of if statement at line 379 ensures that
the value of pAnchor cannot be NULL. What is shown in
Figure 11 is a genuine bug found by DTS-B, whereas
DTS-F neglects it falsely. That is a NULL value held by
psys may flow into the statement at 682 through the true
branch of if statement at 665.

We also analyze the false positives introduced by
DTS-B and have found some typical reasons. Specific
structures applied in the test code give rise to some false
positives. For instance, in file /barcode-0.98/code128.c,
there exists an array variable codeset consisting of over

100 members, which causes several analyses failed. Some

TABLE III.
RESULT OF EXPERIMENTATION 1

LOC BP DTS-F DTS-B

L7 N

L9 N R

L21 N R

L22 Y R R

File: antiword-0.37/worddos.c
In caller procedure iInitDocumentDOS at line 70
99: vGetPropertyInfo(pFile, NULL,

NULL, 0, NULL, 0); //false positive

File: antiword-0.37/perperties.c
In callee vGetPropertyInfo at line 17
17: void
18: vGetPropertyInfo(FILE *pFile, const pps_info_type *pPPS,

const ULONG *aulBBD, size_t tBBDLen,
const ULONG *aulSBD, size_t tSBDLen,
const ULONG *aucHeader, int iWordVersion)

22: {

......
37: switch (iWordVersion) {

......
83: case 6:
84: case 7:
85: vGet6Stylesheet(pFile, pPPS->tWordDocument.ulSB,
86: aulBBD, tBBDLen, aucHeader);

......

Figure 9. One false positive eliminated by DTS-B

3128 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

other false positives are mainly due to optimization
measures taken by DTS-B viz. dropping aged predicates
and abstracting overlength l-values. Those usually happen
when recursive data structures are encountered. Given the
efficiency of our approach proposed in this paper, these
accuracy losses can be acceptable.

In summary, the experimental results demonstrate the
effectiveness of the approach proposed in this paper, and
show that it is scalable to large real programs with
reasonable accuracy.

V. RELATED WORK

Many approaches and tools [1, 2, 5, 7, 13, 24] have
been developed for analyses for null dereference and
similar safety properties. From the vast literature
covering this space, we briefly review some of the
relevant related work.

Xylem [7] is the most closely related approach to ours,
though it targets null-dereference analysis of Java
program. Our approach has several attributes that are
inspired by Xylem: a backward dataflow analysis from
each dereference, predicates as dataflow facts, custom-
defined simplification rules for predicates rather than a
constraint solver. Compared to Xylem, our technical
innovation is in terms of how we perform strong updates
instead of weak updates in presence of aliasing; strong
updates are required for better precision in null-
dereference analysis.

Salsa [3], also proposed by Xylem’s authors, is an
approach that aims at sound null-dereference verification.
It is based on abstract interpretation and gradually
expands the inter-procedural scope of analysis to
establish the safety of a dereference. The goal of Salsa is
to show the absence of bugs. But it may often report
many spurious warnings (or false positives). By contrast,
our approach focuses on bug detection to identify as
many bugs as possible and it emphasizes not on reporting
all potential bugs, but on reducing false positives. The
two kinds of approaches represent different trade-offs and
can be complementary.

FindBugs [14] is a widely used tool for Java that has
paid particular attention to finding null dereference bugs
[15]. FindBugs pattern-matches on constructs that are
common sources of certain error classed and performs
some data-flow computation. As our approach is target
for C programs, it is not possible to do a direct
comparison. Nevertheless, it is clear that FindBugs would

not find the many path-sensitive, inter-procedural, and
aliasing-dependent bugs that our approach uncovers.

Similar as our approach, PSE [21] performs a
backward symbolic analysis with the goal of tracing back
null-dereference bugs and disprove such bugs. But PSE
does not represent the entire path condition, and
sometimes falls back to abstract representations of the
heap.

Strom and Yellin [5] define a partially path-sensitive
backward dataflow analysis for checking typestate
properties, specifically uninitialized variables. By
comparison, our approach is able to track a value
backward through pointer-based data structures and
handle memory aliasing. And our approach prunes out
infeasible paths through evaluation of predicates.

Prefix [1] can detect possible null-dereference bugs in
C and C++ programs by symbolic simulation. Like our
approach, Prefix uses procedure summaries for scalability
and is path-sensitive. However, Prefix explicitly explores
paths one at a time, which is expensive for procedures
with many paths. Heuristics limit the search to a small set
of “interesting” paths. In contrast, our approach implicitly
represents all paths using predicate constraints and path
exploration is as part of predicate evaluation.

