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Abstract—Multi-dimension bucketization is a typical 
method to anonymize multiple sensitive attributes. However, 
the method leads to low data utility when microdata have 
more sensitive attributes. In addition, the methods do not 
generalize quasi-identifiers, which make the anonymous 
data vulnerable to suffer from linked attacks. To address 
the problems, the paper proposes a SLOMS method. The 
method vertically partitions the multiple sensitive attributes 
into several tables and bucketizes each sensitive attribute 
table to implement l-diversity. At the same time, it 
generalizes the quasi-identifiers to implement k-anonymity. 
The paper also proposes a MSB-KACA algorithm to 
anonymize microdata with multiple sensitive attributes by 
SLOMS. Experiments show that SLOMS can generate 
anonymous tables with less suppression ratio and less 
distortion compared with generalization and MSB.  
 
Index Terms—k-anonymity, l-diversity, multi-dimension 
bucketization method, SLOMS 
 

I.  INTRODUCTION 

Microdata play an increasingly important role in data 
analysis and scientific research. However, publishing and 
sharing microdata will threaten individuals’ privacy. 
Therefore, some anonymity models have been proposed 
to protect individual’s privacy for microdata publish 
recently. k-anonymity [1] is a simple and effective 
method to protect privacy in microdata, which requires 
that each tuple has at least k indistinguishable tuples with 
respect to quasi-identifier in the released data. But it 
cannot resist homogeneity attack and background 
knowledge attack, so some other enhanced anonymity 
models have been proposed, such as l-diversity [4] and t-
closeness [5].   

Several techniques have also been proposed to 
implement the above anonymity models. Generalization 
[1-3] is a typical one to implement anonymity model, 
whose idea is to replace real value of quasi-identifier with 
less specific but semantically consistent value. 
Generalization distorts original data, which is 
disadvantageous to data mining. Anatomy [6] is also a 
fine method to anonymize microdata, whose idea is to 

release all the quasi-identifier and sensitive values 
directly in two separate tables. However, releasing the 
QI-values directly may suffer from a higher breach 
probability than generalization. To overcome these 
drawbacks, Tao et al. [7] proposed ANGEL, a new 
anonymization method that is as effective as 
generalization in privacy protection, which can retain 
higher data utility. Leela et al. [8] applied Angelization to 
preserve privacy in re-publication of dynamic microdata 
after insertions or deletions. Li et al. [9] proposed slicing, 
which anonymizes microdata by partitioning microdata 
horizontally and vertically. Neha et al. [10] concluded 
that slicing preserves data utility better than 
generalization, in addition, it also prevents membership 
disclosure. 

All of above works focus on microdata with single 
sensitive attribute. These methods will lead to much low 
data utility when they are directly used for microdata with 
multiple sensitive attributes. At present, there is only a 
few work concentrated on microdata with multiple 
sensitive attributes. Yang et al. [11] proposed a Multiple 
Sensitive Bucketization(MSB) approach. But the MSB 
method is only suitable to deal with microdata with less 
sensitive attributes, e.g, 2 to 3 sensitive attributes. For 
microadata with more sensitive attributes, MSB would 
result in high suppression ratios. For example, table I is 
an original dataset. We assume that {Gender, ZipCode, 
Age} are quasi-identifier attributes and {Occupation, 
Salary, Physician, Disease} are sensitive attributes. We 
can achieve a 3-diversity table by MSB, seeing table II. 
The anonymity table only has one group with tuples {t5, 
t6, t7} presented in table II, the rest tuples are all 
suppressed. The suppression ratio is 6/9, which greatly 
degrades the quality of data publishing. 
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TABLE I.   
ORIGINAL DATA WITH MULTIPLE SENSITIVE ATTRIBUTES 

Tu
ple 

Gend
er 

ZipC
ode 

Age Occup
ation 

Salary Phys
ician

Disease

t1 M 31200 23 clerk 4000+ John Gastriti
s 

t2 F 32100 27 clerk 6000+ Bob Asthma
t3 M 31204 24 cook 4000+ Bob Flu 
t4 M 42000 31 teacher 8000+ John Flu 
t5 F 32100 29 teacher 6000+ Lucy Cancer
t6 M 42005 35 cook 10000+ John Flu 
t7 M 42004 31 police 4000+ Tom Asthma
t8 F 32004 30 clerk 8000+ Tom Cancer
t9 F 31205 26 teacher 10000+ Tom Asthma

