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Abstract— Automated test generation for object-oriented
programs is an essential and yet a difficult task. Many
automated test generation approaches produce test cases
entirely from the program under test, without considering
useful information from already created test cases. This
paper presents an approach to regenerate test cases via
exploiting frequently-used method call sequences from test
repository. Particularly, for an object-oriented program
under test, a sequential pattern mining strategy is employed
to obtain frequent subsequences of method invocations as
sequential patterns from corresponding test repository, and
then a GA-based test case regeneration strategy is used
to produce new test cases on the basis of the sequential
patterns. A prototype called SPM-RGN is developed and
is applied to generate test cases for actual Java programs.
Empirical results show that SPM-RGN can achieve 47.5%,
11.2% and 4.5% higher branch coverage than three existing
automated test generators. Besides, SPM-RGN produces
85.1%, 28.1% and 27.4% shorter test cases than those test
generators. Therefore, the test cases generated by SPM-RGN
are more effective and easier to understand.

Index Terms— test case regeneration, object-oriented soft-
ware, sequential pattern, Genetic Algorithms, test repository

I. INTRODUCTION

Software testing is nowadays a dominant way to assure
the quality of software products, but finding suitable sets
of test cases is a challenging task [1]. During the past
decades, the researches on automated test generation have
received an enormous amount of attention due to its
benefit in quality improvement and cost saving [2]–[6].

However, many existing approaches generate test cas-
es for the programs under test, implicitly assuming no
previous test cases are available. If this assumption does
not hold, these approaches will miss the opportunity of
getting useful information from already created test cases,
especially relevant manual test cases. A recent study intro-
duces a test data regeneration strategy to generate new test
data from existing test data for procedural programs [7].
Their test results indicate that the knowledge of existing
test data can help to improve the quality of new generated
test data.

Moreover, most programs developed currently are
object-oriented (OO). As regards OO programs, each
test case consists of a method call sequence instead of
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primitive values which form test inputs for procedural pro-
grams. Hence, automated test generation for OO programs
is much more complex than for procedural programs [8].

Sequential pattern mining is a widely used data mining
technique to discover subsequences that appears no less
than a specified frequency in a sequence database [9]. For
OO programs, each test case is composed of a method call
sequence (i.e. a sequence of method invocations), thus a
test repository for an OO program can be considered as
a database with numerous method call sequences. Then,
sequential pattern mining can be used to find frequently-
used subsequences of method invocations for regenerating
new test cases.

In this paper, we propose an approach to regenerate test
cases for OO programs by integrating sequential pattern
mining with meta-heuristic test generation. Rather than
generating test cases entirely from the programs under
test, our approach employs sequential pattern mining to
exploit frequently-used subsequences of method invoca-
tions as sequential patterns from test repository, and uses
these sequential patterns in meta-heuristic test generation
to regenerate new test cases. More specifically, providing
that a test repository is available, BI-Directional Exten-
sion (BIDE) strategy [10], an efficient sequential pattern
mining strategy, is adapted to find sequential patterns from
the test repository at first. Then, the sequential patterns
are used in GA-based test generation in order to produce
new test cases for covering test targets in OO programs.

We develop a prototype, called SPM-RGN (Sequential
Pattern Mining based test case ReGeNerator), to im-
plement the approach. This prototype can successfully
regenerate new test cases from existing test cases for Java
programs. What’s more, if the test repository is created
manually, the resulting test cases produced by SPM-RGN
are easier to understand than those generated thoroughly
from the program under test.

The main contributions of this work are as follows:
• A test case regeneration approach based on sequen-

tial pattern mining is proposed to produce test cases
from existing test repositories for OO programs. This
approach combines 1) a sequential pattern mining
strategy to obtain frequent subsequences of method
invocations as sequential patterns from available test
repositories, and 2) a GA-based test case regener-
ation strategy to produce new test cases for OO
programs on the basis of the sequential patterns.
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• Empirical evaluations are conducted by comparing
SPM-RGN with two popular test generators, Ran-
doop and EvoSuite, as well as our early developed
RND-RGN on 4 open source Java projects (with
totally more than 40K LOC), in which Randoop
is a feedback-directed random test generator [11],
EvoSuite is a GA-based test generator with random
initial population [12] and RND-RGN is a GA-based
test case regenerator with randomly taking existing
test cases as initial population. The empirical results
show that our SPM-RGN is effective in achieving
high branch coverage and producing short test cases
for all these projects. More specifically, SPM-RGN
can achieve up to 47.5%, 11.2% and 4.5% higher
branch coverage than Randoop, EvoSuite and RND-
RGN, respectively. Besides, the average length of
test cases generated by SPM-RGN is 85.1%, 28.1%
and 27.4% shorter than by Randoop, EvoSuite and
RND-RGN, respectively. Hence, it can be concluded
that the test cases generated by SPM-RGN are more
effective and easier to understand.

