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Abstract— The performance of keyword spotting system
suffers severe degradation when the index stage is so fast
that the lattice may lose lots of information to retrieve the
spoken terms. In this paper, we focus on this problem and
present two algorithm: the first one called unconstraint word
graph expansion (UWGE) and the other called dynamic
position specific posterior lattice(D-PSPL). The motivation
of these methods is to keep the pruned hypotheses which
are discarded in the decoding procedure but may contain
correct hypotheses. The proposed approaches is to eliminate
the N-gram language model state limitation of lattice and
reconstruct lattice to unconstrained word graph. On two
Mandarin conversation telephone speech sets, we compare
performance using the two methods with that on traditional
trigram lattice, and our approaches give satisfying perfor-
mance gains over trigram lattice. The experiment results also
show that the D-PSPL algorithm is better than the UWGE
algorithm in high score area.

Index Terms— Spoken Term Detection, Unconstraint Word
Graph Expansion, Dynamic Specific Position Posterior Lat-
tice, N-gram Lattice, Lattice Limitation

I. INTRODUCTION

THE ever growing volume of recorded speech data
collected from telephones, cell phones and internet

conversation etc, poses great challenge for the spoken
language processing technologies. Keyword spotting is a
very important branch of speech recognition, which is the
task of detecting the occurrences of predefined keywords
in the unconstrained audio stream.

The existing work done in keyword spotting can be
categorized under three major approaches. The first ap-
proach is acoustic keyword spotting approach. In this
approach, all words other than the keywords assumed
to be garbage and are represented by garbage models.
The second approach is Large Vocabulary Continuous
Speech Recognition (LVCSR) approach. This approach
requires complete decoding of speech signal and it outputs
a completely decoded sentence [1]. The third approach
of keyword spotting is a state-of-the-art approach making
use of lattice (word graph) which contains alternate can-
didates of the decoding result. Keyword spotting uses the
search in lattice and outputs whether a keyword is present
in a signal or not. In this paper, we use syllable lattice in
our system to search the spoken terms which has the high
recall rate of the hypotheses than the word lattice [2].

Facing the challenge of huge mount of data, the key-
word spotting system must be able to access the audio as

fast as possible. However, the performance of the system
severely suffers from a very high missing rate which leads
to a serious performance degradation when the system
speed is tuned to so fast as 0.36xReal-Time (RT) or more.
In this paper, we consider the problem of the recall rate
and propose two approaches the first algorithm named
unconstrained word graph expansion (UWGE) and the
other called dynamic position specific posterior lattice(D-
PSPL). The motivation of these two methods is to rebuild
the N-gram lattice into another form: unconstrained word
graph or dynamic specific position posterior lattice. We
eliminate the language model limitation of N-gram lattice
and can retain most of the hypotheses generated in the
decoding procedure, some of which may be pruned owing
to the inherent limitations of the N-gram lattice generation
algorithm. Our experiment results show that there are
improvements in both figure of merit (FOM) score and
equal error rate (EER) score.

The rest of the paper is organized as follows: In
Section 2, we will discuss the motivation of this work; In
Section 3, we will introduce the system architecture; In
Section 4, we discuss the lattice generation algorithm and
baseline keyword spotting paradigm; Section 5 describes
the limitation of the N-gram lattice and UWGE method
in detail; Section 6 describes the D-pspl method in detail;
Experimental results are presented in Section 7, followed
by conclusions in Section 8.

II. THE MOTIVATION OF THIS WORK

The Relationship of the Decoder Speed And the Per-
formance

In the actual speech retrieval applications, we often
need to handle vast amounts of multimedia data, so
the system has high speed requirements. However, we
adjust the beam width of the recoginition decoder to
accelerate the speed of index, when the speed is tuned to
faster the performance of the system will decline rapidly,.
The reason for this is that the number of hypotheses
will decrease when the speed of decoder is tuned fast.
And the recall rate will also decrase which leads to the
performance degradation.

A. The Hypotheses in the Word Graph

In the searching space of the recogntion decoder, all
the hypotheses have existed. When the decoder execute
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Figure 1. The Searching Space and The Activated Hypotheses

the decoding procedure, the token passing algorithm will
activate a parts of the hypotheses, and these hypotheses
are connected to form the path. There is prune strategy in
the decoding procedure to ensure the speed of decoding.
Some path will be erase from the token stack, and the
paths will be removed from the word graph. However, the
removed paths may contain correct hypotheses. When the
searching beam is big enough, the word graph may con-
tain more paths, as a result, it may contain more correct
hypotheses. On the contrary, when the searching beam is
tuned small to improve the speed of the decoder, many
paths will be removed during the decoding procedure and
the final word graph may contain less correct hypothess
leading to the degradation of the recall rate.