TABLE II. 
ANONYMIZED DATA USING MSB 

Tuple Occupation Salary Physicion Diease 
t5 teacher 6000+ Lucy Cancer 
t6 cook 10000+ John flu 
t7 police 4000+ Tom asthma 
In this paper, we propose a method, called SLOMS 

(SLcing [9] On Multiple Sensitive). The main idea of 
SLOMS is to vertically partition attributes into several 
sensitive attribute tables and one quasi-identifier table. 
Tuples in each table are partitioned into some 
equivalence classes. The quasi-identifier values of each 
equivalence class are generalized to the same value under 
k-anonymity principle. Meanwhile, the sensitive values of 
each sensitive table are sliced and bucketized to obey the 
l-diversity requirement. 

II.  SLOMS 

In this section, we first give an example to illustrate 
SLOMS, and then introduce some basic notations and 
definitions in Section A. Section B formalizes SLOMS, 
and compares it with MSB and generalization, section C 
discusses how to partition sensitive attributes, and 
Section D discusses privacy threats that SLOMS can 
resist. 

For example, table I contains 3 quasi-identifier 
attributes and 4 sensitive attributes. We can vertically 
partition table I into three tables. The first one is a 3-
diversity table with 2 sensitive attributes, seeing in table 
III. The second one is a 3-diversity table with another 2 
sensitive attributes, seeing in table IV. The last one is a 
generalized table with 3 quasi-identifier attributes. We 
cluster quasi-identifier attributes into three batches. Each 
one has three tuples, seeing in table V. We then 
generalize the quasi-identifier attributes to make the 
quasi-identifier attribute table conform to 3-anonymity 
and insert 2 columns of sensitive values’ group ID, seeing 
in table VI. SLOMS publishes the microdata of table III, 
table IV and table VI.  

Observe that each tuple is anonymized into three parts: 
values of {Gender, ZipCode, Age} belong to table VI, 
values of {Occupation, Salary} belong to table III and 
values of {Physician, Disease} belong to table IV. The 
{O-S, P-D} columns in table VI connect the quasi-
identifier attributes and sensitive attributes for the data 
utility. Since all tuples are published in SLOMS method, 

the suppression ratio is 0, which preserves higher data 
quality than MSB. 

TABLE III. 
O-S (OCCUPATION AND SALARY) SENSITIVE ATTRIBUTES 

Tuple Group Occupation Salary 
t1 
t5 
t6 

 
1 

clerk 
teacher 
cook 

4000+ 
6000+ 
10000+ 

t8 
t3 
t9 

 
2 

clerk 
cook 

teacher 

8000+ 
4000+ 
10000+ 

t4 
t7 
t2 

 
3 

teacher 
police 
clerk 

8000+ 
4000+ 
6000+ 

TABLE IV. 
P-D (PHYSICIAN AND DISEASE) SENSITIVE ATTRIBUTES  

Tuple Group Physician Disease 
t1 
t3 
t7 

 
1 

John 
Bob 
Tom 

Gastritis 
Flu 

Asthma 
t2 
t4 
t8 

 
2 

Bob 
John 
Tom 

Asthma 
Flu 

Cancer 
t5 
t6 
t9 

 
3 

Lucy 
John 
Tom 

Cancer 
Flu 

Asthma 

TABLE V. 
QUASI-IDENTIFIER ATTRIBUTES 

Tuple Gender ZipCode Age 
t1 
t3 
t9 

M 
M 
F 

31200 
31204 
31205 

23 
24 
26 

t2 
t5 
t8 

F 
F 
F 

32100 
32100 
32004 

27 
29 
30 

t4 
t6 
t7 

M 
M 
M 

42000 
42005 
42004 

31 
35 
31 

TABLE VI. 
GENERALIZED QUASI-IDENTIFIER ATTRIBUTES  

Tuple Gender ZipCode Age O-S P-D
t1 
t3 
t9 

* 
* 
* 

3120* 
3120* 
3120* 

[23,26] 
[23,26] 
[23,26] 

1 
2 
2 

1 
1 
3 

t2 
t5 
t8 

F 
F 
F 

32*** 
32*** 
32*** 

[27,30] 
[27,30] 
[27,30] 

3 
1 
2 

2 
3 
2 

t4 
t6 
t7 

M 
M 
M 

4200* 
4200* 
4200* 

[31,35] 
[31,35] 
[31,35] 

3 
1 
3 

2 
3 
1 

A.  Notations And Definitions 
Let T be a dataset with attributes 

1 2 1 2{ , , , , , , , }z da a a s s s" " , where 1 2( , , ..., )za a a  are 

quasi-identifier attributes, 1 2( , , ..., )ds s s  are sensitive 
attributes, d is the number of sensitive attributes. For 
simplicity, we use QI to denote quasi-identifier, and S to 
denote sensitive attributes. We assume that T has n tuples, 
and t[X] is the value of tuple t on attribute X.  