The rest of this paper is organized as follows. Section
II provides the background underlying our work. Section
III elaborates our test case regeneration approach based
on sequential pattern mining. Empirical evaluations are
described in Section IV. Section V reviews related work.
Finally, Section VI concludes the paper and lists future
research directions.

II. BACKGROUND

This section describes the automated test generation for
OO programs and the sequential pattern mining technique,
which our approach is based upon.

A. Automated test generation for OO programs

Automated test generation for OO programs has been
a sustained topic of interest over the last decade because
it is helpful to improve the quality and to reduce the cost
in the testing phase [8]. It aims at automatically creating
a suite of test cases that can achieve a specified coverage
criterion, such as branch coverage for the program under
test, each test case consisting of a method call sequence
that covers a target branch. In structural testing of OO
programs, test cases are often produced randomly [11],
[13], [14] or heuristically [12], [15], [16].

Random test generation is simple and scales well [13].
However, for OO programs, random test generators such
as Randoop [11] usually produce long and complex test
cases [14]. Besides, random test generators are hard to
produce particular test cases that can cover the code
fragments guarded by nested branch conditions [14].

Meta-heuristic test generation is believed as a promis-
ing approach to generate high quality test cases [15], [16].
It formulates the task of automated test generation as a
search problem and solves it via meta-heuristic search
techniques. As a subcategory, Evolutionary Testing (ET)
has attracted much attention, which applies evolutionary

algorithms such as Genetic Algorithms (GA) [17] to
search for required test cases. Successful ET tools like
EvoSuite [12] have been developed to generate test cases
for OO programs.

All these approaches have made notable progress in
automated test generation for OO programs. However,
they have not considered valuable information from test
repository if it is available.

B. Sequential pattern mining

Sequential pattern mining is a data mining technique
that is introduced to find frequently occurring ordered
subsequences in a sequence database [9]. The identi-
fied subsequences can often highlight useful information
underlying the database and can be used for further
application.

A sequence database contains a number of records,
where each record is made of a sequence of ordered items.
If a subsequence appears in the sequence database with
frequency no less than a minimum support threshold θ, it
is referred to a frequent sequential pattern (or a sequential
pattern for short). The number of items in a sequential
pattern is called its length, and a sequential pattern with
length l is named as a frequent l-sequence.

To obtain frequent sequential patterns in a sequence
database, some sequential pattern mining strategies, such
as BI-Directional Extension (BIDE for short) [10], are de-
veloped. Specifically, BIDE finds all frequent 1-sequences
from the sequence database at first. Next, for each fre-
quent 1-sequence, BIDE collects the items appearing just
before the 1-sequence, and attempts to extend the frequent
1-sequence to a 2-sequence by inserting such an item
before the 1-sequence, namely backward extension. If the
resulting sequence meets the frequency θ, i.e. occurring
with frequency no less than θ in the database, then a fre-
quent 2-sequence is obtained. Similarly, 2-sequence may
be extended to a 3-sequence, and so on. The sequence is
extended backwards until the resulting sequence appears
with frequency less than θ in the database. After that,
BIDE gathers the items occurring just after the sequence,
and then extends the sequence by appending such an
item after the sequence, namely forward extension. BIDE
extends the sequence forwards till the resulting sequence
does not satisfy θ. As a result, a frequent sequential
pattern of the sequence database is obtained. Due to each
1-sequence may have a lot of adjacent items in a sequence
database, a set of frequent sequential patterns is produced
from the database.

