
Formalization of Distributed and Dynamic
Resources Allocation Using Category Theory

Zhen Youa,b,∗, Jinyun Xuea,b, Ying Shib, Dongming Jiangb, Qimin Hua
a Provincial Key Laboratory for High-Performance Computing Technology,

Jiangxi Normal University, Nanchang, 330022, China
b State Key Laboratory of Software Engineering, Wuhan University, Wuhan, 430072, China

Email: youzhen.jxnu@gmail.com

Abstract— Distribution and dynamics are the main charac-
teristics of resource allocation problem. Despite the variety
of approaches and models proposed for the problem, a
systematic formalization and a general solution strategy
are missing. This paper takes a step towards this goal by
proposing a categorical formalization of resource allocation,
which not only represents both distributed and dynamic
features, but also formally prove the properties of symmetry,
safety(non-deadlock), liveness(non-starvation) and concur-
rency. The application to the wireless sensor networks
demonstrates the practicability of our formal model and
emphasizes the strengths of category theory – its simple
theory, abstract mechanism, diagrammatical representation
and its expressive power in representing and reasoning many
concepts of computer science.

Index Terms— Resource Allocation, Category Theory, For-
mal Model, Wireless Sensor Networks

I. INTRODUCTION

THE widespread development of high-speed networks
and the availability of powerful computers at low-

cost have led to the much research about distributed
and dynamic resource allocation problem. The problem
arises in many real-world domains such as wireless sensor
networks, emergency equipment/personnel management,
disaster rescue and hospital scheduling. Resource alloca-
tion may be decided by using different models[1,2,3,4,5]
and algorithms[6,7,8] applied to a specific domain to
automatically and dynamically allocate resources to ap-
plicants.

Historically, category theory stemming from algebraic
topology is a way to provide a basic conceptual and
notational framework, which is useful to demonstrate
various structural concepts of different fields in a uniform
way. There is a large body of work in category theory
ranging from purely categorical studies to applications of
categorical principles in different fields. As an important
tool, category theory impinges more and more frequently

Manuscript received April 18, 2013; revised *****; accepted *****.
c© 2005 IEEE.

This work was supported in part by the National Nature Science
Foundation of China (Grant No. 61272075), the major international
cooperative research project (Grant No.61020106009) from National
Natural Science Foundation of China, the National Natural Science
Foundation of Jianxi Province (Grant No.20132BAB211022) and the
Science and Technology Research Project of Jianxi Province Educational
Department(Grant No.GJJ13231).

on the awareness of many computer scientists[9], espe-
cially those with an interest in formal specifications and
semantics-based research. The significance of category
theory in theoretical computing science was further con-
firmed by the work of Smyth-Plotkin[10] and Lehmann-
Smyth[11]. Another nice examples are Lehmann’s[12]
concerns the important of using powerful theorems from
category theory and Goguen-Burstall’s[13] use of certain
theorems about colimits constructions.

Category theory is a useful formal framework in com-
puter science. First of all, because of the focus that is put
in relationship (categorical morphisms) and not in entities
(categorical object). Secondly, it provides abstraction and
generality ideas – abstracting from unnecessary details to
give general definitions and results, and focusing on how
things behave, rather than on what their internal details
are. Another, the fact of the matter is that category theory
is essentially algebraic means that it can be used to reason
about structure and the mappings that preserve structure
naturally arises in many different areas of computing.
With the above advantages, we believe that category
theory can contribute with the formal model of distributed
and dynamic resource allocation in the same way as it
contributed in the areas of design and implementation
of programming languages[14,15], type theory[16], spec-
ification language[17], automata theory[18,19], architec-
ture[20,21], models of concurrency[22,23], and syntax
and semantic model [24,25].

A. Previous work

Theretofore, several attempts have been made to find a
satisfactory formal model to resource allocation problem.
Modi and Jung[1] proposes a formalization of distributed
resource allocation and a general solution strategy us-
ing distributed constraint satisfaction techniques. A self-
stabilizing deterministic model and algorithm[2]–the main
idea is the construction of a spanning tree for each
processes – is developed, and the correctness and per-
formance of the model is formally proven.An automatic
resource allocation strategy[3] based on market mecha-
nism is proposed to achieve resource balance in cloud
computing. A new theoretic resource allocation model
based on ESPSA(Extended Second Price Sealed Auction)

3088 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.12.3088-3095

is developed to guarantee task’s victorious probabilities on
competing for limited resources. The novel spatial-based
Network-on-Chip resource allocation algorithms can be
used to efficiently reduce the communication congestion
and improve the overall performance.