As shown in Fig 1, the biggest circle represents the
whole searching space in which all hypotheses exist.
During the decoding procedure, some hypotheses are
activated as shown in the medium circle. After the prune
procedure is executed, some hypotheses is romoved from
the final graph as shown in the smallest circle. In the next
section, we will discuss the reason for this.

III. SYSTEM ARCHITECTURE

Fig. 2 shows the overall architecture of our system for
Mandarin spoken term detection. There are two stages in
the system:

At the index stage, the audio is fed into a large
vocabulary continuous speech recognizer (LVCSR) [3],
which outputs syllable lattices and we convert the lattices
to index [4].

At the search stage, all the query terms are turned into
syllable form, and hits of all query terms are retrieved
from the inverted index. The ranker computes confidence
measurement scores, and a result presentation module
creates output result list with every hit’s position and
score.
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Figure 2. The Searching Space and The Activated Hypotheses

IV. REVIEW OF THE LATTICE BASED KEYWORD
SPOTTING

In this section, we will introduce the lattice generation
algorithm and the base idea of the lattice based keyword
spotting.

A. Lattice generation

The purpose of lattice indexing is to retain alter-
native candidates that the recognizer also considered,
with their associated probabilities. As the production
of Viterbi search of a recognizer, a lattice is a is a
weighted directed acyclic graph (DAG) [5]. It is defined
as G = {V, E ,W,L,vstart, vend} where arcs E represent
the syllable hypotheses with recognizer weight W and
ID L, and nodes V are the connections between them,
encoding times and N-gram language model state. vstart
and vend ∈ V are the unique initial and final node [6],
respectively.

During the decoding procedure, each hypothesis is an
N+1 tuple (u, v, .., s; t) which means the current s is a
hypothesis ended at time t and its N-1 hypotheses’ N-
gram history is (u, v...) [6]. The lattice records the pair
of each hypothesis’ time boundary and language model
state. For every pair, the lattice will create a node to
represent the time and language state and create a arc
for the hypothesis defined on this pair. Then the lattice
connects the arc to its start and end node. To remain the
lattice’s graph structure, the dead paths will be erased
from the lattice [7].

B. Lattice based keyword spotting

Given a query Q we decompose it into a sequence of
syllable units,{sj , j = 1, 2, ...Q}. Thus we search the
N-gram {s1, s2, ...sQ} in the lattice, and calculate the
confidence measurement of the N-gram [8]. Given the
syllable s which has the start node vs and end node ve,
the recognizer score of a hypothesis is used as the arc
weigh:

qvs,s,ve = p
1
λ (O(tvs ...tve)|vs, s, ve).P (s|vs) (1)

where p(O(tvs ...tve)|vs, s, ve) is the likelihood for acous-
tic observation O(tvs ...tve) given hypothesis s, its time
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boundary (ts, te), and its cross-word triphone context
(vs, ve). P (s|vs) is the language-model (LM) probability
of the hypothesis s to follow its LM history (encoded in
vs). λ is the LM weight which is used to adjust acoustic
likelihood and LM probability. When we search for the
spoken terms, we use word posterior probability to repre-
sent the confidence measurement of the occurrences [9].
It is defined over paths, and ∗-ts-s-te-∗ denotes the set
of paths which contain s with boundaries ts and te. To
compute it, we sum all nodes (vs, ve) with given time
points (ts, te):

P (∗-ts-s-te-∗|O) =
∑

(vs,ve):
tvs=ts∧tve=te

P (∗-vs-s-ve-∗|O) (2)

Where the arc posterior P (∗-vs-s-ve- ∗ |O) is computed
as:

P (∗-vs-s-ve- ∗ |O) =
αvs ·qvs,s,ve ·βve

βenter
(3)

and the forward probability αvs and backward proba-
bility βve represent the sum over all paths from sen-
tence start venter to vs and ve to sentence end vexit,
respectively. They can be computed conveniently with
the forward-backward recursion [10]. βventer is the total
probability over all paths [11]. So, the probability of the
spoken terms can be computed as:

P (Q|O) =
∑

si∈Term
P (∗-vsi -si-vvei -∗) (4)

Where the Q’s probability P (Q|O) is computed by sum-
ming over m-arc paths with the given time boundaries ts
and te [2].