Definition 1 (Partition [6]). G1,G2,…… ,Gc  are a 
partition of T, if and only if for , (1 )i j i j c∀ ≤ ≠ ≤ , 
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satisfy
1

c

ii
G T

=
=∪  and i jG G∩ = ∅ , where Gi is a set 

of tuples in T. 
Definition 2 (Single sensitive attribute l-diversity). Let 

T be a single sensitive attribute table, G1,G2,…,Gc  be a 
partition of T, vi be the value of a sensitive 
attribute( i d≤ ), c(vi) be the number of sensitive values vi 

in a group Gj, |Gj| be the number of tuples in Gj. if for 

i jv G∀ ∈ , 
( ) 1

| |
i

j

c v

G l
≤ , then Gj satisfies single sensitive 

attribute l-diversity. If G1,G2,……,Gc all satisfy single 
sensitive attribute l-diversity, the table T satisfies single 
sensitive attribute l-diversity. 

Definition 3 (Multiple sensitive attributes l-diversity). 
Given a multiple sensitive attributes table T, if all of 
sensitive attributes in T satisfy single sensitive attribute l-
diversity, then T satisfies multiple sensitive attributes l-
diversity. 

B.  Formalization Of SLOMS And Comparison 
SLOMS splits T into one quasi-identifier table (QIT) 

and m sensitive attribute tables ({ST1, ST2, … ,STm} 
(1 )m d≤ ≤ ). The QIT table contains generalization of all 
quasi-identifier attributes and m columns group ID of 
each sensitive attribute. The STi (1 )i m≤ ≤  tables contain 
sensitive values and their group ID. If one sensitive value 
is suppressed, it is replaced by “NA”. 

Definition 4 (SLOMS). Given a multiple sensitive 
attributes table T, a SLOMS of T is given by one QIT and 
m STi (1 )m d≤ ≤ . 

For example, firstly, SLOMS splits sensitive attributes 
of table I into two parts, i.e. {Occupation, Salary} and 
{Physician, Disease}. Secondly, SLOMS partitions 
sensitive values into groups to implement 3-diversity, i.e. 
O-S (Occupation and Salary) sensitive attributes table, 
seeing table III and P-D (Physician and Disease) 
sensitive attributes table, seeing table IV. Thirdly, 
SLOMS groups quasi-identifier part into clusters with no 
less than k tuples, seeing table V, and generalizes each 
clusters and inserts 2 columns of sensitive values’ group 
ID, seeing in table VI. Finally, table III, table IV and 
table VI are published as result. 

Now, let us compare SLOMS with MSB. First, 
SLOMS vertically partitions sensitive attributes in order 
to decrease suppression ration as we describe in our 
examples. Second, by releasing the quasi-identifier values 
directly, MSB may suffer a higher breach probability than 
SLOMS. Nevertheless, such probability is always 
bounded by 1/l, as long as the background knowledge of 
an adversary is not stronger than the level allowed by the 
l-diversity model. However, SLOMS generalizes quasi-
identifier values gain another breach probability x which 
is the probability an adversary can sure someone is to be 
involved in the microdata. The value of x is always less 
than or equal to 1. The overall breach probability of 

SLOMS is 
1 1
  x

l l
× ≤ . Our goal is to sacrifice a little 

information loss on quasi-identifier attributes for higher 
privacy guarantee. 

If m is 1 and k is 1, SLOMS is actually gracefully 
degraded into MSB, just one sensitive attribute table 
needed. We can say that SLOMS is a superset of MSB. 
When d is small, there is no denying that MSB has good 
publishing data with better data utility. We put emphasis 
on dataset which have a large number of sensitive 
attributes.  

To compare SLOMS with generalization, we first 
formalize generalization obeying the same anonymization 
principle which is l-diversity. 

Definition 5 (l-diversity generalization). Let 
G1,G2,……,Gm be partitions of T, we say that T is a l-
diversity generalization if for all i = 1…m, the quasi-
identifier attributes in Gi are generalized into the same 
value with the sensitive attributes satisfying Multiple 
sensitive attributes l-diversity.  

