
Design and Implementation of a Flexible
Workflow Management System

Yubin Guo
College of Informatics, South China Agricultural University, Guangzhou, 510642 China

Email: guoyubin@scau.edu.cn

Zeye Cai 1, Zewei Lin 1, Ximing Li 1, 2*

1College of Informatics, South China Agricultural University, Guangzhou, 510642 China
2Department of Computer Science, Ben Gurion University of the Negev, Beer-Sheva, 84105 Israel

 zycai, zwlin@scau.edu.cn, ximing@post.bgu.ac.il

Abstract—In modern society, flexible workflow is necessary
for enterprises which will enable them to keep up with
market variations and new technologies quickly, and to
improve the whole efficiency of the enterprise. Firstly, this
paper presents a formal application model of flexible
process for Flexible Workflow Management System (or
FWMS in short). Then, we describe the prototype in detail
and give the architecture and functional modules of it.
Moreover, the prototype is implemented practically with
Struts, Hibernate software framework as a web application.
We also give a flexible homework assignment system as a
application of the prototype system which can support
personalized homework assignments and communications.

Index Terms—Flexible workflow system, work program,
Business Process

I. INTRODUCTION
Flexible workflow management technology is one of

the core technologies to fasten information system
development in distributed and dynamical environments.
It enables enterprises to deal with changes of workflow
definitions resulting from variations of market, new
technologies and new laws quickly, and to improve entire
efficiency. Recently the need for enhancing flexibility
and the integration of applications in heterogeneous
environments has been a focus in both academy and
industry.

Some representatives in recent researches of the
flexible workflow technology include the ADEPT2
Project [1], the Case Handling Method [2] and
DECLARE [3]. Among them, ADEPT2 focused on the
process structure of dynamic adjustment; the Case
Handling Method was strongly based on data as the

typical product of these processes. And DECLARE is a
proto-type of a WFMS that uses a constraint-based
process modeling language for the development of
declarative models describing loosely-structured
processes. And ADEPT2 and DECLARE [4, 5, 8] have
been gradually put into application. Besides, the
technique of Agent [6] and the rule of ECA [7] have been
introduced to improve the flexibility of workflow system
also. Gang Ye et al. [8] used workflow technology into
testing for improving the automation of spacecraft
software testing. And a core scheduling algorithm was
implemented and analyzed in their dedicated workflow
engine. Deadline Guarantee Enhanced Scheduling of
Scientific Workflow Applications in Grid is discussed in
[9]. M. Reichert and J. J. Li have given some
comparisons of many kinds of research methods
respectively [10], [11], both of which have drawn a
wonderful conclusion of the Flexible Workflow System’s
theoretical research and implementation methods.

Comparatively, nowadays studies on theory of Flexible
Workflow are much more than the researches on
implementation. Works are rare on how to design and
implement a flexible workflow management system using
modern design patterns and software architectures. In this
paper, definition of a relatively universal flexible
workflow model is given at first. And then a
corresponding model, Flexible Work Process Model
(FWPM, in short) is defined for implementation. Based
on FWPM, system design and implementation of a
prototype system is presented. And an application
example, the Homework Management System, is given to
illustrate that the design is in practice. This is a personal
homework management system, homework can be
assigned personally, and communications can be added
by related teachers and students when certain homework
is being processed.

The paper is organized as follows: Section 2 introduces
preliminaries and the flexible workflow model. Section 3
proposes architecture of the flexible workflow
management system, FWMS in short, and key techniques
of implementation; Section 4 illustrates usability of the
design by an application, a homework management

Manuscript received April 1, 2013; revised June 4, 2013; accepted
July 1, 2013.

This work was partially supported by GuangDong Province
Undergraduates innovating projects (1056411054). National Science
Foundation (61103232, 61272402, 61202294), Guangdong Science
Technology Plan Project (2011B090400325) and Guangdong Province
Nature Science Foundation(10351806001000000,
10151064201000028).

