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Abstract—Some stochastic optimization methods, such as 
Particle Swarm Optimization Algorithms (PSO) and 
Genetic Algorithms (GA), have been used to solve the color 
image quantization. Differential Evolution Algorithm (DE) 
is one of the powerful stochastic optimization methods. Few 
researches have been done for using DE to solve the color 
image quantization. This paper proposes a DE-based color 
image quantization algorithm. In the proposed algorithm, a 
better colormap is designed by using DE to update some 
randomly initialized candidate colormaps. Numerical 
experiments are conducted on a set of commonly used test 
images. The experimental results show that the proposed 
algorithm is practicable, and it has better performance than 
the color image quantization algorithm using PSO. 
 
Index Terms—Color Image Quantization, Differential 
Evolution, Particle Swarm Optimization 

I.  INTRODUCTION 

Color image quantization, one of the common image 
processing techniques, is the process of reducing the 
number of colors presented in a color image with less 
distortion [1]. The main purpose of color quantization is 
reducing the use of storage media and accelerating image 
sending time [2]. Color image quantization consists of 
two essential phases. The first one is to design a colormap 
with a set of colors (typically 8-256 colors [3, 4]), which 
is smaller than the set of a color image. The second one is 
to map each pixel of the color image to one color in the 
colormap. Most of color quantization methods focus on 
creating a colormap. To address this problem, researchers 
have applied several stochastic optimization methods, 
such as GA and PSO. Especially, literaure [5]-[8] have 
compared the color image quantization algorithm using 
PSO (PSO-CIQ) and several other well-known color 
image quantization methods. The experimental results 
show that PSO-CIQ has higher performance. 

Differential evolution (DE) [9-11] is a population-
based heuristic search approach. DE has been applied to 
the classification for gray images [12]-[14]. In literature 
[12]-[14], DE and PSO show similar performance. 
However, due to simple operation, litter parameters and 
fast convergence, DE is the better choice to use than PSO 
[12]. However, few researches have been done for using 
DE to solve the color image quantization. This paper 
proposes a DE-based color image quantization algorithm. 
The proposed algorithm starts with an initialized 
population, in which each individual represents a 
candidate colormap. Then each individual (candidate 
colormap) is repeatedly updated by mutation, crossover 
and selection operations of DE until a given stopping 
condition is satisfied. The solution obtained by the above 
operations is the last colormap, by which the quantized 
image is generated. By some commonly used color 
images, the performance of the proposed algorithm is 
compared with that of the color image quantization 
approach using PSO. 

This paper is organized as follows. Section 2 
introduces the classical DE algorithm. In section 3, the 
DE-based color image quantization algorithm is proposed. 
In section 4, numerical experiments are given to compare 
the quantization quality of the proposed algorithm and the 
color image quantization algorithm using PSO. Section 5 
concludes this paper.  

II. CLASSICAL DIFFERENTIAL EVOLUTION  

The classical DE is a powerful stochastic global 
optimization algorithm. It regenerates a population 
through executing some simple arithmetic operations 
such as mutation, crossover and selection. Here the 
classical DE will be introduced. For the convenience of 
introduction, some symbols used throughout this paper 
are defined. 
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 ( )g x : Objective function or fitness function  
 D :  Dimension of  an optimization problem 
 NP :  Population size 
 { }1 2, , , NPX x x x= :  Population 
 1 2( , , , )j j j j

Dx x x x= :  thj individual in the population X , 
1, 2, ,j NP=  
 F : Scaling factor  
 CR : Crossover rate 

 
Consider the following optimization problem: 
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∏ is the feasible domain of 

this problem. 
For solving the optimization problem, an initial 

population is sampled in the feasible domain randomly. 
Set  

{ }1 2, , , NPX x x x=  
is a population with NP individuals. Each individual is D -
dimensional, and we denote the j -th one as 

1 2( , , , )j j j j
Dx x x x= , 1, 2, ,j NP= . 

To obtain the optimum solution of the problem, the 
classical DE works through a simple cycle of operators 
including the following mutation, crossover and selection 
operations.  
a) Mutation 

For each individual jx ,  DE creates a donor vector jy  
by using the following mutation operator. 