With over a decade of substantial and fruitful research,
it is believed that sequential pattern mining has the
potential to significantly help software testing [18]. In this
paper, we consider a test repository for an OO program
as a sequence database. Thereupon, sequential pattern
mining can be used to obtain frequent subsequences from
the test repository, and then meta-heuristic test generation
is applied to regenerate new test cases on the basis of these
frequent subsequences.
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III. TEST CASE REGENERATION BASED ON
SEQUENTIAL PATTERN MINING

As we know, a test case is made up of a method call
sequence mcs for OO programs. Accordingly, given an
OO program under test p, a coverage criterion c, and
a repository of test cases T , each t of T consisting of
an mcs, then the task of test case regeneration based on
sequential pattern mining can be formulated as:

1) Find a set of frequent sequential patterns S from
T with a user-defined minimum support threshold
θ, where each s of S is a mcs subsequence (i.e.
s ⊆ mcs) and occurs no fewer than θ|T | times (|T |
is the total number of test cases in T);

2) Produce a set of new test cases T ′ based on S
by using GA-based test generation to achieve the
coverage criterion c for program p.

In the following section, we elaborate how to perform
the test case regeneration with the help of sequential
pattern mining strategy.

A. Mining sequential patterns from test repository

For a given test repository T , a BIDE mining strategy
can be employed to find frequent sequential patterns S in
a ”pattern growth” manner. For this purpose, we define
prefix sequence and suffix sequence as follows.

DEFINITION 1: PREFIX SEQUENCE. Given a method
call sequence �=<m1;m2; · · · ;mi; · · · ;mn>, then sub-
sequence β=<m1;m2; · · · ;mi−1> is called its prefix
sequence with respect to method mi.

DEFINITION 2: SUFFIX SEQUENCE. Given a method
call sequence �=<m1;m2; · · · ;mi; · · · ;mn>, then sub-
sequence γ=<mi+1;mi+2; · · · ;mn> is called its suffix
sequence with respect to method mi.

According to a test repository T , all frequent 1-
sequences S1 (subsequences have a length l=1 and occur
with frequency no less than a minimum support threshold
θ) are identified at first by scanning every mcs in T . For
a 1-sequence s1 of S1, there are more than one prefix
sequences and suffix sequences with respect to s1 since
s1 occurs at least θ|T | times in T . Here, a collection of its
prefix sequences and that of suffix sequences are denoted
by Ps1 and Ss1 , respectively.

For each 1-sequence s1, we attempt to extend it back-
wards by inserting the methods of its prefix sequence
one by one before s1 to get longer frequent sequences.
This is to say, for a prefix sequence of s1, for exam-
ple ps1=<m1; · · · ;mj−1;mj>∈ Ps1 , we insert the last
method mj of ps1 just before s1. If the resulting sequence
<mj ; s1> appears no less than θ|T | times in T , a frequent
2-sequence s2=<mj ; s1> is produced and s2 is tried to
extend backwards to a 3-sequence by adding mj−1 before
s2. The sequence is lengthened in this way until the
resulting sequence appears fewer than θ|T | times in T .
As a result, we obtain a backward frequent sequence s′

with respect to s1. After that, we try to extend s′ forwards
to obtain longer frequent sequences. More specifically, for

a suffix sequence ss1=<mk;mk+1; · · · ;mn>∈ Ss1 , we
append the first method mk of ss1 just after s′. If the
resulting sequence <s′;mk> appears no fewer than θ|T |
times in T , then <s′;mk> is tried to extend forwards by
adding mk+1 after it. The sequence is extended likewise
until the resulting sequence appears fewer than θ|T | times
in T . Thus, an entire frequent sequence s with respect to
s1 is gotten. As mentioned above, there are many prefix
sequences and suffix sequences with respect to each s1,
therefore a set of entire frequent sequences, named as
frequent sequential patterns S, can be produced from T .
The pseudo-code for obtaining S from T is given in
Algorithm 1.

Note that, the minimum support threshold θ is a key
parameter in mining sequential patterns from a test repos-
itory T . To choose a proper θ with respect to T , we define
Averaged Method Invocation Frequency (AMIF for short)
as follows.