The famous solution for distributed resource allocation
problem is based on an acyclic directed graph technique
which was presented by K. M. Chandy and J. Misra[5].
This strategy can be efficiently guarantee safety, liveness
and fairness of the classical dining philosophers problem,
the dynamic drinking philosophers problem[26] and the
committee coordination problem[27].

B. Main contribution

Despite the variety of approaches and models pro-
posed for distributed or dynamic resource allocation, a
systematic formalization of the problem and a general
solution strategy are missing. This paper takes a step
towards this goal by proposing a categorical formalization
of resource allocation, which not only represents both
dynamic and distributed aspects of the problem, but also
formally prove the properties of symmetry, safety(non-
deadlock), liveness(non-starvation) and concurrency. The
formal models defined in the paper is based on Chandy-
Misra’s acyclic directed graph strategy [5,27] and our
previous experience[28] in implementing the categorical
semantics for distributed dinning philosophers problem.
Finally, we describe how our categorical models can be
implemented in wireless sensor networks.

Another goal is bring the benefits of the use of category
theory to the field of formal model for distributed and
dynamic resource allocation: not only formalizing usual
concepts in resource allocation using categorical entities
(such as objects, morphisms, colimits), but also giving
good directions to reason/preserve the universal struc-
ture and facilitate its application to practical problems.
Meanwhile, the abstraction mechanism, diagrammatical
representation and powerful expressive ability of category
theory make it easier to clarify the traceability and under-
standability of resource allocation problem in distributed
and dynamic environment.

C. Paper Structure

The paper is structured as follows: Section 2 presents
some basic definitions of category theory. Sections 3
formalizes the categorical models for distributed and dy-
namic resource allocation, and show how these categorical
concepts and operations (such as Sums, Pushouts and
Colimits) used to merge, detect similarities and hide
details of the problem. Meanwhile, its correctness and
properties are also elaborated. In section 4, we extend the
formal models to handle a generalized problem in wireless
sensor networks. Concluding remarks and future work are
finally discussed in Section 5.

II. CATEGORY THEORY

What is category theory? There are many different
answers to this question, but generally speaking: Category

theory is a branch of mathematics that has been developed
over the last 50 years, and is concerned with the study
of algebraic structure. In the section, some fundamental
definitions about category theory needed in the rest of the
paper are reviewed. Most of them are excerpted from Jaap
van Oosten’s book[29], and José Luiz Fiadeiro’ book[30].

Definition 1. Category.
A category C is given by a collection C0 of objects and

a collection C1 of morphisms which have the following
structure. Each morphism in C1 has a domain and a
codomain, which are objects in C0; one writes f : x → y
if x is the domain of the morphism f , and y its codomain;
One also writes x = dom(f) and y = cod(f). The
category C must satisfied the following laws:

• Identity law: For every object x there is an identity
morphism idx : x → x, satisfying idx ◦ g = g for
every g : y → x and f◦idx = f for every f : x → y;

• Composition law: Given two morphisms f : x → y
and g : y → z such that cod(f) = dom(g), the
composition of f and g, written g ◦ f : x → z,
is defined and has domain dom(f) and codomain
cod(g);

• Associative law: Composition is associative, that is:
given f : x → y, g : y → z and h : z → w,
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Remark 1. Categories are special kinds of graphs. As
demonstrated in the Fig. 1, a category is simply a labeled
graph with ”composite” and ”identity” edges that satisfy
the obvious equational laws.

Figure 1. Graphic Description of Category

Definition 2. Graph homomorphism.
Let G and H be graphs. A homomorphism of graphs

ϕ : G → H is a pair of maps ϕ0 : G0 → H0 and ϕ1 :
G1 → H1 such that for each arrow f : x → y of G we
have ϕ1(f) : ϕ0(x) → ϕ0(y) in H.