If T is generalized to satisfy multiple sensitive 
attributes l-diversity, some tuples need to be suppressed 
for satisfying l-diversity. For example, table I obeying the 
3-diversity generalization, there are only three tuples 
reserved, namely t5, t6, t7, others are all suppressed. The 
values of quasi-identifier attributes {t5, t6, t7} are all 
generalized into {*, *****, 29-35}. Suppression ratio and 
information loss will increase greatly when we 
anonymize multiple sensitive attributes dataset using 
generalization. Intuitively, generalization is not suitable 
for multiple sensitive attributes dataset. We would like to 
emphasize that our goal is not to deny 
generalization.There is no doubt that generalization is an 
important technique in single sensitive attributes dataset 
and it has been received much attention in lots of 
literatures. Instead, our intention is to combine 
generalization with Slicing to maximize data utility of 
anonymous data for handling multiple sensitive attributes 
dataset. 

C.  Sensitive Attributes Partition 
Firstly, SLOMS should partition sensitive attributes 

into m parts. SLOMS partitions sensitive attributes 
according to the principle that highly correlated sensitive 
attributes are in the same table, because grouping highly 
correlated sensitive attributes preserves the correlations 
among those sensitive attributes. Therefore, we first 
compute the correlations between pairs of sensitive 
attributes and then cluster attributes based on their 
correlations. 

Two widely used measures of correlations are Pearson 
correlation coefficient [13] and mean-square contingency 
coefficient [13]. We adopt the mean-square contingency 
coefficient because most of our sensitive attributes are 
categorical and the mean-square contingency coefficient 
is a chi-square measure of correlation between two 
categorical attributes. Given two attributes s1 and s2 with 
domains {v11, v12, …, v1p} and { v21, v22, …, v2q }, 
respectively. p and q are their domain size, respectively. 
The mean-square contingency coefficient between s1 and 
s2 is defined as (1). 
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2
2

1 2
1 1min

( )1
( , )

{ , } 1

p q
ij i j

i j i j

f f f
s s

p q f f
⋅ ⋅

= = ⋅ ⋅

−
=

−
∑∑φ          (1) 

Here, if ⋅
and jf

⋅
are the fraction of occurrences of v1i 

and v2j in the data, respectively. ijf is the fraction of 
cooccurrences of v1i and v2j in the data. Therefore, 

if ⋅
and jf

⋅
are the marginal totals of ijf , i.e., 

1

q

i ijj
f f
⋅ =
= ∑ and 

1

p

j iji
f f
⋅ =
= ∑ . Obviously, 

2

1 2 1( , )s s≤ ≤0 φ .  
If there are some continuous sensitive attributes, we 

regard them as categorical attributes after being 
discretized.  

After computing the correlations for each pair of 
sensitive attributes, we use clustering to partition 
sensitive attributes into tables. Each sensitive attributes in 
our algorithm is a point in the clustering space. The 
distance between two attributes in the clustering space is 
defined as 2

1 2 1 2( , ) 1 ( , )d s s s s= −φ , which is in interval 
[0-1] . For two sensitive attributes, the smaller distance 
between the corresponding data points, the stronger 
correlation they are.  

We use the well-known k-medoid algorithm PAM 
(Partition Around Medoids) for clustering [14]. PAM 
begins with k randomly data points as the initial medoids. 
In each subsequent step, PAM chooses one medoid point 
and one nonmedoid point and swaps them as long as the 
cost of clustering decreases. Here, the clustering cost is 
measured as the sum of the cost of each cluster, which is 
in turn measured by the sum of the distance from each 
data point in the cluster to the medoid point of the cluster. 
Its time complexity is O(k(m-k)2) which is a high-
computational complexity for large data sets. However, 
the data points in our clustering space are sensitive 
attributes, whose number is small. 

D.  Privacy Preservation 
There are three types of privacy disclosure threats of 

microdata publishing. The first one is membership 
disclosure, which occurs when adversaries can infer 
whether one’s record is included in the dataset from 
publishing microdata. The second one is identity 
disclosure, which occurs when an individual is linked to 
some records in multiple released datasets. This type of 
threat was illustrated in [2], where adversaries can join a 
public voter registration list and the de-identified patient 
data of Massachusetts’s state employees to determine the 
medical history of the state’s governor. The third one is 
attribute disclosure, which occurs when new information 
about some individuals is revealed, i.e., the released data 
make it possible to infer the attributes value of an 
individual. 