DEFINITION 3: AVERAGED METHOD INVOCATION FRE-
QUENCY (AMIF). Given a test repository T containing
|T | test cases that invoke n methods in total and each
method mi is invoked |mi| times in T , then the averaged
method invocation frequency with respect to the test
repository is defined as

AMIF = (
n∑

i=1

|mi|
|T |

)=n =

n∑
i=1

|mi|

n|T |
: (1)

AMIF reflects how frequently the methods are invoked
in a test repository. If a test repository has a relatively
small AMIF, its methods are rarely invoked. Conse-
quently, a relatively small amount of sequential patterns
is produced. In contrast, as for a test repository with
relatively large AMIF, its methods are frequently invoked.
Thus, it is likely to yield plenty of sequential patterns.

In order to obtain an appropriate amount of sequential
patterns within reasonable mining cost, we assign differ-
ent values to θ in accord with AMIF. More specifically,
if AMIF is small for a test repository, then we choose
a relatively low θ value; conversely, a relatively high θ
value is used.

B. Regenerating test cases based on sequential patterns

For an OO program p, after sequential patterns S are
obtained from its corresponding test repository using the
above technique, GA-based ET is employed to regenerate
test cases according to S. In other words, GA-based
ET takes the program p and the sequential patterns S
as inputs, and seeks for a group of mcs as test cases
with respect to a selected coverage criterion c like branch
coverage.

To be more specific, p is analyzed statically to find all
methods M and branches B at first, and some statements
are instrumented to record dynamic execution traces of
p. Then, taking a branch b of B as a target, a population
P of candidate executable mcs is initialized, in which
each individual i is constructed by a sequential pattern s
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Algorithm 1: Get sequential patterns from a test
repository
Input: A test repository of test cases T
Input: A minimum support threshold θ
Output: A set of sequential patterns S

1 S = ∅;
2 S1 = all frequent 1-sequences of T ;
3 foreach 1-sequence s1 ∈ S1 do
4 Ps1 = all prefix sequences with respect to s1;
5 Ss1 = all suffix sequences with respect to s1;
6 foreach prefix sequence ps1 ∈ Ps1 do
7 s′=s1;
8 ml = the last method of ps1 ;
9 while <ml; s

′> appears no less than θ|T |
times in T do

10 s′ = <ml; s
′>;

11 ps1 = ps1 −ml;
12 ml = the last method of ps1 ;

13 foreach suffix sequence ss1 ∈ Ss1 do
14 s = s′;
15 mf = the first method of ss1 ;
16 while <s;mf> appears no less than

θ|T | times in T do
17 s = <s;mf>;
18 ss1 = ss1 −mf ;
19 mf = the first method of ss1 ;

20 S = S ∪ {s};

21 return S;

of S. To make i executable, some arguments of s may
need to be assigned values. If an argument arg refers to
a primitive value such as an integer, a random number is
assigned; otherwise, i.e. arg corresponds to an object, M
is scanned to find a method m⋆ whose return type Tm⋆

is either the same as or a subtype of the declared type
Targ of arg, namely Tm⋆ ⊑ Targ . Then the return object
of m⋆ is assigned to arg. Similarly, the argument values
of m⋆ are also supplied if needed, and so forth until no
argument value is required any more. So far, an individual
i is generated. The pseudo-code for providing argument
values for an individual is depicted in Algorithm 2.

After P is initialized, each individual i of P is dy-
namically executed. If i reaches branch b, a new test
case is produced and ET continues for covering another
target branch b′. Otherwise, i is evaluated using a fitness
function to measure the distance between the execution
trace of i and the target branch b. If b is not covered by any
individual of P , two elite individuals, represented by i1
and i2, are selected from P ; and genetic operations, name-
ly crossover and mutation, are performed on i1 and i2 to
produce offspring individuals. In these operations, one-
point crossover is used with probability pc to exchange
a subsequence of i1 with another subsequence of i2. In
addition, change mutation is employed with probability

Algorithm 2: Provide argument values for an individ-
ual
Input: An individual i

1 ARG = the arguments of i;
2 while ARG ̸= ∅ do
3 foreach argument arg ∈ ARG do
4 if arg refers to a primitive value then
5 arg = a random number;

6 else
// arg refers to an object

7 m⋆ = a method of M such that Tm⋆ ⊑ Targ;
8 arg = the return object of m⋆;

9 update ARG;

pm to turn a subsequence of i1 and i2 into a new
subsequence separately. More concretely, two sequential
patterns s̃1 and s̃2 are randomly selected from S to
substitute a random subsequence of i1 and i2, respectively.
After performing change mutation, i′1 and i′2 may require
new argument values. Subsequently, the argument values
are produced according to Algorithm 2, and executable
offspring individuals i′1 and i′2 are obtained.