V. UNCONDITIONED WORD GRAPH EXTENSION
ALGIRITHM

In this section, we will discuss the limitation of the N-
gram lattice generation algorithm and propose our method
to overcome the limitation.

A. The limitation of N-gram lattice

In the N-gram lattice, there must be at least one
path starting from the initial node venter and ending at
the exit node vexit for each node in the lattice. This
property of graph reachability ensures that the lattice is a
fine graph structure which could be implemented by the
forward-backward algorithm [12]. However, on the other
hand, it makes the lattice unable to preserve the dead paths
which means the paths can not not be expanded. There
will be no paths passing through from the last node ve
of the dead path to the end node vexit if the dead path
stays in the lattice, so they are cleaned from the lattice
with the risk of information loss.

Meanwhile, due to the limitation of the N-gram model
, each hypothesis is an N+1 tuple (u, v, .., s; t). When
the pruning happens, this N+1 tuple will be pruned from
the lattice. However, the influence of path prune is a bit
too long, and it affects not only the last hypothesis but
also a series of hypotheses before it. As a result, plenty of

hypotheses are pruned just because of their dead successor
arcs in the N-gram lattice.

When the speed of system is slow, the N-gram lattice
could be large enough to keep the information for spoken
term detection, but when the speed is fast there may be
few paths kept in the structure and the performance is near
to that of the STT (speech-to-text) script with confidence
measurement produced by the decoder directly [13].

B. The unconstrained word graph expansion algorithm

According to the limitation of N-gram lattice, we hope
to keep most information from the decoding procedure by
adjusting the lattice generation algorithm. The purpose is
to ensure that here will be a short influence when the path
pruning occurs, and the key is to eliminate the limitation
of the N-gram language model.

The proposed UWGE algorithm is the approach to
eliminate language model state on the nodes, which means
∀v∈V encodes time only. This approach is used only in
index stage to change the structure of lattice and does not
affect the search stage. We connect the arcs with same
time boundaries to the same nodes and do not consider
the history information, so when path pruning happens,
the arcs before the pruned hypothesis will not be pruned
due to the independent relationship with the hypothesis.
The difference between constrained word graph and N-
gram lattice is only the definition of the node, and the
unconstrained word graph remains a weighted directed
acyclic graph (DAG) and suitable for forward-backward
algorithm to compute the posterior of every arc. The
probability computation of the spoken terms is still the
same as the N-gram lattice as shown in Eq (4).

As shown in Fig. 3, there is a comparison of the pruned
path processing method between the trigram lattice and
unconstrained word graph. Panel (a) shows that the dead
path in the rectangular filled with lined spots will discard
the last N-1 arcs before the dead end node v according to
the N-gram limitation. On the contrary, Panel (b) shows
the unconstrained word graph structure will discard only
the last hypothesis. After the UWGE process, the lattice is
turned into a sausage-like form and keeps every decoding
hypothesis.

The implementation of our approach is shown in
Algorithm 1, and there are some properties with the
unconstrained word graph:

• There is only one node in every speech frame, and
the node v indicates only the time of the hypotheses.
The nodes are used to record the time boundaries
of the arcs. The hypotheses can be preserved in
the unconstrained word graph structure since that
they will not be pruned due to their dead successor
hypothesis.

• The unconstrained word graph generation algorithm
will not affect the time of index stage, for the reason
that it is only to reconstruct the graph structure.

• There is no need to change the search strategy since
the unconstrained word graph is still the structure
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(a) Trigram Lat. Prune Strategy

(b) UWGE Lat. Prune Strategy

Figure 3. Comparison of Prune Strategy

Algorithm 1 unconstrained word graph generation algo-
rithm

1: Create a node on current time frame t
2: On each frame, we consider all of the N+1 tu-

ple (u, v, .., s; t) and keep the start time boundary
τ(u, v, ..., s; t)

3: Create an arc e = {S(e), E(e), w(e), l(e)} on the
word graph for each N+1 tuple.
• S(e) and E(e) indicate the start time and end

time of the hypothesis
• w(e) is the weight of the arc as definition of
eq(1)

• l(e) is ID of the hypothesis
4: if ∃e′,S(e′) = n(τ(u, v, ..., s; t)),E(e′) =
n(t),l(e′) = s then

5: merge the e and e′

6: if w(e) < w(e′) then
7: e = e′

8: else
9: retain e

10: end if
11: connect the arc e with start node and end node

• the start node:S(e) = v(τ(u, v, ..., s; t))
• the end node:E(e) = v(t)

12: end if
13: erase the word graph and delete the dead paths [7]

suitable for other algorithms and the speed of index
stage will not be affected.