We consider that SLOMS can resist all these privacy 
disclosure threats. k-anonymity is an excellent model to 
protect membership disclosure and identity disclosure. 
We generalize the quasi-identifier attributes to conform 
the requirement of k-anonymity. For the attribute 

disclosure, l-diversity is used to prevent sensitive 
attributes from disclosure. We partition sensitive 
attributes to buckets, obeying the requirement of l-
diversity. 

III.  EVALUATION OF ANONYMOUS DATA 

There are two aspects of information loss, the first one 
occurs in generalization, the second one occurs in 
anatomy. 

A.  Measurement For Generalization 
We adapt the distortion [12] to measure the quality of 

generalization. We make some definitions to explain it. 
Definition 6 (Weighted Hierarchical Distance). Let h 

be the height of a domain hierarchy, and let levels 1, 2, …, 
h-1, h be the domain levels from the most general to most 
specific, respectively. When a cell is generalized from 
level p to level q, where p > q, the weighted hierarchical 
distance of this generalization is defined as (2). 

, 11

, 12

( , )

p

j jj q

h

j jj

w
WHD p q

w

−= +

−=

=
∑
∑

           (2) 

where , 1 1 / ( 1)j jw j
−
= − (2 ≤ j ≤ h).  

Take ZipCode as an example. Let ZipCode hierarchy 
be {11323, 1132*, 113**, 11***, 1****, *****}, WHD 
from 1132* to 11*** is WHD(5, 3) = (1/4+1/3)/(1/5+1/4+ 
1/3+1/2 +1) = 0.255. 

Definition 7 (Distortion of generalization of tuples). 
Let t = {v1, v2, …, vz} be a tuple with z quasi-identifier 
values and t’ = {v’1, v’2, …, v’z} be a generalized tuple 
of t. Let level(vj) be the domain level of of vj in an 
attribute hierarchy. The distortion of this generalization is 
defined as (3). 

1

( , ') ( ( ), ( ' ))j j

z

j

Distortion t t WHD level v level v
=

= ∑       (3) 

Definition 8 (Distortion of generalization of tables). 
Let quasi-identifier table Tq be generalized to T’q and t’i 
be generalization tuple of ti, the distortion of T’q is 
defined as (4). 

1

( , ' ) ( , ' )i i

n

i
q qDistortion T T Distortion t t

=

= ∑           (4) 

Definition 9 (Closet common generalization). All 
allowable values of an attribute form a hierarchical value 
tree. Each value is represented as a node in the tree, and a 
node has a number of child nodes corresponding to its 
more specific values. t12 is the closest common 
generalization of t1 and t2, and its value is defined as (5). 

1 1 2

12

1 2

,                            ( )

      , ( )

i i i

i

i i

v if v v
v

the value of the closet common ancestor if v v

=
=

≠

⎧
⎨
⎩

   (5) 

where, vi
1, vi

2, and vi
12 are the values of the i-th 

attribute in tuples t1, t2 and t12. 
Definition 10 (Distance between two tuples). Let t12 be 

the closest common generalization of t1 and t2. The 
distance between t1 and t2 is defined as (6). 

1 2 1 12 2 12( , ) ( , ) ( , )dist t t Distortion t t Distortion t t= +   (6) 
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Definition 11 (Distance between two equivalence 
partitions). Let g1 and g2 be two equivalence classes of 
quasi-identifier attributes table. They have n1 identical 
tuples t1 and n2 identical tuples t2, respectively. The 
distance between g1 and g2 is defined as (7). 

1 2 1 1 12 2 2 12( , ) ( , ) ( , )dist g g n dist t t n dist t t= × + ×         (7) 
The distance is equivalent to the distortions of the 

generalization and therefore the choice of merger should 
be those equivalence classes with the smallest distances. 

B.  Measurement For Anatomy 
Now, let us discuss the metrics of sensitive attributes. 
Definition 12 (Additional information loss [11]). Let 

Gi be a group in a l-diversity table, b be the number of 
groups in the l-diversity table, then Additional 
information loss of one sensitive attribute in group Gi can 

be defined as 
1

| |b i
i

G l

b l=

−

×
∑ . The Additional information 

loss of whole table is defined as (8). 

AddInfoLoss=
1 1

| |1 jm b i
j i

G l

b lm = =

−

×
∑ ∑          (8) 

where m is the number of sensitive attributes. 
Ideally, every tuple in original table should be assigned 

to one group in anonymity table, however, for the 
restriction of l-diversity, some tuples cannot belong to 
any group. These tuples should be suppressed. 