After that, a new population P ′ is generated by re-
placing two low-fitness individuals of P with i′1 and i′2
and evaluated by the fitness function. The process of
generating new population and evaluating the population
is repeated until a pre-assigned termination condition is
met (e.g. all branches are covered or the time budget
is consumed). Thus, a group of new test cases T ′ is
produced. As a whole, the pseudo-code for regenerating
test cases based on sequential patterns is described in
Algorithm 3.

IV. EMPIRICAL EVALUATIONS

To evaluate the approach presented in this paper, we
implemented it with a prototype called SPM-RGN (Se-
quential Pattern Mining based test case ReGeNerator),
and conducted a set of experiments on Java programs.

First, we examined the performance of our approach on
mining sequential patterns from different test repositories.
In particular, we studied (1) the amount of frequent
sequential patterns obtained from distinct test repositories,
and (2) the corresponding cost of mining the test repos-
itories, including the time consumption and the memory
usage.

After that, we compared our SPM-RGN with Randoop,
EvoSuite and RND-RGN, where Randoop is an advanced
random test generator [11], EvoSuite is a GA-based
test generator with random initial population [12], and
RND-RGN is our early developed GA-based test case
regenerator which randomly takes existing test cases as
initial population. More specifically, these test generators
are compared in two aspects: (1) the branch coverage
achieved by these test generators, and (2) the understand-
ability of the test cases produced by these test generators.
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Algorithm 3: Regenerate new test cases based on
sequential patterns
Input: An OO program under test p
Input: A set of sequential patterns S
Output: A set of new test cases T ′

1 B = all branches of p;
2 M = all methods of p;
3 instrument p to trace executions;
4 T ′ = ∅;
5 foreach branch b ∈ B do
6 population P = ∅;
7 while |P | < population size pop size do
8 individual i = a random sequential pattern

s ∈ S;
9 call ProvideArgumentValues(i);

10 P = P ∪ {i};

11 repeat
12 foreach individual i ∈ P do
13 execute i;
14 if i covers b then
15 T ′ = T ′ ∪ {i};
16 break;

17 evaluate fitness of i;

18 select two elite individuals i1 and i2 from P ;
19 if rand[0; 1) < crossover probability pc then
20 crossover i1 and i2;

21 if rand[0; 1) < mutation probability pm then
22 s̃1 = a random sequential pattern of S;
23 i′1 = change a random subsequence of i1

with s̃1;
24 s̃2 = a random sequential pattern of S;
25 i′2 = change a random subsequence of i2

with s̃2;

26 call ProvideArgumentValues(i′1);
27 call ProvideArgumentValues(i′2);
28 replace two low-fitness individuals of P with

i′1 and i′2;
29 until termination condition is met;

30 return T ′;

All empirical evaluations were conducted on an HP
ProLiant Server with Intel Xeon 2.40GHz*16 processors,
4GB*6 RAMs, 64-bit CentOS Linux 6.0 and JDK 1.6.0.

A. Subject programs

In the empirical evaluations, 4 open source Java
projects are used as experimental subjects: Commons
Collections (CC) and Commons Primitives (CP) are from
the Apache Commons Proper repository, a repository of
Java libraries; while JTopas (JT) and NanoXML (NX)
come from the Software-artifact Infrastructure Repository,
a repository for rigorous control experiments [19]. Among
these projects, the largest one CC consists of more than
20K LOC. In total, the 4 projects include nearly 45K

LOC. We use the manual test cases released along with
each project as its test repository.

Table I summarizes statistics of the experimental sub-
jects in terms of the number of classes (#Classes), the
number of all methods (#Methods), the number of al-
l branches (#Branches), non-commented lines of code
(LOC), the number of test cases in corresponding test
repository (#Tests) and the averaged method invocation
frequency (AMIF) of each test repository .

B. Parameter settings

As mentioned in Section III, our sequential pattern
mining based test case regeneration approach is composed
of two main stages: the sequential pattern mining stage
and the test case regeneration stage. For these two stages,
there are several parameters to be configured.