 
31 2

1 2

1 2

( , , , ) ( ), 1, 2, , ,

, ( )
, ( ) , 1, 2, , , 1, 2, , ,
,

( , , , ) , 1, 2, , .

rr rj j j j
D

j
i i i

j j
i i i i

j
i

j j j j
D

u u u u x F x x j NP

L if u L
y U if u U i D j NP

u otherwise

y y y y j NP

⎧ = = + ⋅ − =
⎪

⎧ <⎪
⎪⎪ = > = =⎨ ⎨

⎪ ⎪
⎩⎪

⎪ = =⎩

 

(1) 
 

Here 1 2 3, ,r r r  are three different integers randomly 
obtained on [1, ]NP . The scaling factor, F , is a empirical 
parameter belong on [0,1] .  
b) Crossover 

For each individual jx , do 
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(2) 
 

Here a trial vector jz  is generated for the individual jx  
by a random value irand  on [0,1] . CR , a crossover rate, is 
a empirical parameter on [0,1] . jrnbr , a random integer on 
[1, ]D , is used to assure that at least one component of 

jz is taken from the donor vector. 

c) Selection 
Finally, for each individual jx , the following section 

operator is employed to maintain the most promising 
individual in the next generation.  
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Here jx ′  represents the updated individual according to 
the fitness values of ( )g x  for the next generation 
population { }1 2, , , NPX x x x′ ′ ′′ = . 

As stated above, for obtaining the best solution of the 
fitness function ( )g x , DE starts with a randomly generated 
initial population and then repeatedly updates the 
population by using the mutation, crossover and selection 
operations until the stopping condition is satisfied. 

III.  THE DE-BASED COLOR IMAGE QUANTIZATION 
ALGORITHM (DE-CIQ) 

In the RGB color space 3[0, 255] , a color image is a set 
of some color pixels consisting of red, green and blue 
values, which determine the color of these pixels. Set I  
is a color image with N  different colors, and S  is the 
collection of the N  different colors. For the problem of 
color quantization, the first phase is to determine 
K different colors in 3[0, 255] , where K N< . The collection 
S ′  of this K colors is called a colormap. The second 
phase is to create a map :f S S ′→ , by which each color 
pixel in S is replaced by one of the colors in S ′ . Thus a 
new color image I ′ , called the quantized image of I , is 
constructed. In the image S ′ , there are K colors. 
Commonly, the corresponding rule in the map f is the 
minimum Euclidean distance between two colors. 

The objective to quantize the color image I is to 
minimize the color error between the color image I and 
its quantized image I ′ . The mean square error (MSE) is 
the most general measure of quality of a quantized image 
[4]. It is defined as follows:  

  

                        
11

1= { [min ( , )]}
pN K

r kkrp

MSE d p c
N ==

∑ ,                      (4) 

 
where the symbols used in Eq.(4) are explained as 
follows.  

pN :  the number of image pixels 

K :   the color number  in the colormap  

1 2 3( , , )r r r rp p p p= :  the thr  pixel of the color image I , 
1, 2, , pr N=  

kc :  the thk color triple in the colormap, 1, 2, ,k K=     

Shown in the above two phases of color quantization 
problem, a better colormap could improve the quality of a 
quantized image. Some heuristic techniques, including 
some pre-clustering approaches and some post-clustering 
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approaches, have been applied to design colormaps. 
Among these techniques, the post-clustering approaches 
are superior to the pre-clustering approaches in the 
quantization quality. Post-clustering approaches perform 
clustering of the color space [15]. Post-clustering 
algorithms start with a randomly given colormap 
including K colors. Then each color pixel of the image I  
is mapped to a color in the colormap according to their 
color similarity. Thus all the color pixels in image I are 
clustered into K clusters which centers are separately the 
K colors in the colormap. Iteratively, the colormap and 
the K clusters are adjusted. Post-clustering algorithms are 
different in their iterative process. This section presents a 
new post-clustering color image quantization approach 
using DE, called the DE-based color image quantization 
algorithm (DE-CIQ), in which the classical DE 
introduced in section 2 is used.  