Contact author: ximing@post.bgu.ac.il (Li Ximing)

3060 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.12.3060-3065

system. And Section 5 concludes and puts forward future
works.

II. PRELIMINARIES AND FLEXIBLE WORK PROCESS
MODEL

Flexibility of workflow means the dynamic generation
and modification on definition of process instances
during execution. Meanwhile, process instances can be
abstracted into templates for the coming processes with
similar pattern. In this section, a universal concept of
workflow model, process, is introduced at first, and the
Flexible Work Process Model is defined for
implementation accordingly. For more details on the
definition of process, readers are referred to reference
[12].

Definition 1 (Process) a process is a 3-tuple P= (A, <,
⊿) with:

(1) A is a set of activities and processes.
(2) < serves as the sequence relation among activities

and processes. To ∀ a1, a2∈A, a1< a2 means a1 must be
executed before a2. It is a partial relation describing
executing order of elements in A.

(3) ⊿ is a selection on A. There exists a selective
predicate ⊿(a1, a2), and if the predicate is true, activity a1
will be executed, else activity a2 will be carried out.

In Definition 1, only two relation, sequence and
selection are defined in a process. In general, there are
three types of logic relation among parts of a process
including sequence, concurrency and selection. Two
activities are in concurrency if there is no sequence or
selection relation between them. Two activities can be
executed in any order if they are in concurrency relation.

In Business Process Model and workflow system,
relations between activities can also be defined as
sequence, AND-split, OR-split, AND-Join and OR-Join
etc. It is proved that the two definitions are equivalent
[13].

For convenience to implementation, activity is defined
as node in FWMS, selection and sequence relation among
activities are denoted by arcs from source nodes to
destination nodes. Each process is composed of nodes
and arcs together.

Similar to general workflow system, in FWMS,
activities are basic building blocks in order to construct
processes. Some nodes are weaved together to form a
process according to business logic. Processes can also be
used as blocks, and can be used together with activities
and other processes to construct more complex processes.

In FWMs, both activity and process are in two forms,
templates and instances. Template is static, which is the
definition of activity or process, while instance is a
running and dynamic binding of the template. In FWMS,
Node Template, Node Instance, Process Template and
Process Instance are defined respectively.

Definition 2 (Node Template) Node Template is a 5-
tuple NT=<id, R, ER, P, A, L> with

Id: The overall unique identifier of the node.
R: The set of all possible results of the node, R={Result,

Result …}, with Result ={id, Name, Desc}. In Result, Id is

the overall unique identifier of result while Name serves
as the result name and Desc is description of the result.

ER: The set of roles and users who have the privilege to
modify or execute that node.

P: An entrance to business processing of the activity in
application. That can be a URL of processing page, or a
service call on cloud with proper parameters.

A: Attachment address, the position of the attachment of
the node in the system.

L: Remarks.
Definition 2 presents a formal description of activity

(and process), and it is an equivalent to elements in A in
Definition 1. It shows basic, static information of activity
(and process) in detail. In running stage, it must be
instantiated as instance. In FWMS, node instances
inherent all attributes from their node templates can be
executed and modified when we execute the system.
Definition 3 (Node Instance) Node Instance is a 3-tuple
NI ={id, NT, S, SR }

Id: The overall unique identifier of node.
NT: Template of this node. In NT=<id, R, ER, P, A, L>,

R, ER, and A can be binding to a certain value belong to
set in NT.

S: The state of the task node with S ∈{working,
completed, hung, terminated}.

NI is an instance of Node Template that the system
assigns to the users. It inherits information of Node
Template and includes some instantiation information,
like specific executor, executing time, specific attachment
information and the result of execution. State is a
dynamic concept, in this system, only four states working,
completed, hung, terminated are considered. One NI must
be at one state at a specific time.

