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Abstract—This paper presents a genetic algorithm (GA) 
search method in order to obtain better circuit 
implementation of the mixed polarity Reed-Muller functions. 
By combining global searching ability of genetic algorithm 
and local searching ability of simulated annealing, the 
proposed GA method could achieve fast convergence. It 
differs to traditional genetic algorithm, in which the 
proposed GA forms an intermediate population by using 2/3 
population from previous generation and 2/3 population 
from current generation at the annealing stage. Annealing is 
then applied to the intermediate population to generate a 
new population. In the next generation selection, crossover 
and mutation operations are used for the newly generated 
population. The calculation of cost function of proposed 
algorithm is based on parallel tabular technique to 
overcome the disadvantage of the traditional tabular 
technique. The results of the tested benchmark indicated 
that this algorithm is highly effective for searching the best 
polarity and it could achieve 29% area reduction and 3.68X 
speedup.  
 
Index Terms—logic synthesis, Reed-Muller, mixed polarity, 
genetic algorithm, computer aided design 
 

I.  INTRODUCTION 

Mixed polarity Reed Muller (MPRM) [1] is one of the 
canonical AND/XOR forms, which have at least 3n 
different numbers of expansions. XOR gates have large 
area and low speed attributes compared to AND/OR gates. 
It is widely known that FPGAs have made the delay and 
area of all types of gates equal. For instance, in Xilinx 
look-up table (LUT) type FPGA, the LUT can realise any 
function of up to six variables with the same area and 
delay. Hence, as field programmable gate arrays (FPGA) 
becomes available; circuits implemented in MPRM form 
can be more practical. 

To widen the search space and achieve better synthesis 
results, Reed Muller (RM) expansions and sum-of 
product (SOP) expansions have been investigated. In 
some cases, the circuit can be better simplified in RM 
expansion using AND/XOR forms, whereas for some 
other circuits using AND/OR form will be the case. 
Extensive research has been carried out to find the 
optimal representation solutions. Numerous methods 

have been proposed for fixed polarity Reed Muller 
(FPRM) [2-4] and MPRM [5-10] in terms of area 
minimisation and/or power minimisation. In addition, 
methods proposed for minimisation of Dual RM were 
investigated [3, 11, 12, 13]. In [9] the authors presented a 
class of two-level RM expressions called reduced 
Kronecker expressions (RKROs) developed a method for 
an exact minimisation and applied genetic algorithm (GA) 
to minimise RKROs. Recently genetic algorithm methods 
[14, 15] were presented to obtain the optimal MPRM 
solution. Genetic algorithms have been found that they 
could produce good results within acceptable 
computation time. However, to find the optimal or even 
the best solution among a large number of polarities in an 
efficient way is challenging. 

The main aim of the paper is to focus on the CPU time 
reduction without degradation of quality of solution. A 
GA method using parallel tabular technique in 
cooperation with multi-thread technique is proposed to 
finding efficient solutions among the large number of 
polarities in MPRM domains in a parallel manner. The 
remainder of the paper is organised as follows. Section II 
gives some definitions. MPRM conversion using multi-
thread technique is given in Section III. The optimal 
Polarity via GA using multi-thread technique is given in 
Section IV. Section V discusses the comparison results in 
details with respect to other approaches. Conclusions are 
then given in Section VI. 

II.  PRELIMINARIES 

A.  Theory 
Given a truth table for a Boolean function, standard 

algebraic form of the function can be derived. The 
canonical SOP expansions are based on AND/OR, where 
mi are the minterms; ai = 0 or 1 and it indicates the 
absence or presence of minterms, respectively.  
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If all the variables are present in every term of (1), then 
the OR can be replaced by XOR giving XOR SOP, where 
⊕ is the XOR operator. 
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B.  Definitions 
In the RM representations of the Boolean functions, 

each variable can be employed in one of three modes, as 
either true, complement or mixed mode. 

Definition 1: If each variable in (2) appears in its true 
or complemented form but not both, the expressions are 
known as fixed polarity RM (FPRM) expressions, which 
have 2n different polarities or expansions. 

Definition 2: If each variable in (2) appears as true or 
complemented at the same time, the expressions are 
known as MPRM expressions, which have 3n different 
polarities. 

Example 1: 32211321 ),,( xxxxxxxxf ⊕⊕=  for fixed 
polarity in which variable x1 and x3 in true forms and 
variable x2 in complement form. 

Example 2: 32311321 ),,( xxxxxxxxf ⊕⊕=  for mixed 
polarity in which variable x1 in true form, variable x2 in 
complement form and variable x3 in mixed form. 

Definition 3: The different MPRM expansions are 
identified by a polarity number. To calculate the polarity 
of any function, each variable is replaced by 0, 1 or 2 
depending on whether the variable is used in true, 
complemented or mixed form, respectively, as follows. 