Definition 3. Diagram.
Let C be a category and I a graph. A diagram in C with

shape I is a graph homomorphism δ : I → graph(C).
Definition 4. Commutative Diagrams.
Let C be a category, its diagram D is said to commute

iff, for every pair x,y of nodes and every pair of paths

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3089

© 2013 ACADEMY PUBLISHER

TABLE I.
UNIVERSAL CONSTRUCTIONS

Construction Co-Construction

Terminal Objects Initial Objects
Products Sums
Pullbacks Pushouts
Equalizers Coequalizers

Limits Colimits

W = U1, U2, ..., Um, W ′ = V1, V2, ..., Vn from x to y in
diagram D,

Um ◦ Um−1 ◦ ... ◦ U1 = Vn ◦ Vn−1 ◦ ... ◦ V1

holds in category C.
Definition 5. Colimit.
Let δ : I → graph(C) be a diagram in category C. A

colimit of δ is a commutative cocone p : δ → z such that,
for every other commutative cocone p′ : δ′ → z′, there is
a unique morphism f : z → z′ such that f ◦ p = p′.

Remark 2. There are various universal constructions
(see Table 1) in categories. Each construction has a dual,
formed by reversing the morphisms. Colimit is a gener-
alization of other universal constructions, which includes
initial object, sum(coproduct), pushout and coequalizer.

Definition 6. Functor.
Let C and D are two categories, a functor F : C → D

consists of operations F0 : C0 → D0 and F1 : C1 → D1,
such that

• for each morphism f : x → y in category C, there is
a morphism F1(f) : F0(x) → F0(y) in category D;

• for each object x in category C, the equation
F1(idx) = idF0(x) holds in category D;

• for each pair of morphisms f : x → y and g : y → z
in category C, the equation F1(g◦f) = F1(g)◦F1(f)
holds in category D.

Remark 3. A functor is a category of categories. In
fact, its objects are categories and its morphisms are
certain structure-preserving maps between categories[31].
On the other hand, A functor is simply a labeled graph
homomorphism that also preserves the identity and com-
position edges that are present in categories.

III. FORMALIZATION OF RESOURCES ALLOCATION

The Resource Allocation Problem consists of 1) a set
of resources that may be shared by two or more tasks, and
2) a set of tasks, which request a subset of resources to
access to the Critical Section (CS) of code and perform
the necessary actions. For each task there is a set of
neighbor tasks. Each task has a conflict with its neighbors:
it cannot share the CS with any of them.

The problem of resolving conflicts between tasks in
distributed systems is of practical importance. In this
section, we present the formal model and diagrammatical
solution of distributed and dynamic resource allocation
problem using category theory, which not only efficiently
resolves the deadlock and starvation, but also ensure the
satisfaction of some properties.

A. Signature

The signature of a resource allocation problem is a
structure Θ = {Υ,Γ,Λ} where

• Υ is a set of resource, Υ = {Υ1,Υ2, ...,Υm}.
• Γ is a set of tasks, Γ = {T1, T2, ..., Tn}.
• Λ is a set of actions, Λ = {Λ1

1,Λ
1
2, ...,Λ

i
p,Λ

j
n}. Each

task contains a set of actions, where Λi
p denotes i′th

action of task Γp.
The communication between conflict tasks is only of

two kinds: a task either requests the permission to execute
the CS from the neighbors, or releases this permission.
A task is in one of 3 states: 1) idle, 2) request and 3)
running.

B. Categorical Model of Distributed Resource Allocation

The basic idea behind our solution to resource alloca-
tion is a variant of Chandy-Misra’s acyclic directed graph
strategy[5,27]. We define for each task Ti a set of conflict
neighbors Ti.F and a set of communication neighbors
Ti.C. Both relations are symmetric. That is, for any two
tasks Ti and Tj if Ti ∈ Tj .F then Tj ∈ Ti.F . The
same applies to Ti.C. We do not consider asymmetric
communication.

An application of the conflict and communication re-
lations is in the management of files in the distributed
environment. Each file is represented a resource. Two
tasks are conflict neighbors that if that one of them write
into a file that they share; two tasks are communication
neighbors that both of them only read common files.

The general distributed resource allocation prob-
lem[26] states there are n symmetrical tasks Γ =
{T1, T2, ..., Tn} (with identical protocols) contending for
access to m resources Υ = {Υ1,Υ2, ...,Υm}. Each task
requires a fixed subset of the resources. Both concurrent
access and exclusive access are encountered. Each task
continually cycles between its critical section and its
noncritical section. A solution to this problem guarantees
each task is eventually able to enter its critical section and
access its needed resources with the resource constraints
satisfied.