Definition 13 (Suppression ratio). Let ns be the number 
of suppressed tuples, then the suppression ratio is defined 
as (9). 

          SuppRatio= sn

n
                           (9) 

Intuitively, the smaller SuppRatio, the higher the 
quality of anonymized data. Obviously, when the 
Suppression ratio is 0, the quality of anonymized data is 
optimal, for example table III and table IV. We consider a 
tuple as a suppressed tuple when it has at least one 
suppressed value. We use “NA” to replace its group ID. 
For instance, we have a tuple  {M,4200*,[31,35],1,NA}. 
The first three values stand for generalized quasi-
identifier values, the fourth value stands for a group ID, 
and the fifth value stands for a suppressed sensitive value. 

IV.  SLOMS ALGORITHM 

In this section, we present an efficient MSB-KACA 
algorithm to achieve SLOMS. Given a dataset T and three 
parameter m, l and k, the algorithm computes the result 
table that consists of one generalized table satisfying the 
requirement of k-anonymity and m tables satisfying the 
requirement of multiple sensitive attributes l-diversity. 

A.  The MSB-KACA Algorithm 
The MSB-KACA algorithm provides an 

implementation pattern for SLOMS. First, the algorithm 
vertically partitions dataset T into a quasi-identifier table 
and m sensitive attribute tables accordingly. Second, we 
use MSB method to implement l-diversity for each 
sensitive table and KACA algorithm [12] to implement k-
anonymity for quasi-identifier table. Finally, link 

generalized table and STi according to tuple ID to form 
QIT. After these steps, QIT and {ST1，ST2……STm} are 
achieved.  

The algorithm vertically partitions the sensitive 
attributes into m parts according to the correlation of 
sensitive attributes, seeing section 2.3. For convenience, 
we create a sensitive attributes classification data 
structure Y to record how the sensitive attributes are 
partitioned. For example, Y{1, 1, 2, 2} means the first 
two sensitive attributes belong to ST1, and the others 
belong to ST2. 

The basic idea of MSB method is: (1) assign each tuple 
to a bucket according to each sensitive attribute values of 
the tuple, each bucket has the same values on all sensitive 
attributes, and assign a priority to each bucket according 
to some policies; (2) randomly choose a tuple in the 
highest priority bucket; (3) shield all buckets which have 
the same value with the selected tuple in any dimension ; 
(4) repeat (2)(3) until a l-diversity group is built.  

There are three liner-complexity greedy algorithms to 
implement MSB[11], namely, the maximal-bucket first 
algorithm (MBF), the maximal single-dimension-capacity 
first algorithm (MSDCF), and the maximal multiple 
dimension-capacity first algorithm (MMDCF). The 
differences of these three algorithms are the policies of 
calculating bucket priority. In MBF, the maximal bucket 
is chosen as the criterion while MSDCF choose maximal 
single-dimension capacity and MMDCF choose maximal 
multi-dimension capacity.  

The selection priority of the maximal bucket is defined 
as (10). 

1 2 1 2

0 0 0 0 0 0( , , , ) ( , , , )d dSeclection buk s s s size buk s s s< > = < >" "   (10) 

where 1 2

0 0 0( , , , )dsize buk s s s< >"  is the number of 

tuples in bucket 1 2

0 0 0, , , dbuk s s s< >" . 
The selection priority of the maximal single-dimension 

capacity is defined as (11). 
1 2

0 0 0 1 0( , , , ) ( )d j

j dSeclection buk s s s Max Capa s
≤ ≤

< > ="  
1 2

0 0 0( , , , )dsize buk s s s+ < >"                (11) 

where 1 0( )j

j dMax Capa s
≤ ≤

is the maximal number of 
tuples in each dimension bucket, 

1 2

0 0 0( , , , )dsize buk s s s< >"  is the size of the bucket 
1 2

0 0 0, , , dbuk s s s< >" . 
The selection priority of the maximal multi-dimension 

capacity is defined as (12). 
1 2

0 0 0 0
1

( , , , ) ( )d j

j d

Seclection buk s s s Capa s
≤ ≤

< > = ∑"      