Based on the definitions of node template, relation
among nodes, we give the definition of Arc as follows.
Definition 4 (Arc) Arc is a 4-tuple Arc= {id, F, N, C}
with
Id: The overall unique identifier of arc.
F: The id of its source node.
N: The id of its destination node.
C: A logical expression and is the control rule for the

direction of process flow.
Definition 4 is the implementation version of relations

among activities in process in Definition 1. As to
sequence relation, ∀ a1, a2∈A, a1< a2, there is an arc from
a1 to a2 with the condition being set to “true”, that is {idx,
a1, a2, true}. The destination node a2 can be executed
after the source node a1 of the arc is finished.

For selective relation, “condition” C should be set as
selective predicate. For example, let a be the pre-node of
selective predicate ⊿(a, a1), there should be an arc {idy,
a , a1 ,⊿(a, a1)} and another arc {idz, a , a2 , ¬⊿(a, a2)}.
Node a1 can be executed if a is finished and the selective
predicate ⊿(a, a1) is “true”. Similarly, node a2 can be
executed if a is finished and ¬⊿(a, a2) is “true”.

It is noticeable that with the definition of arc, relations,
like multi-choice, concurrent are very simple to be
expressed. Let {idu, a, a1,⊿(a, a1)}, {idv, a , a2 ,⊿(a, a2)},
{idw, a , a3 ,⊿(a, a3)} be 3 arcs, node a1, a2, a3 are multi-

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3061

© 2013 ACADEMY PUBLISHER

choice if more than one condition among ⊿(a, a1), ⊿(a,
a2) and ⊿(a, a3) can be set to true at a certain time. Node
a1, a2, a3 are concurrent if conditions ⊿(a, a1), ⊿(a, a2)
and ⊿(a, a3) are set to “true”.

FWPM uses arcs to record the relationship between
nodes so as to guarantee independence of nodes, and
contributes to convenience of modification of the work
process structure. As to node template and node instance,
relationship between two node templates are similar to
the node instances instantiated from them. That is the
reason why template and instance of arc not necessary to
be defined separately.

With nodes and arcs, process can be defined as follows.
Definition 5 (Process Template) Process Template is a
3-tuple PT={Id, AC, AN, Desc} with

Id: The overall unique identifier of process template.
AC: The set of arcs that the process contains.
AN: The set of node templates that the process contains.
Desc: Description of the process template.
Process Template is a static structure that contains

node templates, relationships among nodes and the
description information of process. Process Instance is a
dynamic concept that is a certain binding of a template.
When a process instance is running, some node templates
must be instantiated. In FWMS, a process instance may
contain template nodes which are going to be executed.
Instance nodes that have been finished or in execution in
a certain state belong to the state set {working, completed,
hung, terminated}.
Definition 6 (Process Instance) Process Instance is a 3-
tuple PI={Id, PT, S} with

Id: The overall unique identifier of process template.
PT: Process Template of PI.
S: The executive state of the process, with State

∈{Initializing, working, completed, hung, terminated}
When being initialized, process Instance PI is set to its’

process template PT. And then, proper nodes are chosen

to be initialized and executed. The state of PI comes from
state of its initialized activities. When some activities are
working, the PI is working. When all activities are
finished the PI is completed. Similarly, when one of its
activities is in hung or terminated state, the PI is in hung
or terminated state.

Example 1 gives the process of homework assignment.
Process template and a certain Process Instance of it are
illustrated in Figure 1.

Example1. Figure 1 provides a process of the teacher’s
homework assignment, in which diagram 1 (a) gives the
process template while diagram 1(b) serves as an instance
of (a). In general, a teacher must write homework
requirements in detail and assign it to a certain group of
students and notify them. And students must be added
into the course if they are not in. Therefore the process
template of homework assignment includes six steps. But
as to a certain homework assignment, not all the steps are
necessary. In the instance illustrated in Diagram 1(b),
“adding students” is neglected because the students of
“class SE01 Grade 07” have existed in the system. Then,
activities ‘Notify students’ and ‘correct homeworks’ are
initialized and executed. When correcting homework of
students, the teacher finds that some files cannot open
properly, so that he (or she) adds new steps temporarily to
notify related students, and corrects their homework
again. This process is flexible because teacher can add
steps temporarily when the process instance is running.
Similarly, students can add proper steps when they do
their homework, for example, asking for more materials
from teacher before submitting their homework,
exchanging information with other students. This kind of
variation is on process instance without reflecting on
template of the process. That is the reason why we define
template of process, activity and instance of process,
activity separately.