A conflict between two or more tasks must be resolved
in favor of some (usually one) task and against the other
conflict tasks: a favored task must have priority over
others. A distributed implementation of an acyclic prece-
dence graph, where the task with the lower precedence
must yield to the process with greater precedence in finite
time, is a conflict resolution rule ensures fair resolution of
all conflicts. Precedences among tasks are typical partial
ordering relations, so it easier to model with category
theory.

Definition 7. Precedence Category: P = {Γ,Ψ}.
The precedence category P is composed of a objects

collection Γ = {T1, T2, ..., Tn} in signature, each object
represents a task; and a morphisms collection Ψ, where
for every morphism fij : Ti → Tj ∈ Ψ (Ti, Tj ∈ Γ∧Ti 6=
Tj) means that task Ti has priority over task Tj , and
for every object Ti in Γ,there is an identity morphism

3090 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

id2

id1

id5

id4

id3

f21

f45

f43

f23

f35

T2

T1 T4

T5

T3

Figure 2. Diagram of precedence Category

idi : Ti → Ti, which indicates that the priority of Ti is
equivalent to itself.

Proof of Precedence Category:
• Given two morphisms fij : Ti → Tj and fjk : Tj →

Tk such that dom(fji) = cod(fij). The composition
of fij and fji, written fji ◦fij : Ti → Tk, is defined
and has domain dom(fij) and codomain cod(fji).
The composition means the precedence of tasks are
transitive;

• Composition is associative, that is, given fij : Ti →
Tj , fjk : Tj → Tk, and fkw : Tk → Tw, then fkw ◦
(fjk ◦ fij) = (fkw ◦ fjk) ◦ fij ;

• Each identity morphism idi : Ti → Ti satisfies idi ◦
fji = fji for every fji : Tj → Ti, and fij ◦ idi = fij
for every fij : Ti → Tj .

Category theory supports the diagrammatic representa-
tion which visualizes the relationships between concepts.
It is possible to use diagrams to express and reason about
precedence among tasks in a formal way.

Example 1: The diagram of precedence category P
with 5 tasks in distributed resource allocation problem is
given in Fig. 2.

Remark 4. The diagram of precedence category P is
commutative.

The commutative property of a diagram helps to es-
tablish a set of equalities between morphisms. Hence,
diagrams and commutativity provide us with the ability
of doing equational reasoning in a visual form.

C. Categorical Model of Dynamic Resource Allocation

As a variant of distributed resource allocation problem,
dynamic resource allocation problem[26] allows the
number of tasks to fluctuate as needed. This allows tasks
can be added or deleted from the problem, and tasks can
add and delete resources.

In order to solve general dynamic resource alloca-
tion problems that conform to our formalized model–
Precedence Category, four rules are defined as follows.

Rule 1. Adding Task: New task have lower precedence
to their conflicting neighbors.

Example 2: Two new tasks T6 (shares resource with
T1, T5) and T7 (shares resource with T2, T3) are added

id6

f16

f56

id7

f37

f27

id2

id1

id5

id4

id3

f21

f45

f43

f23

f35

T2

T1 T4

T5

T3

T6

T7

Figure 3. Adding Tasks

f24

f15

id2

id1

id5

id4

id3

f21

f45

f43

f23

f35

T2

T1 T4

T5

T3

Figure 4. Adding Resource

(seeing Fig. 3) in the above example 1 . The morphisms
f16 : T1 → T6 and f56 : T5 → T6 means T6 has lower
precedence over its conflicting neighbors T1 and T5. The
same applies to task T7.

Rule 2. Deleting Task: Task that no longer need any
resources can be directly removed.

Rule 3. Adding Resource: The acyclic precedence
structure must be preserved between the conflicting tasks,
which share the new resource.

Example 3: Two resources Υi and Υj is added in Fig.
4. Υi is shared by T1 and T5, and Υj is shared by T2

and T4.
Rule 4. Deleting Resource: Resource and its morphism

in precedence category P that no longer need by any tasks
can be directly removed.

D. Categorial Model of System

Both of distributed resource allocation system and
dynamic resource allocation system consist of a number
of components. Each task Ti, containing its local data
and code, can be considered as a component. Some tasks
can be composed to become subsystem Ω = Ti a Tj a
... a Tk. Category theory provides the level of mathe-
matical abstraction to describe software architectures, the
composition category S is defined.