• The arcs with the same start and end nodes will
be merged together and this may lead to a accurate
loss [12].

VI. DYNAMIC POSITION SPECIFIC POSTERIOR
LATTICE

In this section, we will introduce the base position
specific posterior lattice and our D-PSPL algorithm.

A. Position-Specific Posterior Lattices (PSPL)

The basic idea of PSPL is to calculate the posterior
probability prob of a word W at a specific position
pos in a lattice for a spoken segment d as a tuple
(W,d, pos, prob). Such information is actually hidden in
the lattice L of d since in each path of L we clearly know
each words position. Since it is very likely that more than
one path includes the same word in the same position, we
need to aggregate over all possible paths in a lattice that
include a given word at a given position.

A variation of the standard forward-backward algorithm
can be employed for this computation. The forward prob-
ability mass α(W, t) accumulated up to a given time t at
the last word W needs to be split according to the length
l measured in the number of words:

α(W, t, l) =
∑
π

P (π) (5)

where π is a partial path in the lattice, the t means
the hypothesis ends at time t and l represent the hypoth-
esis contains l words. The backward probability β(W, t)
retains the original definition.

The position specific posterior probability for the word
W being the lth word in the lattice is then:

P (W, l|L) =
∑
t

α(W, t, l)β(W, t)

βstart
Adj(W, t) (6)

where βstart is the sum of all path scores in the
lattice, and Adj(W, t) consists of some necessary terms
for probability adjustment, such as the removal of the
duplicated acoustic model scores on W and the addition
of missing language model scores around W. In this
paper, we regard the tuples (W,d, pos, prob) for a specific
spoken segment d and position pos as a cluster, which
in turn includes several words along with their posterior
probabilities.

B. Basic Construction Units

The construction of PSPL is based on paths in a
lattice. We first enumerate all the paths in the lattice, each
with its own length (counted in words) and path weights
as combined language and acoustic model scores. The
posterior probability of a given word at a given position is
then computed by aggregating all the path weights, where
the paths include the given word at the given position, as
the numerator and then divided by the sum of all the
path weights in the lattice. The algorithm of PSPL is an
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efficient way to accomplish this. We thus regard the words
in each position. It is clear that the reason for the words
being in the kth cluster is that there exist some paths
carrying those words as the kth word in the paths.

C. Posterior Probabilities and Number of Clusters

In PSPL we assign a posterior probability prob to a
word W in the kth cluster as the ratio of the sum of
weights of those paths carrying W as the kth word to the
sum of all path weights in the lattice.

If we have K clusters in the PSPL structure, all we
can say is that the longest paths (counted in words) in
the lattice have K words, thus usually K is much larger
than the real number of words.

D. The Motivation of Dynamic Position Specific Posterior
Lattice Algorithm

In Sec. 5, we have discussed the UWGE algorithm
which keep all the paths in the unconditioned word graph.
But the confidence measurement in the graph is not
accurate and this will lead to the degradation in the high
score area. So we propose another algorithm based on the
PSPL structure. We observed that the decoding procedure
has the some same property as the PSPL. The PSPL
algorithm considers only the position of the hypothesis
in the path and do not need the time boundary. In the
decoding procedure, when a hypothesis is activated, we
can know the its position in the path, and we could
record this information to build a dynamic PSPL. Each
hypothesis once be activated, it could be kept in the
dynamic structure.

In the dynamic PSPL structure, each unit is a tuple
W, t, l, score. The W is word ID, t is the time of the
hypothesis, the l means the position of the hypothesis,
and the score is the interpolation of AM score and LM
score.

E. System Architecture of D-PSPL

Different from the base syllable system, we use both
the trigram lattice and the D-PSPL. The D-PSPL structure
contains all the hypotheses activated in the decoding
procedure, as a result, the recall rate of the system will be
improved a lot. As the UWGE algorithm, the confidence
measurement is not accurate as well. So we make use of
the traditional trigram lattice. We convert the lattice into
PSPL and combine it with the D-PSPL. The hypotheses
of the two structure will be merged together. If the
hypothesis in both structure, we interpolate the PSPL
posterior with the D-PSPL score. On the contrary, if the
hypothesis only exists in the D-PSPL structure, the score
is used as the final score.