 
0 if  appears  in  true  form
1 if  appears  in  complement  form
2 if  appears  in  mixed  form
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The polarity is the decimal equivalent of the resulting 
ternary number. 

Example 3: Given a three-variable function 
=),,( 321 xxxf  321213213232 xxxxxxxxxxxx ⊕⊕⊕⊕ , the 

polarity is 7 since variable x1 appears in true form, 
variable x2 appears in mixed form and variable x3 appears 
in complement form. 

III.  POLARITY CONVERSION VIA PARALLEL TABULAR 
TECHNIQUE 

It is convenient to convert one of MPRM expansions to 
another by using tabular technique [3, 6]. However, the 
disadvantage of traditional tabular technique is that the 
generation of the on-set terms is in sequence. To 
overcome this problem, a new method is proposed to 
generate all the new terms of according to a required 
polarity. The generation of new terms can be 
implemented to each term independently without result 
conflict. The updating process is equivalent to the 
sequentially canceling pairs in the traditional tabular 
technique. The procedure is as follows: 

Step 1: List all on-set terms in the index table and set 
the number of counts to 1. 

Step 2: Select one of on-set terms in the index table. 
Step 3: Generate all possible 2j-1 new terms for the 

selected on-set term listed in the index table, considering 

1 as don’t care condition terms but leave the jth 
unchanged when rj = 2 and mj = 2  

Step 4: If the newly generated term is already in the 
index table, increment the count by 1. Otherwise, add it to 
the index table and set the number of counts to 1. 

Step 5: Repeat Step 2 –4 for all on-set terms. 
Step 6: Alter the column heading to indicate the 

polarity of the variable and change the bias of the 
variable. 

a) If rj = 0 and mj = 1 or 2, alter column heading 
according to the polarity of the variable xj. The bias of the 
variable is unchanged. 

b) If rj = 1 or 2, and mj = 0, alter column heading 
according to the polarity of the variable xj. The bias of the 
variable is unchanged. 

c) If rj = 1(2) and mj = 2(1), alter column heading 
according to the polarity of the variable xj. The bias of the 
variable is reversed. 

Step 7: Output the on-set terms of the required 
expansion, in which the number of count in the index 
table is odd number. 

Since all the on-set terms are generated in parallel 
manner, different thread of Multi-core CPU can be used 
to each on-set term to enhance the speed without any 
conflicts. The pseudo code is shown in Algorithm 1, 
where THREADS is the number of threads of Multi-core 
CPU and join_all() function is used to wait each threads 
to complete its independent process. 

 

IV.  GENETIC ALGORITHM TO FIND THE OPTIMAL 
POLARITY 

Genetic algorithm encodes potential solutions to the 
problem as chromosomes and applies recombination and 
mutation operators to generate further solutions. After 
evaluation, the best solutions are used to replace the 
weaker ones. Each individual solution within the 

Algorithm 1: MPRM conversion using multi-thread 
technique 
Inputs: a given MPRM expansion u 
Output: another MPRM expansion v 

Initialise the on-set table T according to expansion u 
for all THREADS t do { 

for all on-set coefficients/THREADS c in T do { 
Generate on-set coefficients N 
for all n in N do { 

if (n NOT exists T) { 
add n to the on-set table T 
Initialise the number count to 1 

} 
else 

Increment the number count 
} 

} 
} 
join_all(); //wait 
for all on-set coefficients c in T do { 

if (the number count of c is odd number) 
c is the on-set coefficients of expansion v 

} 
Output result according to on-set coefficients of v 

} 
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population is randomly initialised and represented in 
mixed polarity by a fixed number of bits equal to the 
number of variables for the given function using ternary 
code as given in definition 3. The GA uses a tournament 
selection method where the main parameter of selection 
is the tournament size which can be changed by the 
operator. The single-point recombination operator is used. 
Thus, recombination is an action of choosing randomly a 
crossover point and combining two different parts from 
the two parents to form a new offspring. The uniform 
mutation alters a single gene of the individual randomly. 
Using mutation can encourage diversity within the 
population and minimise the chances of population 
stagnating at any local optima. 