Definition 8. Composition Category S = (Σ,Φ).
The composition category S is composed of two col-

lections:

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3091

© 2013 ACADEMY PUBLISHER

δas s'fp'apa
Figure 5. Colimit in Composition Category S

• Σ is a objects collection Σ =
{T1, T2, ..., Tn,Ω1,Ω2, ...,Ωm}, each object Ti

represents a component of a task, and every object
Ωi represents a subsystem, which combined by
some components or other subsystems;

• Φ is the collection of morphisms between two
different components or subsystems. The compose
morphism (µij : Ti → Ωj), or (νij : Ωi → Ωj)
indicates that left component Ti or subsystem Ωi

is a part of the right object Ωj . For every object
Ti or Ωi in Σ there is an identity morphism idTi :
Ti → Ti or idΩi : Ωi → Ωi, which means that
the component/subsystem is not combined with other
component/subsystem.

It’s easy to proof the correctness of identify law,
composition law and associative law about composition
category.

One of the characteristics of universal constructions
(such as sum, pushout and colimit) is the ability to capture
the collective behaviors of systems of interconnected
components. For example, two task component Ti and Tj

can be integrated into combined subsystem Ti a Tj by
using sum universal operation of category theory; a task
component Ti and a subsystem Ωj can also be integrated
into combined subsystem Ti a Ωj by using sum universal
operation. Hence, we can get a entire-system after using
the sum operation for n−1 times. Different systems could
be gained through different orders of composition. Each
system will be considered as a colimit of the diagram in
the composition category S.

Definition 9. Colimit of System.
Let δ : I → graph(S) be a diagram in category S. A

colimit of δ is a commutative cocone p : δ → s, where s
is one of the composition of all components, such that, for
every other entire-system s′ and its commutative cocone
p′ : δ′ → s′, there is a unique morphism f : s → s′ such
that f ◦ p = p′ (see the Fig. 5). Every entire-system si
and its commutative cocone p : δ → si is a colimit of
δ : I → graph(S).

E. Proof of Properties

We show in this section that our categorical model
of distributed and dynamic resource allocation problem
has the properties of symmetry, safety, liveness and
concurrency.

Each task executes actions of Critical Section (CS)
in limited time after successfully requiring a set of the
resources. The condition of performing CS for task Ti,

which means that task Ti has higher precedence over all
conflicting neighbors Tj ∈ Ti.F , is defined as follows.

Rule 5. Accessing CS:

〈∀Tj : Tj ∈ Ti.F : (fij : Ti → Tj) ∈ P〉
In the morphism fij : Ti → Tj , its direction from Ti to

Tj doesn’t change until Ti complete all actions, therefore,
each task satisfy the following rule.

Rule 6. Transformation of Precedence: The task yields
its priority to all its conflicting neighbors only when it
finished their operations of CS.

Theorem 1. Symmetry: All tasks and all resources obey
precisely the same rules.

Proof. Every task obeys Rule 5 and Rule 6 for ac-
quiring resources and releasing resources; all tasks and
resources can be added or deleted by obeying Rule
1, 2, 3, 4.

Deadlock, firstly recognized and analyzed in 1968 by
E. W. Dijkstra, who termed it as deadly embrace, can
cause an indefinite circular wait among some tasks. In
resource allocation problem, Deadlock occurs when two
or more tasks in a system are blocked forever, because of
requirements that can never be satisfied. The following
lemma ensures that our categorical model is free from
deadlock.

Lemma 1. Free-Deadlock: The graph of precedence
category is always acyclic.

Proof. The initial graph of precedence category G0 is
a acyclic; Rule 6 ensures a finished task with all of its
edges are directed towards to itself, therefore, there is
no circle in graph. On the other hand, according to Rule
1, 2, 3, 4, it is easy to proof that every change (add/delete
the tasks/resources) to the graph preserves acyclicity.

Theorem 2. Safety: Conflicting neighbors never exe-
cutes the CS simultaneously.

Tj ∈ Ti.F ⇒ ¬((fij : Ti → Tj) ∈ P ∧ (fji : Tj → Ti) ∈
P)

Proof. Task Ti and task Tj share a resource, so they
are conflict neighbors. If task Ti satisfies Rule 5, therefore
task Ti enter to CS. The graph of precedence category is
always acyclic (from Lemma 1), so (fji : Tj → Ti) /∈
P, which means that task Tj doesn’t satisfy Rule 5, or,
equationally, task j can’t access to CS.