With respect to the sequential pattern mining stage,
minimum support threshold θ is an important parameter.
For each test repository, we assign different values to θ
according to the AMIF of the test repository, in order
to obtain an appropriate amount of frequent sequential
patterns within reasonable mining cost. In our experi-
ments, the AMIF of the test repository for CC is nearly
0.5%. Accordingly, we tried out low minimum support
thresholds varying from 1% to 5% for this test repository.
Similarly, the AMIF of the test repository for CP is merely
0.4%, and we also used minimum support thresholds
varying from 1% to 5%. Different from the former two
test repositories, as regards the test repository for JT,
whose AMIF is up to 7.6%, we used relatively high
minimum support thresholds from 10% to 50%. With
respect to the test repository for NX, whose AMIF is
2.4%, we tried out more comprehensive minimum support
thresholds ranging from 1% to 50%.

As regards the test case regeneration stage, EvoSuit-
e, RND-RGN and our SPM-RGN were all configured
according to the recommended settings in the literature
[20]. In particular, the budget for test generation of each
class was set to be no more than 600 seconds. The
population size was 100. Genetic operations were set
to: rank selection with 1.7 biases; one-point crossover
with a probability of 0.75; change mutation probability
of 0.3. Randoop was configured with identical settings to
EvoSuite, RND-RGN and SPM-RGN when needed.

EvoSuite generated initial population entirely at ran-
dom. RND-RGN took test cases randomly from corre-
sponding test repository as initial population. Our SPM-
RGN constructed initial population by using the sequen-
tial patterns.

In addition, there were randomness to some extent in
Randoop, EvoSuite, RND-RGN and SPM-RGN. Thus,
each experiment was repeated 30 times, and statistical
methods were used to analyze the results.

C. Experiments on mining sequential patterns from test
repository

Using the sequential pattern mining technique proposed
in Section III-A, sequential patterns can be successfully
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TABLE I.
STATISTICS ON THE EXPERIMENTAL SUBJECT PROGRAMS

Subjects #Classes #Methods #Branches LOC #Tests AMIF
CC 382 3182 6276 26323 1151 0.5%
CP 231 1756 1446 9836 732 0.4%
JT 63 719 1376 5361 52 7.6%
NX 24 317 690 3279 76 2.4%

Total 700 5874 9788 44799 2011 –
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Figure 1. Amount of sequential patterns obtained from the test reposi-
tories

obtained from corresponding test repository. This section
presents the amount of resulting sequential patterns and
the cost of whole sequential pattern mining stage.

1) Amount of sequential patterns: Figure 1 depicts
the amount of sequential patterns obtained from test
repositories using different minimum support thresholds.
From Figure 1, we can see that thousands of sequential
patterns can be discovered from these test repositories.
Generally speaking, the amount of sequential patterns
obtained from each test repository decreases logarithmi-
cally with respect to the minimum support thresholds. In
particular, regarding the test repositories for CC and CP,
sequential patterns can be discovered with relatively low
minimum support thresholds. For example, at support 1%,
3181 sequential patterns can be obtained from the test
repository for CC. In contrast, large amounts of sequential
patterns can even be obtained from the test repository for
JT using relatively high minimum support thresholds. For
example, at support 10%, 48603 sequential patterns can
be obtained from the test repository for JT. Concerning
the test repository for NX, whose AMIF is moderate,
sequential patterns can be obtained with minimum support
thresholds varying from 1% to 20%.

2) Mining cost: Figure 2 demonstrates the time and
memory cost in mining sequential patterns from test
repositories with different minimum support thresholds.
We can see that, both the time consumption and memory
usage also decrease logarithmically with respect to the
minimum support thresholds. Besides, under the same
minimum support threshold, mining sequential patterns
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Figure 2. Cost in mining sequential patterns from the test repositories

from a test repository with small AMIF always runs faster
and consumes less memory than from a test repository
with large AMIF. For example, mining sequential patterns
from the test repository for CC can be nearly an order of
magnitude faster than for NX, while it only uses nearly
an order of magnitude less memory. Similarly, mining
sequential patterns from the test repository for NX can
be over an order of magnitude faster than for JT, while it
only uses over an order of magnitude less memory.