Xie et.al. [8] present similar approaches for detecting a
broad class of memory errors. Their approaches feature a
bottom-up analysis of procedures to compute summaries,
and a forward path-sensitive analysis within each

Figure 10. Another false positive eliminated by DTS-B

TABLE IV.
RESULT OF EXPERIMENTATION 2

PROJECT LINE(S)
DTS-F DTS-B

REP DEF SAME OTHER FPR FNR REP DEF SAME OTHER FPR FNR
antiword-0.37 20213 49 43 39 4 12.24% 0 39 39 39 0 0 8.16%

barcode-0.98 3409 6 6 5 1 0 27.27% 10 8 5 3 0.2 9.09%

spell-1.0 1991 39 21 21 0 46.15% 7.84% 33 25 21 4 24.24% 0

sphinxbase-0.3 22517 110 97 94 3 11.82% 15.86% 129 117 94 23 9.30% 2.07%

uucp-1.07 52595 173 154 148 6 10.98% 12.79% 194 176 148 28 9.28% 2.74%

total 100725 377 321 307 14 14.85% 12.21% 405 365 307 58 9.88% 2.95%

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3129

© 2013 ACADEMY PUBLISHER

procedure that prunes out infeasible paths. By contrast,
our approach performs a backward analysis within each
procedure to do the bug detection.

Some approaches attack null dereferences using user
annotations on procedure parameters and local checking
of each procedure body. LCLint [16] uses an unsound
method to check the safety of dereferences of parameters
annotated as may-be-null. More recent annotation-based
systems are much closer to being sound [17, 18]. Current
annotation languages, which mark a single parameter as
possibly null or definitely not null, are not expressive
enough to capture the more path-sensitive and inter-
procedural relationships.

Model checking [2, 13, 22, 23] is used to check a
number of safety properties, involving null dereferences.
Saturn [2] and Calysto [13] generate constraints in
propositional logic and use Boolean satisfiability solvers
to discharge the constraints. Scalability of the techniques
depend both on the scalability of the underlying SAT
solvers as well as carefully tuned heuristics which keep
the size of the constraints small. Notably, Saturn
computes modular summaries to enable inter-procedural
summary-based analysis. Similar measure is also taken
by our approach. Whereas Calysto does not perform
summary-based inter-procedural analysis, but makes use
of inlined callee representations instead.

VI. CONCLUSION AND FUTURE WORK

For identifying null-dereference bugs, we have
presented an approach that is based on backward
dataflow analysis. Owing to aliasing predicates, this
approach can perform strong updates in presence of
aliasing, thus eliminating many false positives. In
addition, the other designed features, for instance context-

sensitive inter-procedural analysis, have also contributed
to improve precision. We have implemented this
approach, and applied it on a set of 5 open source GCC
benchmarks. The preliminary experimental results verify
the effectiveness of this approach, and show that it is
suitable for exploring large real programs with reasonable
accuracy. Future work will be guided by the objective of
continuing to improve the efficiency of the approach,
while still remaining its precision. In particular, we would
like to investigate techniques to deal better with
references to arrays and recursive data structures. Besides,
we would also like to investigate applications of our
approach to check problems other that null-dereference
analysis.

ACKNOWLEDGMENT

This research is supported by the National 863
Programs (Grant No. 2012AA011201) and National
Natural Science Foundation of China (Grant No.
61202080).

REFERENCES

[1] William R. Bush, Jonathan D. Pincus and David J. Sielaff.
A Static Analyzer for Finding Dynamic Programming
Errors. Softw., Pract. Exper., vol. 30, pp. 775–802, 2000.

[2] Y. Xie and A. Aiken. Scalable Error Detection Using
Boolean Satisfiability. In POPL, pp. 351-363, 2005.

[3] A. Loginov, M. G. Nanda, et al. Verifying Dereference
Safety via Expanding-scope Analysis. In ISSTA, pp. 213–
224, 2008.

[4] Manuvir Das, Sorin Lerner and Mark Seigle. ESP: Path-
sensitive Program Verification in Polynomial Time. In
Proc. of the 2002 ACM SIGPLAN Conf. on Prog. Lang.
Design and Impl., pp. 57-68, 2002.

[5] Rebert E. Strom and Daniel M. Yellin. Extending
Typestate Checking Using Conditional Liveness Analysis.
IEEE Trans. on software Engineering, vol. 19, pp. 478-485,
1993.

[6] E. W. Dijkstra. A Discipline of Programming. Prentice-
Hall, pp. 15-23, 1976.