Theorem 3. Liveness: Every task requested resources
eventually acquire them and perform its actions.

Proof. A task yields its priority to all its neighbors only
when it finished its actions (from Rule 6). Consequently,
this task doesn’t access to CS once again until that all
its conflicting neighbors have finished the execution of
actions, equationally, just after the neighbors yield priority
to this task.

Theorem 4. Concurrency: The solution does not deny
the possibility of nonconflicting neighbors perform their
actions simultaneously.

Proof. A solution to a resource allocation problem
involves choosing a minimal set resources for each task
such that the minimal sets do not conflict. In this way,

3092 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

G0 G1

id2

id1

id5

id4

id3

f21

f45

f43

f23

f35

T2

T1 T4

T5

T3

id2

id1

id5

id4

id3

f21

f45

f43

f23

f35

T2

T1 T4

T5

T3

Figure 6. Concurrent Tasks

two or more nonconflicting requested-tasks can perform
their actions simultaneously.

In Fig. 6, task T2 and the task T4 will can simul-
taneously enter to CS because they are not neighbors.
After the execution, the direction of morphisms associated
with task T2 and task T2 will change. In the next state
of G1, task T1 and task T3 can be perform operations
concurrently. There is a a functor F : G0 → G1 between
the initial category G0 and the changed category G1.

IV. APPLICATION DOMAIN

The wireless sensor networks consists of spatially
distributed autonomous sensors to monitor physical area
(such as enemy intrusion, battlefield surveillance, geo-
fencing of gas/oil pipelines, etc) or environmental con-
ditions (such as temperature, sound, pressure, etc). Each
sensor, which is equipped with a Doppler radar with three
sectors, is controlled by an independent agent[1]. All of
the sensor agents must act as a team to cooperatively track
the targets.

In practice, there is no centralized body to allocate the
resources(sensors) and they have to be self organized. In
order for a target to be tracked accurately, at least three
agents must collaborate - concurrently activating overlap-
ping sectors. If there are multiple targets, an agent may be
required by more than two targets. The situation can also
be dynamic as targets move through the sensing range, or
some targets or sensors my be added or deleted over time.
The dynamic feature of the domain makes problems even
harder. The categorical models demonstrated in the above
section has been applied to the resource allocation among
sensors(agents) in distributed and dynamic environment.

Example 4: In a wireless sensor network, there are
five sensors {S1,S2,S3,S4 S5}, each sensor Si has three
sectors {A1

i ,A
2
i ,A

3
i }; and five targets {T1,T2,T3,T4,T5}.

• Resource set Υ = {S1,S2,S3,S4 S5}, each sensor
is considered as a resource;

• Task set Γ = {T1,T2,T3,T4,T5}, each target is
considered as a task;

• Action set Λ =
⋃

Si∈Υ

Action(Si), while

Action(Si) = {A1
i ,A

2
i ,A

3
i } ,each sector is

considered as a action.

id2

id5

f12

id3id1 id4

f23 f43

f53

T1 T2 T3

T5

T4

Figure 7. Precedence Category of a Wireless Sensors Network

Since a target requires three sensors to track its posi-
tion, three sectors from three of the five possible sen-
sors are activated. We define a set of corresponding
sectors for every targets: T1 $ {A1

1,A
1
2,A

1
3}, T2 $

{A1
2,A

2
3,A

1
4}, T3 $ {A3

1,A
2
3,A

1
5}, T4 $ {A2

1,A
2
2,A

1
5},

T5 $ {A3
1,A

2
4,A

3
5}, where the symbol $ means the left

task need the right three sectors. T1 and T2 are conflicting
neighbors because they share a common action A1

2, the
same as other relationships among all targets.

To illustrate the categorical model–Precedence Cate-
gory: P = (Γ,Ψ) defined in this example (seeing Fig. 7),
where

• A objects collection Γ = {T1,T2,T3,T4,T5},
• A morphisms colletction Ψ =

{f12, f23, f43, f53, id1, id2, id3, id4, id5}, while
fij : Ti → Tj mean that target Ti has priority over
its conflicting task Tj .

The above Precedence Category satisfy all the laws
(identify law, associative and transitive law) of category
and all the properties defined in Section 3.E. On the other
hand, it is easy to extend this formal model to the dynamic
sensor network with our strategy.