Figure 1. Process of Homework Assignment

3062 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

III. SYSTEM ARCHITECTURE OF FLEXIBLE WORK
PROCESS MANAGEMENT SYSTEM

In this section, system architecture of FWMS is
presented, and then the flexible strategy is given.

A. System Architecture of FWMS
FWMS includes four components—work node

manager, work process manager, user’s task manager and
the work process executor, as shown in Figure 2. For
each component, function and principle of
implementation are presents as follows.
(1) Work Node manager. Work node is the basic
component of work process, and it is equivalent to Node
Template in Definition 2. All work nodes are stored in
nodes database with proper classification. Different
applications have variant types of work nodes. FWMS
offers general node templates and supports users to
design new node templates according to their application
logic. A certain application where the set of work node
are all business activities can be done in the application.
Business process means weaving them together according
to the business logic.

Figure 2. FWPM System Structure

As to software design, each work node is implemented
by a URL of processing web page, a service call or other
forms of procedure call. All those work nodes must be
prepared before they are used in work processes, while

work node manager offers management functions of
template nodes including creating, editing, deleting and
querying of work nodes. Work node manager only
manages template nodes. Instance nodes are managed by
work process executor.

 (2) Work Process Manager Work process manager is
in charge of management of work process templates and
instances, including functions of creating, editing,
deleting and querying of work processes. There is a
graphic process editor used to edit work processes.
Editing action includes selecting proper node templates
from work node database, setting arcs between them to
get a work process template and modifying of work
processes. Work process manager should interact with
process executor, to edit work process instances and
illustrate state of work process instances in graphic mode.
By work process manager, users can abstract process
instances into work process templates when necessary.

 (3) User Manager. With this component, user
management and authorization are managed. User
management includes user verification, login and logout.
Authorization includes management of process and
authorization in business. Management of process means
node, process management. Authorization in business
includes roles management in business, assignment of
tasks to participants, and the participants can be a certain
user or roles (or user groups).

(4) Work Process Executor. Work process executor is
the core of FWMS, as illustrated in Figure 3, includes
eight main components—execution service, task service,
Repository service, management service, history service,
identity service, kernel manager and DAOFactory. All
components are mounted on a common bus named as
ExecutionContext. It is implemented by IOC mechanism
in Spring Framework. All services mounted on
ExecutionContext, interfaces are defined strictly. When
some service is changed (which means implementing
class of the service is modified), only related configure
files in Spring must be updated accordingly.

Figure 3. Framework of work process executor in FWMS

In the work process, executor ExecutionContext which
will be used by the common bus to mount all the services,

must be loaded automatically before all services are
called. ExecutionService provides basic functions of

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3063

© 2013 ACADEMY PUBLISHER

work process execution, including creating, initializing,
push process instances on, and set values for process
variables. RepositoryService is defined for querying,
deleting and deploying of process templates, and is an
interface to call functions in work node manager and
work process manager. TaskService is used for creating,
querying, submitting, storing and deleting of node
instances. It is an interface for business users with proper
authorization to change the running process instance by
adding or deleting some unexecuted nodes.
ManagementService is used to provide state querying of
process. HistoryService is a special interface for querying
on finished process instances, node instances and
variables and so on. IdentifyService is an interface for
user management that is implemented by user manager as
show in Figure 2. KernelManager is a manager to
maintain correctness of process instances execution.
DaoFactory is a tool to stabilize information of process
and node instances into database.
As to software architecture, FWMS is a modeled as a

MVC system. The view level of FWMS is implemented
mostly by JSP+HTML. Users interact with views to login,
acquire his or her task list, accomplish his or her task, edit
work nodes or processes, create process instances and
monitor execution of process instances. EXT JS
framework and mxGraph are used for good user
experience.