3) Summary: Generally speaking, mining a certain test
repository with a smaller minimum support threshold val-
ue leads to more sequential patterns but consumes more
time and memory. Thus, in practice, a proper minimum
support threshold should be chosen according to the AMIF
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TABLE II.
BRANCH COVERAGE (IN %) ACHIEVED BY RANDOOP,

EVOSUITE, RND-RGN AND SPM-RGN

Subjects Randoop EvoSuite RND-RGN SPM-RGN
CC 20.9 83.1 85.3 94.1
CP 62.8 70.1 87.3 90.7
JT 49.0 73.7 77.1 80.2
NX 15.8 66.8 70.6 73.2
Avg. 37.1 73.4 80.1 84.6

of the corresponding test repository, in order to make a
good trade-off between the amount of resulting sequential
patterns and the mining cost.

D. Experiments on regenerating test cases based on se-
quential patterns

Using the approach proposed in Section III-B, new test
cases can be regenerated based on obtained sequential
patterns. This section compares the effectiveness of our
SPM-RGN with Randoop, EvoSuite, and RND-RGN by
applying them to generate test cases for 4 open source
Java projects, respectively (over all classes therein, each
test generator is repeated 30 times).

1) Branch coverage: For each subject program, the
branch coverage achieved by each test generator (averaged
over the 30 runs) is summarized in Table II. The maxi-
mum branch coverage achieved for each subject program
is marked in bold. For each test generator, the average
branch coverage it achieved is given at the bottom.

It can be seen from Table II, that SPM-RGN can
successfully regenerate new test cases with highest branch
coverage for all subject programs. The average branch
coverage achieved by SPM-RGN ranges from more than
70% to nearly 95%. The average increment of SPM-RGN
over Randoop, EvoSuite and RND-RGN is up to 47.5%,
11.2% and 4.5%, respectively. Moreover, the improve-
ment of SPM-RGN over Randoop, EvoSuite and RND-
RGN is statistically significant at the 95% confidence
level according to one-tailed Mann-Whitney U test.

Figure 3 presents the distribution of branch coverage
achieved for the subject programs by each test generator.
We can see that the branch coverage achieved by Randoop
diverges a lot in different runs; whereas the branch
coverage achieved by EvoSuite, RND-RGN and SPM-
RGN varies comparatively not much in different runs.

2) Test case understandability: We have also measured
the test case understandability in terms of average length
of the test cases produced by each test generator (each test
generator is repeated 30 times). The result is summarized
in Table III, where bold numbers denote the shortest
average length of the test cases produced for each subject
program. For each test generator, the average length of
the test cases it produced is presented at the bottom.

From Table III, it can be found that SPM-RGN pro-
duces shortest test cases among the test generators: on
average about 20.7 lines of code, with 85.1%, 28.1% and
27.4% shorter than Randoop, EvoSuite and RND-RGN,
respectively. The reduction is also statistically significant
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Figure 3. Distribution of branch coverage (in %) achieved by Randoop,
EvoSuite, RND-RGN and SPM-RGN

TABLE III.
AVERAGE LENGTH OF THE TEST CASES PRODUCED BY RANDOOP,

EVOSUITE, RND-RGN AND SPM-RGN

Subjects Randoop EvoSuite RND-RGN SPM-RGN
CC 110.8 19.6 19.1 18.9
CP 98.2 16.3 14.6 13.7
JT 111.7 32.6 48.5 25.1
NX 235.9 46.5 31.8 25.2
Avg. 139.1 28.8 28.5 20.7

at the 95% confidence level according to one-tailed Mann-
Whitney U test.

Figure 4 illustrates the distribution of average length
of the test cases produced for the subject programs by
each test generator. We can see that, in different runs, the
average length of the test cases achieved by Randoop also
diverges most; whereas our SPM-RGN diverges least.

3) Summary: The above results suggest that our SPM-
RGN can successfully regenerate new test cases for OO
programs based on sequential patterns. In general, it can
achieve good branch coverage. Besides, the test cases
generated by SPM-RGN are comparatively short, thus are
likely easier to understand by human.

V. RELATED WORK

Existing approaches to structural test generation for
OO programs can be broadly classified into two major
categories: implementation-based and usage-based ap-
proaches [21].

A. Implementation-based approaches

As discussed in Section II-A, structural test generation
for OO programs is commonly based on the code im-
plementation of programs under test all the way, either
randomly or heuristically.