V. CONCLUSION

In this paper, we proposed a formalization of resource
allocation that is expressive enough to represent both dis-
tributed and dynamic aspects of the problem. In order to
ensure its correctness, some properties (such as symmetry,
safety/non-deadlock, liveness/non-starvation and concur-
rency) are formally proven. In contrast to other formal
models of resource allocation, the perceived benefits of
our categorial formalization are as follows: 1) different
relationships and interactions can be precisely described
by the morphisms of category; 2) traceability and un-
derstandability about the solution to resource allocation
can be expressed and reasoned using the diagrammatical
nature of category theory; 3) system configuration from
components can be represented as the universal construc-
tion (such as sums, colimits) of category theory. In the
future, we will continue extend our formal models to
other practical application domain, in addition to wireless
sensor networks.

ACKNOWLEDGMENT.

The authors thanks Professor José Luiz Fiadeiro for
previous discussion about category theory.

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3093

© 2013 ACADEMY PUBLISHER

REFERENCES

[1] Pragnesh Jay Modi, Hyuckchul Jung, et al: ”A Dynamic
Distributed Constraint Satisfaction Approach to Resource
Allocation”. In: Principles and Practice of Constraint Pro-
gramming - CP 2001, Lecture Notes in Computer Science
Volume 2239, 2001, pp. 685-700

[2] P. Danturi, M. Nesterenko, and S. Tixeuil: ”Self-stabilizing
philosophers with generic conflicts.” In: Proceedings of
the 8th International Symposium on Stabilization, Safety,
and Security of Distributed Systems, Dallas, TX, November
2006, pp. 213-230

[3] Xindong You, Jian Wan, Xianghua Xu, Congfeng Jiang,
Wei Zhang, Jilin Zhang: ”ARAS-M: Automatic Resource
Allocation Strategy based on Market Mechanism in Cloud
Computing”. In: Journal of Computers, Vol 6, No 7, 2011,
pp.1287-1296

[4] Weifeng Sun, Qiufen Xia, Zichuan Xu, Mingchu Li, Zhen-
quan Qin: ”A Game Theoretic Resource Allocation Model
Based on Extended Second Price Sealed Auction in Grid
Computing”. In: Journal of Computers, Vol 7, No 1, Special
Issue: Parallel Algorithms, Scheduling and Architectures,
2012, pp.65-75

[5] K. M. Chandy and J. Misra: ”The Drinking Philosophers
Problem”. In: ACM Transactions on Programming Lan-
guages, Systems, 6(4),1984, pp.632-646

[6] Jingling Yuan, Xin Fu, Tao Li, Minlong Yang: ”Intelligent
Spatial-based Resource Allocation Algorithms in NoC”. In:
Journal of Computers, Vol 8, No 3, Special Issue: Parallel
Computing, 2013, pp.541-549

[7] Urgaonkar R., Kozat U.C., Igarashi, et al: ”Dynamic Re-
source Allocation and Power Management in Virtualized
Data Centers”. In: Network Operations and Management
Symposium (NOMS), 2010 IEEE, 2010, pp.479-486

[8] Topaloglu H., Powell W.B: ”A Distributed Decision Mak-
ing Structure for Dynamic Resource Allocation Using
Nonlinear Functional Approximations”. In: Operations Re-
search;53(2):2005, pp.281-297

[9] J.A. Goguen: ”A Categorical Manifesto”. In: Math. Struc.
comput. Sci., 1,1991

[10] M.B. Smyth and G.D. Plotldn: ”The category-theoretic
Solution of Recursive Domain Equations” In: SIAM Journal
of Computing,11,1982,pp.761-783

[11] D.J. Lehmann and M.B. Smyth: ”Algebraic Specification
of Data Types: a Synthetic Approach”. In: Mathematical
Systems Theory, 14,1981,pp.97-139

[12] D.J. Lehmann: ”On the Algebra of Order”. In: Journal of
Computer and System Sciences, 21,1980

[13] J.A. Goguen and RiM. Burstall: ”Some Fundamental Tools
for the Semantics of Computation part 1: Comma Cate-
gories, Colimits, Signatures and Theories”. In: Theoretical
Computer Science, 31,1984,pp.175-209

[14] David C. Rine: ”A Category Theory For Programming
Languages”. In: Mathematical System Theory, New York.
Vol. 7, No. 4,1973, pp.304-317