The model of FWMS is process template and process
instance. As to management of process templates,
controller is deployed on client to improve users
operations. Most of management of process instance and
work nodes are placed on server side. The controller acts
as the intermediary between view and model. It accepts
inputs of users and interprets them into an operation on
model, and with variation on model, notifies related
views to change aspects of their appearance or behavior.
Users’ Inputs include management of templates of work
nodes and processes, executing and monitoring of process
instances and so on. Most operations can be translated
into operations on model including inserting, deleting,
and updating a record in the database.

The system uses XML to exchange information of
nodes and processes, and adopts DOM4J as the analysis
tool of XML files. The system architecture is
implemented on Spring and Hibernate for connecting
database. Some other design patterns are used also, like
singleton pattern, manager pattern and factory pattern and
so on.

B. The Flexible Strategy in FWMS
Flexibility of workflow means definition of workflow

can be adjusted or changed during execution in order to
adapt to variations of the enterprise. To support flexible
workflow, work process executor needs to provide an
interface for process transforming temporary. There are
two kinds of work process adjusting, modifications on
process templates, or on instances. As to process template
modification, executing instance can choose to be
migrated or not. For instance modification, only the
modified instance is effected, and the change must be on
effect immediately.

In FWMS, both modification on model and instance
are supported. Once a template is changed, a new version
of the template is created. When node transforming
occurs in a certain work process instance, user can choose
to use the new version or old version of its template.

If an instance PI={Id, PT, S} is changed, its work
porcess template PT will be copied into the instance, and
varation on instance only occurrs on its local work
process template, and have no effect on the original
template. The instance continue the execution with the
new local template.

IV. EXPERIMENTS AND ANALYSIS
Traditionally homework management for teachers and

students has only one process. Firstly teachers assign
homework, students submit their answers. Then, teachers
correct students’ answers and students browse the
teacher’s correction. But, sometimes teachers and
students need to do some more communications in order
to complete the process more efficiently. For example,
teacher may want a certain student to submit more
materials when he corrects the student’s homework. Or a
student may want to ask something about certain
homework before or after submitting his answer. To
accomplish such kinds of communication, methods out of
the process are not proper, for coherence of learning.

As an application of FWMS, a flexible homework
management system is designed and implemented. There
are two roles in the system, teacher and student. Template
nodes for teachers are editing homework, assigning
homework to students, adding students into the system,
correcting students’ answer and sending massage to
others. Template nodes for students are browsing
homework, answering homework, browsing correction
and sending massage to others. All the template nodes are
business logic from application, and can be weaved
together to form a homework process. In FWMS, when
homework is assigned, a process instance is Instantiated
from a common process template, as shown in Fig. 1 (a).
As to a certain homework process, both teacher and
student can add additional steps, and all additive steps
can be browsed and acquired in detail for they are belong
to the same process. Figure 4 illustrates a homework
process instance. Figure 4 (a) is teacher’s view for
arranging a new homework. And Figure 4 (b) is a student
view to browse the following steps. The student can add
new operations by click proper operation. For this
homework, the teacher and the student communicate
many times.

V. CONCLUSION
Flexible workflow is more suitable for the dynamic

varying environments of present application system. In
this paper, a Flexible Workflow Management System is
designed and implemented. A formal implementation
model of flexible process is defined at first. Then the
architecture and function modules of prototype system
are presented. A flexible homework assignment system is
given as an application of FWMS.