As shown in Fig. 4, the indexing stage generates both
trigram lattice and dynamic position specific posterior lat-
tice. When the decoding procedure is over, the trigram is
convert into PSPL structure. Then, the indexer combines
the PSPL with D-PSPL and compress them into inverted
index to restore.

Audio 
stream

Trigram 
Lattice

Inverted 
index

Figure 4. Frame Work of D-PSPL System

At the searching stage, the searching strategy is exactly
the same to retrieve the spoken terms.

The system architecture is shown in Fig. 4.

F. Dynamic Position Specific Posterior Lattice Algorithm

Consider a word W corresponding to an edge e starting
at time ts and ending at time te in a searching space.
It is activated during the decoding procedure. During
ASR we may record the boundaries. Then, we add this
word hypotheses to the D-PSPL structure. There are many
clusters in the structure according to the longest path
length. We record the position of the word hypothesis
in its’ own path and add it to the corresponding cluster.
Since there is merge procedure in the decoding strategy, if
the hypothesis appears in two paths, we may record its’
position separately in different paths add it to different
clusters. If there is same hypothesis in the different path
and has the same position. If the hypotheses have different
time range, we keep the only hypotheses in the cluster,
otherwise, we keep the two hypotheses in the same cluster.

The confidence measurement of the hypotheses in the
D-PSPL could not be calculated with forward-backward
algorithm. And we use frame-synchronous measures and
local measures to evaluate the confidence of the hypothe-
ses’ confidence measurement.

The frame-synchronous confidence measures use only
the data available up to the frame currently being pro-
cessed by the recognition engine. Thus, as soon as a frame
of signal is processed by the engine, a confidence value
can be computed for all the words ending at this frame.
Let [w, τ, t] be the word w which starts at frame τ and
ends at frame t.

The confidence measures are based on the likelihood
ratio between the word w for which we want to evaluate
the confidence (named current word in the following) and
a set E of competing words belonging to the word graph.
The following equation defines this generic likelihood
ratio:

C([w, τ, t]) =
P (O|w)P (w)∑

w′∈E p(O|w
′)P (w′)

(7)

P (O|w) is the acoustic probability of the observation
sequence O given the word w and P(w) is the linguistic
probability of w.
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Because the frame-synchronous measures algorithm
use only information of a few frames. It is not very
accurate. So we use another on-the-fly confidence mea-
surement called local measurement:

The local measures are based on the estimation of
the posterior probability of words. The local confidence
measures can use data slightly posterior to the word
being analyzed. However this data is limited to the local
neighborhood of this word and the confidence estimation
does not need the recognition of the whole sentence.
Thus, a short delay is introduced to allow the data to be
available for computing the measures. The idea of the
local measure is to define a neighborhood around the
analyzed word [w, τ, t] by taking into account a fixed
number of frames before and after the word. Thus, the
total size of the neighborhood V of a word w is defined
by the sum of the length of w and the length of both
past and future neighborhood. Figure 1 shows such a
neighborhood V of w with a past neighborhood of length
x and a future neighborhood of length y. The durations
of the past and future neighborhood measure of w. are
independent. This allows us to use more data from the
past (already processed, so available) without increasing
the delay introduced by the future neighborhood. From
the word graph generated by the recognition engine, we
extracted the sub-graph corresponding to V and computed
the estimation of the posterior probability of w. This es-
timation is obtained by the word level forward-backward
method summarized by the following equations, for a
bigram language model.

In this paper, we use the history of the hypothesis to
calculate the local measurement.

The implement of D-PSPL algorithm is shown in
Algorithm 2.

VII. PERFORMANCE EVALUATION

A. Evaluation setup

We conduct the experiments on two mandarin conver-
sation telephone speech(CTS) sets. Set1 is 1 hour long,
and a hundred keywords are selected from this corpus
with 397 occurrences. This set is recorded in in laboratory
environment and the speakers do not have strong accent.
Set2 is 10 hours long CTS set with a hundred keywords
and 1934 occurrences. In this set, the speakers have strong
accent and the record environment has background noises.

For speech recognition, we use the one-pass recog-
nizer [14]. The acoustic model is trained with 400 hours
of CTS data with 39 dimension features (13-dimension
PLP and their first and second order time derivatives).
Meanwhile, a dictionary of 1276 syllables is used for our
decoding. Besides, a syllable trigram language model is
trained with the transcript of the acoustic model training
data. We tuned the search beam width of the recognizer
to 90 and the speed of the system equals 0.36xRT.