 
 

Input color image { }I z=  
 
Set parameters NP ,  F , CR , maxt  

0  (0,1) 255j
ix rand= ⋅， , 1, 2, ,i D=  

,0 ,0 ,0 ,0
1 2( , , , )j j j j

Dx x x x= , j 1, 2, , NP=  
                                        //population initialization 

for 0t = to maxt  
for j 1, 2, , NP=  

(1, )jrnbr rand D=  
31 2 ,, ,, ( )r tr t r tj tu x F x x= + ⋅ −  

for 1, 2, ,i D=  
if , 0j t

iu <  then , 0j t
iy =  

else if , 255j t
iu >  then , 255j t

iy =  
else , ,j t j t

i iy u=  
end if 

end if                                              //mutation 
(0,1)irand rand=  

if irand CR≤ or ji rnbr=  then , ,j t j t
i iz y=  

else , ,j t j t
i iz x=                                    //crossover 

, , , ,
1 2( , , , )j t j t j t j t

Dz z z z=   
Calculate ,( )j tg x and ,( )j tg z  
if , ,( ) ( )j t j tg x g z>  then , 1 ,j t j tx z+ =  
else , 1 ,j t j tx x+ =                                        //selection 
 

Find the optimal solution
1 2( , , , )best best best best

Dx x x x=  
Output the optimal colormap 1 2{ , , , }Kc c c , 

1 3( 1) 2 3( 1) 3 3( 1)
( , , )

k k k

best best best
kc x x x

+ − + − + −
= , 1, 2, ,k K=  

 
Construct the quantized image I ′  

Figure 1.   The pseudocode of the DE-CIQ algorithm 

In the DE-CIQ algorithm, the fitness function is as 
follows: 

11

3
2

3( 1)11 1

( ) = ( )

1= { [min ( , )]}

1= { [min ( ) ]} .

p

k

p

N K

rkrp

N K

rq q kkr qp

g x MSE x

d p c
N

p x
N

==

+ −== =

−

∑

∑ ∑

         (5) 

Where 3
1 2( , , , ) [0, 255] K

Dx x x x ×= ∈ .  
A population { }1 2, , , NPX x x x=  represents a set of 

candidate colormaps. Each individual represents a 
candidate colormap with K  color triples in the RGB 
color space 3[0, 255] , that is, the dimension of each 
individual is 3D K= × . The thj individual is denoted by 

1 2 1 2 3 4 5 6 3 2 3 1 3( , , , ) ( , , , , , , , , )j j j j j j j j j j j j j
K K K Kx c c c x x x x x x x x x− −= = ， ,  

j 1, 2, , NP=  , 
where 1 3( 1) 2 3( 1) 3 3( 1)( , , )j j j j

k k k kc x x x+ − + − + −= , 1, 2, ,k K= .  
In the performance of the DE-CIQ algorithm, a 

population including NP  candidate colormaps are 
randomly initialized in the color space 3[0, 255] . Then the 
population is updated by the mutation, crossover and 
selection operations in DE. During the selection operation, 
some better colormaps are determined by the values of 
the fitness function in Eq.(5). The mutation, crossover 
and selection operations are repeated until a specified 
maximal number of iteration maxt . The optimal solution 
obtained by DE is the optimal colormap. Finally, 
according to the minimal color distance rule, the color of 
each pixel in the image I  is replaced with its 
corresponding color in the optimal colormap. And the 
quantized image of I  is reconstructed. 

The pseudocode of the DE-CIQ algorithm is shown in 
Figure 1. 

IV.  NUMERICAL EXPERIMENTS 

In this section, the DE-CIQ algorithm is tested on a set 
of four commonly used test images in the quantization 
literature. In addition, the performance of the DE-CIQ 
algorithm is compared with that of the color image 
quantization algorithm using PSO (PSO-CIQ) presented 
in literature [5].   

A.  Images and Parameters Set 
The set of test images include Lena, Peppers, Baboon 

and Airplane, which have the same size 512 512× pixels. 
They are shown in Figure 2. 

The parameters in the DE-CIQ algorithm are set as 
the population size 100NP = , the scaling factor 0.4F = , 
the crossover rate 0.7CR = and the maximal number of 
iteration max 200t = . The values of F and CR are suggested 
by literature [13], in which the classical DE is applied to 
solve the image binarization. 

The PSO-CIQ algorithm has more parameters than 
the DE-CIQ algorithm. Suppose the swarm size 100NP = , 
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a-1) Peppers original image                   a-2) DE-CIQ (MSE=29.3859)                 a-3) PSO-CIQ (MSE=36.3436) 

 
 

     
b-1) Baboon original image                   b-2) DE-CIQ (MSE=33.0359)                 b-3) PSO-CIQ (MSE=35.8892) 

 

 

     
c-1) Lena original image                     c-2) DE-CIQ (MSE=23.6634)                 c-3) PSO-CIQ (MSE=29.6644) 

 
 

     
d-1) Airplane original image                   d-2) DE-CIQ (MSE=17.7342)                 d-3) PSO-CIQ (MSE=21.3540) 

Figure 2.  The quantized images obtained by DE-CIQ and PSO-CIQ ( =16K ) 
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TABLE Ⅰ.  