1 2

0 0 0( , , , )dsize buk s s s+ < >"              (12) 

where 0
1

( )j

j d

Capa s
≤ ≤

∑ is the maximal sum of the number 

of tuples in each dimension bucket, 
1 2

0 0 0( , , , )dsize buk s s s< >"  is the size of the bucket 
1 2

0 0 0, , , dbuk s s s< >" . 
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For example, Occupation and Salary are chosen as 
sensitive attributes in table I. In the first place, we make a 
2-dimension bucket of {Occupation and Salary}, 
illustrated in figure 1. In MMDCF the maximal selection 
of bucket<clerk, 4000+> is 7 according to formula (12) 
(there are 3 tuples in 4000+ dimension, 3 tuples in clerk 
dimension and 1 tuple in buk<clerk, 4000+>, totally is 7), 
which is the highest priority, then we shield dimension 
<clerk> and <4000+>. Repeat the procedure, we can get 
bucket<teacher, 6000+> whose selection is 6 and 
bucket<cook, 10000+> whose selection is 5. Therefore, 
{t1, t5, t6} are chosen as a partition conforming to 3-
diversity. 

 
 Teacher Cook Clerk Police 

4000+  {t3} {t1} {t7} 
6000+ {t5}  {t2}  
8000+ {t4}  {t8}  
10000+ {t9} {t6}   

 
Figure 1.  2-dimension bucket of {Occupation and Salary} 

The detail of MSB-KACA algorithm is shown in 
algorithm 1. 

 
Algorithm 1: MSB-KACA Algorithm 
Input:  
Original dataset T{a1,a2,……,az,s1,s2……,sd}, parameter l and k,  
sensitive attributes classification table Y{y1,y2,……yd} 
Output: 
QIT and {ST1，ST2……STm} 
Procedure: 
1. begin 
2.    split dataset T into a quasi-identifier tables and m sensitive 

attribute tables according to sensitive attributes classification table Y; 
3.    assign each tuple an ID sequentially from 1 to n for every table;  
4.    for i=1 to m do 
5.        create STi which satisfies l-diversity using MSB technology; 
6.    end for 
7.    form initial equivalence classes from the quasi-identifier table; 
8.    while there exists an equivalence class of size < k do 
9.         randomly choose an equivalence class C of size < k; 
10.        evaluate the pairwise distance between C and all other 

equivalence classes; 
11.        find the equivalence class C’ with the smallest distance to C; 
12.        generalize the equivalence classes C and C’; 
13:   end while 
14.   link generalized table and STi according to tuple ID to form QIT;
15.end 

 
Now we consider the time complexity of MSB-KACA 

algorithm. The time of partitioning dataset into m+1 
tables just need liner time complexity, which is O(n). In 
bucketization step, which is to partition sensitive 
attributes tables into buckets, MMDCF is a liner-
complexity greedy algorithm with O(n) time complexity. 
In generalization step, which is to generalize quasi-
identifier attributes into equivalence classes, the KACA 
algorithm runtime is O(nlogn+|E|2) [12]. Therefore, the 
total time complexity of MSB-KACA algorithm is O(n) + 
O(n) + O(nlogn+|E|2) ≈O(nlogn+|E|2). 

V.  EXPERIMENTS 

A.  Experimental Environment And Data 
This section experimentally evaluates the effectiveness 

of our approach using the Adult Database from the UCI 
Machine Learning Repository which we can download at 

http://kdd.ics.uci.edu/databases/census-income/. We 
randomly choose 10000 records. The description of 
Census-Income data is shown in table VII. The 
experiments are conducted on a PC with CPU 3.0 GHZ 
and RAM 2GB. All the algorithms are implemented in 
Java on Windows XP with JDK version 1.6.0_23. 

TABLE VII. 
DESCRIPTION OF CENSUS-INCOME DATA  

Number Attribute name Attribute 
type 

Distinct 
values  

Height

1 Age Numeric 91 5 
2 Sex Categorical 2 2 
3 Race Categorical 5 3 
4 Marital state Categorical 7 3 
5 Employment state Categorical 8 3 
6 Occupation Sensitive 50 / 
7 Industry Sensitive 52 / 
8 Workclass Sensitive 10 / 
9 Education Sensitive 17 / 
10 Major Occupation 

code 
Sensitive 24 / 

11 Major industry 
code 

Sensitive 15 / 

Our experiments mainly use following 4 criteria to 
evaluate MSB-KACA algorithm: (1) diversity parameter l 
(3~9); (2) sensitive attributes number d (3~6); (3) dataset 
size n (2000~10000); (4) quasi-identifier size |QI| (2~5). 
The combination of sensitive attributes is described in 
table VIII. Taking d=5 as an example, we treat attribute 
numbers {6, 7, 8, 9, 10} as the sensitive attributes when 
implementing MBF, MSDCF, MMDCF. In the meantime, 
we treat attribute numbers {6, 7, 8} as the first sensitive 
table and attribute numbers {9, 10} as the second 
sensitive table when implementing MSB-KACA. 