[15] John C. Reynolds: ”Using Category Theory to Design
Programming Languages”. In: ESOP 2009, LNCS 5502,
Springer-Verlag, Berlin Heidelberg, 2009

[16] Alexandre Buisse, and Peter Dybjeri: ”Towards Formalliz-
ing Categorical Models of Type Theory in Type The-
ory”. In: Electronic Notes in Theoretical Computer Science,
196,2008, pp.137-151

[17] H.Ehrig, M.Grobe-Rhode, and U.Wolter: ”Applications of
Category Theory to the Area of Algebraic Specification
in Computer Science”. In: Applied Categorical Structures,
6,1998, pp.1-35

[18] James A. Altuncher and Prakash Panangaden: ”A Mechan-
ically Assisted Constructive Proof in Category Theory”. In:
Peocedings of the 10th International Conference on Auto-
mated Deduction, (LNCS) Springer-Verlag,1990

[19] D. Kozen, C. Kreitz, E. Richter: ”Automating Proofs in
Category Theory”. In: Proc. Of IJCAR’06, LNCS, vol.4130,
Springer, 2006, pp.392-407

[20] J. L. Fiadeiro, and T. Maibaum: ”A Mathematical Toolbox
for Software Architect”. In: Proc. 8th Int. Workshop on
Software Sepcification and Design. IEEE Computer Science
Press,Silver Springer, MD,1996, pp.44-55

[21] Xiao Yang, Jinkui Hou, and Jiancheng Wan: ”Formal
Semantic Meanings of Architecture-Centric Model Map-
ping”. In: APPT 2007, LNCS 4847,Springer-Verlag Berlin
Heidelberg, 2007, pp.640-649.

[22] J. L. Fiadeiro, and T. Maibaum: ”Categorical Semantics
of Parallel Program Design”. In: Science of Computer
Programming, 28(2-3),1997, pp.111-138

[23] G. Winskel and M. Nielsen: ”Categories in Conurrency”.
In: Semantics and Logics of Computation, Cambridge Uni-
versity Press, 1997, pp. 299-353

[24] R.L. Crole: ”Basic Category Theory for Models of Syn-
tax”. In: course notes for Summer School on Generic
Programming, SSGP’s 2002

[25] M. Lenisa, J. Power and H. Watanabe: ”Category Theory
for Operational Semantics”. In: Theoretical Computer Sci-
ence, vol. 327, 2004, pp.135-154

[26] Weidman E, Page I, Pervin W: ”Explicit dynamic exclu-
sion algorithm”. In: Proc. of the 3rd IEEE Symposium on
Parallel, Distributed Processing, 1991, pp.142-149

[27] K.M. Chandy and J. Misra: ”Parallel Program Design: A
Foundation”. In: Addison-Wesley ,1988

[28] Zhen You, Jinyun Xue, Shi Ying: ”Categorical Semantics
of a Solution to Distributed Dining Philosophers Problem”.
In:FAW 2010, LNCS 6213, 2010, pp.172-184

[29] Jaap van Oosten: ”Basic Category Theory” InBRICS Lec-
ture notes LS-95-1, 1995

[30] José Luiz Fiadeiro: ”Categories for Software Engnieering”.
In: Springer-Verlag, Berlin Heideberg, 2005

[31] Benjamin C. Pierce. ”Basic Category Theory for Computer
Scientists”. In: The MIT Press, Cambridege, MA, 1991

Zhen You is a Ph.D candidate of computer
science from State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, China and a Research Assistant
from Jiangxi Normal University, Nanchang, China. Her current
research interests include concurrent and distributed computing,
and formal verification of software.

Jinyun Xue is a Professor from Jiangxi Normal
University, Nanchang, China and Ph.D supervisor from Wuhan
University, Wuhan, China. He is a senior member of China
Computer Federation. His current research interests include
formal methods and software automation.

3094 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

Shi Ying is a Professor and Ph.D supervisor
from from State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, China. His current research interests
include service-oriented software engineering, the method of
component-based software engineering.

Dongming Jiang is a Ph.D candidate of
computer science from State Key Laboratory of Software Engi-
neering, Wuhan University, Wuhan, China. His current research
interests include service-oriented computing.

Qimin Hu is associate professor from Jiangxi
Normal University, Nanchang, China. His current research in-
terests include Software components and architecture.

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3095

© 2013 ACADEMY PUBLISHER