Among existing tools, Randoop [11] is a random
test generator that incrementally generates method cal-
l sequences for Java programs by randomly invoking
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Figure 4. Distribution of average length of the test cases produced by
Randoop, EvoSuite, RND-RGN and SPM-RGN

methods of the program under test. However, due to
the large amount of all possible methods, Randoop is
hard to generate test cases for deep target branches. In
contrast, our SPM-RGN exploits common method usage
from existing test cases. Besides, SPM-RGN employs
GA to direct the search of new test cases towards target
branches. Thus, within limited test generation time, SPM-
RGN is more likely to generate test cases that cover deep
branches of the program under test. This paper compares
the performance of our SPM-RGN with Randoop in the
empirical evaluations.

Besides, EvoSuite [12] is a GA-based test generator
that heuristically generates test cases for Java programs. In
EvoSuite, individuals are directly represented as method
call sequences with argument objects. EvoSuite generates
initial population at random and evolves the population
with genetic operations. If there is a conflict among
method invocations after a genetic operation, adjustment
is required to handle the conflict. On the contrary, our
SPM-RGN generates test cases based on sequential pat-
terns of existing test cases, and thus can reduce the time
consumption in adjustment because in general there is
few conflict in existing test cases. The performance of
our SPM-RGN and EvoSuite is also compared in the
empirical evaluations.

B. Usage-based approaches

In recent years, some approaches turn to generate test
cases for OO programs by exploiting usage information
from code bases beyond the program under test [18].
Generally speaking, our approach belongs to this category.
In particular, our approach generates new test cases on
the basis of method-usage information, i.e. sequential
patterns, obtained from a test repository.

Among the usage-based approaches, Yoo’s work on
test data regeneration [7] is perhaps the most related
one to ours. In [7], a test data regeneration approach is
proposed for producing test data for procedural programs.

It takes existing test data of the program under test as
starting points and employs a hill-climbing algorithm to
seek for new test data. Similarly, our approach attempts
to regenerate test cases based on existing test cases.
However, there are three main differences between Yoo’s
approach and ours. First of all, Yoo’s approach aims to
regenerate primitive test data as test inputs for procedural
programs, whereas our approach regenerates method call
sequences as test cases for OO programs. Secondly, Yoo’s
approach uses hill climbing to search new tests, whereas
our approach employs GA. Last but not least, Yoo’s
approach uses existing test data directly as initial solutions
in test data regeneration, whereas our approach mines
sequential patterns from test repositories and regenerates
test cases based on the sequential patterns. According
to the idea of [7], we implemented a test generator
called RND-RGN that randomly takes available test cases
as initial population to search new test cases for OO
programs, and compared the performance of our SPM-
RGN with RND-RGN in the empirical evaluations.

Moreover, our approach is also related to several other
usage-based approaches that generate test cases for OO
programs [21]–[24]. Among those approaches, DyGen
[21], MSeqGen [22] and OCAT [23] capture object in-
stances and serialize them into a file for further usage;
whereas [24] infers a graphic model to represent the
common usage of objects. Our approach is different
from these approaches in two main aspects. Firstly, these
approaches obtain object-usage information from massive
code bases, whereas our approach mines test repositories
particularly. Secondly, our approach uses meta-heuristic
test generation technique to produce new test cases, which
is usually more effective than random test generation or
dynamic symbolic execution adopted in those usage-based
approaches.

VI. CONCLUSION AND FUTURE RESEARCH

In software testing, it is a challenging task to auto-
matically generate desirable test cases for OO programs.
Unlike many existing approaches that generate test cases
entirely from the program under test, this paper proposes
an approach that regenerates test cases based on the
frequent sequential patterns of test repository. As a result,
this approach can effectively generate new test cases
that achieve good structural coverage for OO programs.
What’s more, if the test repository consists of manual
test cases, the resulting test cases are more understandable
than those generated entirely from the program under test.

In future work, we plan to tune the parameter set-
tings for distinct programs under test, rather than use
the general ”best-practice” settings recommended in the
literature, to further improve the performance of the
approach. Besides, we want to study sequential pattern
recommendation strategies so that sequential patterns can
be chosen intelligently when there is more than one
sequential pattern for a position of an individual during
GA-based test case regeneration.
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