[7] M. G. Nanda and S. Sinha. Accurate Interprocedural Null-
dereference Analysis for Java. In In Proc. of the 31th Intl.
Conf. on Softw. Eng., pp. 133-143, 2009.

[8] Y. Xie, A. Chou and D. Engler. ARCHER: Using
Symbolic, Path-sensitive Analysis to Detect Memory
Access Errors. In Proc. of the 9th European Softw. Eng.
Conf. / 11th ACM SIGSOFT Intl. Symp. on Found. of Softw.
Eng., pp. 327-336, 2003.

[9] T. Reps, S. Horwitz and M. Sagiv. Precise Interprocedural
Data Flow Analysis via Graph Reachability. In Conference
Record of the Twenty-Second ACM Symposium on
Principles of Programming Languages, 1995.

[10] R. Wilson and M. Lam. Efficient Context-sensitive Pointer
Analysis for C Programs. In Proc. of the 1995 ACM
SIGPLAN Conf. on Prog. Lang. Design and Impl., 1995.

[11] Z. H. Yang, Y. Z. Gong, et al. DTS: A Software Defects
Testing System. Proceeding of 8th IEEE International
Working Conference on Source Code Analysis and
Manipulation, pp. 269-270, 2008.

[12] B. Kernighan and D. Ritchie. The C Programming
Language. Prentice-Hall, second edition, 1988.

Figure 11. Null-dereference bug found by DTS-B

3130 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

[13] D. Babic and A. J. Hu. Calysto: Scalable and Precise
Extended Static Checking. In Proc. of the 30th Intl. Conf.
on Softw. Eng., pp. 211-220, 2008.

[14] D. Hovemeyer and W. Pugh. Finding Bugs is Easy.
SIGPLAN Not., vol. 39, pp. 92-106, 2004.

[15] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and
Tuning a Static Analysis to Find Null Pointer Bugs. In
Proc. of the Workshop on Program Analysis for Software
Tools and Engineering, pp. 13-19, 2005.

[16] D. Evans. Static Detection of Dynamic Memory Error. In
Proc. of the Conf. on Prog. Language Design and
Implementation, pp. 44-53, 1996.

[17] M. Faehndrich and K. Rustan M. Leino. Declaring and
Checking Non-null Types in an Object-oriented Language.
In Proc. of the Conf. on Object-Oriented Programming,
Systems, Languages and Applications, pp. 302-312, 2003.

[18] C. Flanagan, R. Leino, M. lillibridge, et al. Extended Static
Checking for Java. In Proc. of the conf. on Prog. Language
Design and Implementation, pp. 234-245, 2002.

[19] X. Ma, J. Wang, and W. Dong. Computing Must and May
alias to Detect Null pointer Dereference. In ISoLA, pp.
252-261, 2008.

[20] MISRA C, http://www.misra-c.com/
[21] R. Manevich, M. Sridharan, S. Adams, M. Das and Z.

Yang. PSE: Explaining Program Failures via Postmortem
Static Analysis. SIGSOFT Software Engineering Notes, vol.
29, pp. 63-72, 2004.

[22] Huiling Shi, Wenke Ma, Meihong Yang, Xinchang Zhang.
A Case Study of Model Checking Retail System with SPIN.
Journal of Computer, vol 7, No 10, pp. 2503-2510, 2012.

[23] Conghua Zhou, Bo Sun. Abstraction In Model Checking
Real-Time Temporal Logic of Knowledge. Journal of
Computer, vol 7, No 2, pp. 362-370, 2012.

[24] Mohammad Muztaba Fuad, Debzani Deb, Jinsuk Baek.
Static Analysis, Code Transformation and Runtime

Profiling for Self-healing. Journal of Computer, vol 8, No
5, pp. 1127-1135, 2013.

Qian Wang (1983 -) is currently a PhD candidate in State Key
Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing, China.

His research interests include software testing and program
static analysis.

Dahai Jin (1974 -) received his PhD in computer science from
Armored Force Engineering Institute, Beijing, China, in 2006.

He currently serves as an associate professor in State Key
Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing, China.
His research interests include software testing and program
static analysis.

Gongyun Zhan (1962 -) received his PhD in computer science
from Institute of computing technology, Academia Sinica,
Beijing, China, in 1992.

He currently serves as a professor in State Key Laboratory of
Networking and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China. His research
interests include software testing, program static analysis and
automatic test case generation.

Hongbo Zhou (1984 -) is currently a PhD candidate in State
Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing,
China.

His research interests include software testing and program
static analysis.

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3131

© 2013 ACADEMY PUBLISHER