3064 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

(a) teacher’s view of a new homework assignment

(b) Student’s view after submitting the answer

Figure 4. Modification of work process in execution

Our future work is to improve the functions and
performances of the prototype system. In addition, model
checking of dynamic-creating workflow instance is also a
challenge to us, and may be solved in the near future.

REFERENCES

[1] Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma et
al. From ADEPT to AristaFlow BPM Suite: A Research
Vision Has Become Reality [C]. ERBPM’09 Lecture Notes
in Business Information Processing, 2010, 43(6): 529-531.

[2] Vander Aalst, M. Weske, D. Grunbauer. Case handling: a
new paradigm for business process support [J]. Data &
Knowledge Engineering, 2005 53(2):129-162.

[3] M. Pesic, H. Schonenberg, van der Aalst. DECLARE: Full
Support for Loosely-Structured Processes [C]. EDOC
2007:287-298 Washington, D. C., USA: IEEE Computer
Society, 2007.

[4] W. M. P. van der Aalst, M. Pesic, H. Schonenberg.
Declarative workflows: Balancing between flexibility and
support. CSRD 2009 23:99-113.

[5] A. Lanz, M. Reichert, P. Dadam. Making Business Process
Implementations Flexible and Robust: Error Handling in
the AristaFlow BPM Suite. CAiSE'10 Demos, June 2010,
Hammamet, Tunisia.

[6] M. Reichert, B. Weber. Enabling Flexibility in Process-
Aware Information Systems: Challenges, Methods,
Technologies. Springer, Berlin-Heidelberg. 2012.

[7] J. M. Hu, S. S. Zhang, X.Y. Yu. A Workflow Model Based
on ECA Rules and Activity Decomposition [J]. Journal of
Software, 2002 13(4):0761-0767. (in Chinese).

[8] Gang Ye, Xianjun Li, Dan Yu, Zhongwen Li, Jie Yin .The
Design and Implementation of Workflow Engine for
Spacecraft Automatic Testing JOURNAL OF
COMPUTERS , VOL. 6, NO. 6, JUNE 2011 1145-1151

[9] Chaokun Yan, Huimin Luo, Zhigang Hu, Xi Li, Yanping
Zhang Vol 8, No 4 (2013)842-850 Deadline Guarantee
Enhanced Scheduling of Scientific Workflow Applications
in Grid Abstract PDF

[10] H. Schonenberg, R. Mans, N. Russell et al. Process
flexibility a survey of contemporary approaches[A]. CIAO!
/ EOMAS 2008: 16-30 .

[11] J. J. Li, W. P. Wang, F. Yang. Review on approaches of
flexible workflow [J]. Computer Integrated Manufacturing
Systems 2010 16(8):1569-1578. (In Chinese).

[12] Y. B. Guo. Research on transitional process model and
technologies [D]. Ph. D. Thesis South China University of
Technology. 2007 12. (in Chinese).

[13] J. Cardoso, J. Mendling, G. Neumann, and H.A. Reijers. A
Discourse on Complexity of Process Models. BPM 2006
Workshops, LNCS 4103, pp. 117–128, 2006. Springer-
Verlag Berlin Heidelberg 2006.

Yubin Guo (1973-) Received Ph. D. from South China
University of Technology in 2007. She is now a lecturer in
South China Agricultural University. Her research interests
include Database theory and technology, Workflow technology,
cryptography and network computing.

Zeye Cai (1990-) received bachelor degree in South China
Agricultural University in 2013. He is now a master student in
South China University of Technology. His research interests
include Database theory and technology and Workflow
technology.

Zewei Lin (1990-) received bachelor degree in South China
Agricultural University in 2013. His research interests include
Database theory and technology and Workflow technology.

Ximing Li (1973-) Received Ph.D. degree from College of
Informatics, South China Agricultural University, Guangzhou,
Guangdong, China, in 2011. He is now a PostDoc student in
epartment of Computer Science, Ben Gurion University of the
Negev. His current research interests include computer theory
and cryptography.

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3065

© 2013 ACADEMY PUBLISHER