The system performance of spoken term detection is
measured in 3 metrics:

Algorithm 2 Dynamic Position Specific Posterior Lattice
Generation Algorithm

Create a empty PSPL structure
2: Create a node on current time frame t

On each frame, we consider all of the N+1 tu-
ple (u, v, .., s; t) and keep the start time boundary
τ(u, v, ..., s; t)

4: Add the tuple to the PSPL structure according its’
position information .
• S(e) and E(e) indicate the start time and end

time of the hypothesis
• w(e) is the weight of the arc as definition of
eq(1)

• l(e) is ID of the hypothesis
if ∃e′,S(e′) = n(τ(u, v, ..., s; t)),E(e′) =
n(t),l(e′) = s and the position information is
same then

6: merge the e and e
′

if e and e
′

have different time range then
8: keep e to the cluster

else
10: retain e

end if
12: Calculate the confidence measurement of e.

end if
14: erase the word graph and delete the dead paths [7]

a) Equal error rate (EER): It is defined as a point in
DET curve where false alarm rate (FA) equals to false
reject rate (FR).

b) Max recall rate (MaxRecall): It is the recall rate of
all the keywords which are found by the system.

B. Experimental results

As shown in Table 1, we compare the performance
of different algorithm: The trigram lattice, position spe-
cific posterior lattice, unconditioned word graph, dynamic
position specific posterior lattice with frame-synchronous
confidence measures and dynamic position specific pos-
terior lattice with local measurements.

TABLE I.
The keyword spotting performance comparison.

System EER MaxRecall
Set1

Trigram Lat. 43.47 56.51
PSPL 43.84 57.01

UWGE Lat. 38.79 63.82
D-PSPL(frame-synchronous confidence) 39.33 62.75

D-PSPL(local confidence) 38.21 62.75
Set2

Trigram Lat. 52.89 48.97
PSPL 52.35 49.21

UWGE Lat. 48.35 55.76
D-PSPL(frame-synchronous confidence) 48.02 55.89

D-PSPL(local confidence) 47.16 55.89

In Table 1, we can see the trigram lattice and PSPL
has the similar performance, and the UWGE algorithm
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Figure 5. The Comparison of UWGE and D-PSPL

has much better EER score and max recall rate. The
D-PSPL algorithm has the same performance with the
UWGE algorithm.

With different confidence measurements, the local con-
fidence is a little better than the frame-synchronous con-
fidence. In this work, we choose to calculate the local
confidence from the sentence beginning to the current
frame, and we observe the local measurement is near
the confidence measurement which is calculated with
forward-backward algorithm.

The UWGE and D-PSPL algorithm have similar per-
formance on EER score and max recall rate, but they
are different in the high score area. As shown in Fig. 5
the comparison on the accuracy-recall-rate curve, we can
observe the D-PSPL has the parts of the offline PSPL
hypotheses and the the accuracy is 100% when the recall
below 13%. On the contrary, the performance of UWGE
algorithm has only the highest accuracy of 80%.

VIII. CONCLUSIONS

In this paper, we focused on the performance degrada-
tion of the fast keyword spotting system and addressed
the problem of how to get more information generated
in the decoding procedure. We aimed to get enough
information from the decoding procedure directly and
proposed two methods: the unconditioned word graph
algorithm and dynamic position specific posterior lat-
tice algorithm. The unconstrained word graph expansion
(UWGE) to eliminate the limitation of N-gram lattice
and generate unconstrained word graph, which is still
fine graph structure suitable for the forward-backward
algorithm and improves the recall rate of keywords.

The dynamic position specific posterior lattice(D-
PSPL) algorithm is based on PSPL structure, and we use
a dynamic generation algorithm to produce linear index
structure. Then, we combine the D-PSPL structure and
the offline PSPL structure. The confidence measurement
is calculated by two on-the-fly confidence measurements:
frame-synchronous confidence measures and local mea-
surements.

On our test sets, we compared the two algorithms
with trigram lattice and PSPL. The proposed algorithms

outperform and the D-PSPL method has better accuracy
when the confidence score threshold comes higher.

In future works, we will investigate the problem of the
inaccurate language model information kept in the uncon-
strained word graph and improve the D-PSPL confidence
measurement.
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