TABLE VIII. 
MULTIPLE SENSITIVE ATTRIBUTES  

d MBF,MSDCF,MMDCF MSB-KACA 
d=3 {6,7,8} {{6,7},{8}} 
d=4 {6,7,8,9} {{6,7}，{8,9}} 
d=5 {6,7,8,9,10} {{6,7,8}，{9,10}} 
d=6 {6,7,8,9,10,11} {{6,7,8}，{9,10,11}} 

B.  Analysis Of Suppression Ratio 
Figure 2(a), 2(b), 2(c) and 2(d) plot the variation of 

suppression ratio using MSB-KACA,MBF,MSDCF and 
MMDCF on different l when n is 10000 and d is 3-6. 
Apparently, MSB-KACA produces significantly lower 
suppression ratio than other three algorithms in all cases. 
This is expected, since SLOMS reduces the dimensions 
of buckets, which makes it easy to form l-diversity group. 
We can also observe that the suppression ratio grows 
rapidly with the increasing of parameter l. Because when 
l is increasing, the demands of diversity in buckets are 
also growing. It is harder to partition sensitive values, the 
higher suppression ratio generated. 
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(a) Suppression ratio for various parameter l (d=3,n=10000) 
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(b) Suppression ratio for various parameter l (d=4,n=10000) 
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(c) Suppression ratio for various parameter l (d=5,n=10000) 
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(d) Suppression ratio for various parameter l (d=6,n=10000) 

Figure 2.  Comparison of Suppression ratio for the four algorithms. 

C.  Analysis Of Additional Information Loss 
Figure 3(a) illustrates the variation of additional 

information loss using MSB-KACA,MBF,MSDCF and 
MMDCF on different l when n is 10000 and d is 4,which 
is calculated by formula(8). Figure 3(b) illustrates the 
variation of additional information loss on different n 

when l is 6 and d is 4. We can conclude that all the four 
algorithms produce low additional information loss. 
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(a) parameter l (d=4,n=10000)     
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Figure 3.  Comparison of Additional information loss for the four 
algorithms. 

D.  Analysis Of Distortion 
Figure 4(a) shows the changes of distortion using 

MSB-KACA and generalization on different |QI| when l 
is 6, k is 6 and n is 10000, which is calculated by 
formula(4). Figure 4(b) shows the changes of distortion 
on different n when l is 6, k is 6, and |QI| is 5. We can 
conclude that MSB-KACA has low distortion since it 
does not need to take sensitive attributes diversity into 
account. 
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(a) |QI| (l=6, k=6, n=10000)    
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Figure 4.  Comparison of distortion for the two algorithms. 

D.  Analysis Of Execution Time 
Figure 5(a) shows the cost of computing the 

publishable table by MSB-KACA,MBF,MSDCF and 
MMDCF on different n when d is 4 and l is 6. It is 
obvious that the cost increases as n increases. Since the 
more tuples need to be anonymized,the longer time 
consumed to finish the anonymization procedure. Figure 
5(b) investigates the influence of d on execution time 
when l is 6 and n is 10000. Figure 5(c) investigates the 
influence of l on execution time when d is 4 and n is 
10000. Apparently, MSB-KACA costs over twice time 
than other three algorithms. To explain this, recall that 
MSB-KACA combines anatomy and generalization 
techniques. Generalization costs more time than anatomy. 
That is why MSB-KACA takes more time.  

We can see that the advantage of our method in quality 
of anonymous data does not come for free. However, in 
all test cases our algorithm can finish in less than 1 
minute, which is acceptable for data anonymization.  
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Figure 5.  Comparison of Execution time for the four algorithm. 

VI.  CONCLUSION AND RUTURE WORK 

The paper proposes an SLOMS method to anonymize 
multiple sensitive attributes microdata and analyses the 
privacy attacks that SLOMS can address. The paper also 
proposes an MSB-KACA algorithm based on SLOMS 
method. Experimental results show that the anonymized 
data by SLOMS have low additional information loss and 
suppression ratio compared with MSB.  

Privacy preservation on multiple sensitive attributes 
microdata is a challenging work. There are many 
interesting topics in this area. For example, personalized 
privacy preservation [15] is an interesting work. In 
addition, research on efficient algorithms based on 
generalization and anatomy is also a significant work in 
the future. 
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