MSEs RESULTING FROM DE-CIQ AND PSO-CIQ 

Alg. 
=16K  =32K  =64K  

DE-CIQ PSO-CIQ diff DE-CIQ PSO-CIQ diff DE-CIQ PSO-CIQ diff 

Peppers          

min 29.3859 36.3436  25.6201 31.2216  22.3553 25.9479  

max 32.4772 40.9532  27.6566 34.1909  23.7204 28.1259  

average 30.5839 38.2374 7.6535 26.9611 32.5946 5.6335 23.0299 27.1976 4.1677 

Baboon          

min 33.0359 35.8892  27.1708 29.8687  24.1160 25.9415  

max 34.8839 41.9940  29.681 32.8485  25.5325 27.2513  

average 33.8430 38.6166 4.7736 28.7939 31.6166 2.8227 25.0039 26.5373 1.5334 

Lena          

min 23.6634 29.6644  22.2463 26.2454  19.4587 21.7606  

max 27.0157 34.5867  24.0410 28.9036  20.8881 24.5253  

average 25.5068 32.5824 7.0756 23.0439 27.6132 4.5693 20.1177 23.4568 3.3391 

Airplane          

min 17.7342 21.3540  14.6976 18.3879  13.7173 15.0305  

max 19.9349 24.3200  17.3456 21.7221  16.0489 16.8403  

average 18.9830 22.7153 3.7323 16.6086 19.4472 2.8386 14.7488 16.4407 1.6919 

* diff  is the difference between the average MSEs of DE-CIQ and PSO-CIQ. 
 

 
Figure 3.   The average MSE variations with the number of iteration of DE-CIQ and PSO-CIQ  
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the inertia weight 0.72ω = , the acceleration constants 
1 2 1.49c c= = , the maximum velocity max 0.4V = , the 

maximal number of iteration max 200t = . These parameters 
except for the last one are as same as those in the 
literature [5]. 

B.  Experimental Results 
For each algorithm, the test images are quantized into 

16, 32, 64 colors. The 16 colors quantized images with 
the smallest MSEs over 10 simulations are shown in 
Figure 2. The smallest, the largest and the average MSEs 
over 10 simulations are listed in TABLE I. The Figure 3 
shows the evolution landscapes of the average MSE. 

C.  Analysis of Experimental Results 
As shown in Figure 2, the DE-CIQ algorithm 

outperforms the PSO-CIQ algorithm in the visual quality 
of the quantized images for all test images. The 
quantized image a-2, b-2, c-2 and d-2 have richer layers 
and more details than the quantized image a-3, b-3, c-3 
and d-3.  

As illustrated in TABLE I, the DE-CIQ algorithm 
generates a smaller MSEs than the PSO-CIQ algorithm 
for each test image. Moreover, the smaller K is, the 
larger the differences between the MSEs of the two 
algorithms are.  

Shown in Figure 3, the DE-CIQ algorithm has a 
smaller average MSE than the PSO-CIQ algorithm at 
each same number of iteration. Moreover, the average 
MSE resulting from the DE-CIQ algorithm decreases 
more quickly than that resulting from the PSO-CIQ 
algorithm with the increasing number of iteration. 

The above experimental results can be summarized as 
follows:  

 The DE-CIQ algorithm is an effective color image 
quantization method; 

 The DE-CIQ algorithm has the better quantization 
quality than the PSO-CIQ algorithm on the test images 
set; 

 The smaller the color number in a colormap is, the 
better the DE-CIQ algorithm performs than the PSO-CIQ 
algorithm on the test images set; 

 The DE-CIQ algorithm converges more quickly 
than the PSO-CIQ algorithm on the test images set. 

V.  CONCLUSIONS 

This paper presents a novel color image quantization, 
called the DE-based color image quantization algorithm 
(DE-CIQ). Numerical experiments are implemented to 
investigate the performance of the DE-CIQ algorithm, 
and to compare it against the color image quantization 
algorithm using PSO (PSO-CIQ) presented in literature 
[5]. For a set of commonly used test images, the 
experimental results demonstrate the feasibility of the 
DE-CIQ algorithm and its superiority to the PSO-CIQ 
algorithm in the quantization quality. In addition, the 
DE-CIQ algorithm has simpler operation, litter 

parameters and faster convergence than the PSO-CIQ 
algorithm. 
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