The fitness function computes the quality of new 
individuals. Initially, it computes the fitness of all the 
chromosomes. Then it computes the fitness for the new 
offspring of each evaluation. The fitness function is 
implemented by using parallel tabular technique 
explained in Section III to calculate the number of terms 
for the polarity determined in the selected individual. 
Tournament replacement controls the composition of the 
new generation for each evolution loop. Replacement is 
carried out if the new offsprings are not found in the 
population. After replacement it forms an intermediate 
population by selecting two thirds of previous population 
and two thirds of current population. Simulated annealing 
is applied to intermediate population according to P(wi). 
P(wi) is probability of individual wi selection for 
annealing process. T0 is initial temperature and set to 100, 
j = 1,2,…,n and k = 1,2,…,n. n is intermediate population 
size. 
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A usual strategy is to stop evolution after a fixed 
number of evaluations. Pseudo code of the proposed GA 
is given in Algorithm 2, where THREADS is the number 
of threads of Multi-core CPU. join_all() is used to wait 
each threads to complete its independent process. 
thread_adapter() creates thread groups for create_thread() 
for parallelization. create_thread() creates different 
threads of multi-core CPU. evpop and annealing are 
evaluation for whole population and annealing processes. 
popcurrent and popinter are current population and 
intermediate population respectively. 

V.  RESULTS 

The results are obtained on an Intel dual-core CPU of 
2.4 GHz and 4 GB RAM under Windows 7. The 
difference is that GA methods used in [14, 15] are based 
on minterm conversion method and traditional tabular 
technique respectively whereas the GA in this paper 
utilises parallel tabular and multi-thread techniques. Each 

result is taken after running the GA algorithm ten times in 
order to reflect the quality of these results. The GA 
parameters are population size, tournament size and 
number of generations. From the test, it was found that a 
good population size was between 20 and 30. 
Tournament size parameter is used to control the 
selection pressure. From the test, it was found that the 
best result was produced when the tournament size was 
between 3 and 6. 

Therefore the tournament size was chosen in this range 
for all benchmark examples. The number of generations 
indicates how many times the evaluation loop of the GA 
will be running. It is different for each example 
depending on the size and complexity of the given 
function. 

The results are compared to methods proposed in [14] 
and [15], which are shown in Table 1. It can be seen from 
the Table I that the other GA methods and the proposed 
GA actually found the optimum solutions for all the 
benchmarks attempted. Our method achieves the same 
performance in terms of on-set number but outperforms 
methods proposed in [14] and [15] on average with 
improvement of 16.14% and 23.41% respectively in 
terms of CPU time in microseconds. 

Table II shows the improvement of on-set numbers of 
each benchmark in SOP and MPRM expansions. 
Averagely the on-set number is reduced by 29%. Table II 
also shows the improvement of CPU time before and 
after parallelisation. The CPU time is speedup on average 
3.68 times. 

Algorithm 2: Find optimal Polarity via GA using multi-
thread technique 
Inputs: Various parameters setting 
Output: The best polarity expansion 

Read benchmark 
Initialise population 
for (int i = 0; i < THREADS; ++i) { 

ta = thread_adapter (evpop, popcurrent, i) 
create_thread(ta) 

} 
join_all() //wait 
while (number of generation--)  
{ 

Select two parents randomly 
Single point crossover 
Mutation 
for (int i = 0; i < THREADS; ++i) { 

ta = thread_adapter (evpop, popcurrent, i) 
create_thread(ta) 

} 
join_all() //wait 
if (new offspring not exist) 

Replacement 
Form a new intermediate population with 4N/3 by 
selecting 2/3 from parents and 2/3 from offsprings 
for (int i = 0; i < THREADS; ++i) { 

ta = thread_adapter(annealing, popinter, i) 
create_thread(ta)  

} 
join_all() //wait 
Select N individuals to form a new generation 

} 
Output the best result 

2772 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER



TABLE I.  

COMPARISON RESULTS IN TERMS OF ON-SET NUMBER AND CPU TIME. 

Name I/O 
On-set number CPU (ms) 

[15] [14] Ours [15] [14] ours

rd53 5/3 20 20 20 7.9 7.5 4.8

con1 7/2 14 14 14 9.4 8.5 7.5

rd73 7/3 63 63 63 9.9 9.0 8.1

rd84 8/4 107 107 107 9.4 8.8 7.6

clip 9/5 182 182 182 9.7 9.2 8.3

misex1 8/7 13 13 13 8.7 8.2 7.2

sao2 10/4 76 76 76 10.1 9.6 8.3

ex1010 10/10 810 810 810 9.8 9.8 8.5

inc 7/9 34 34 34 9.4 8.5 7.5

5xp1 7/10 61 61 61 9.0 8.7 7.8

total - 1380 1380 1380 93.3 87.7 75.6

average - 138 138 138 9.33 8.78 7.56

Imp %  0 0 0 23.41 16.14 0 

 

TABLE II.  

IMPROVEMENTS OF ON-SET NUMBER AND CPU TIME. 

Name I/O 
On-set number CPU (s) 

SOP MPRM Imp 
(%) 

Before 
parallel 

After 
parallel

Speedup
(times) 

x4 17/15 520 374 28 43.3 12.7 3.4 

pcler8 27/17 53 40 25 52.2 13.7 3.8 

c8 28/18 79 52 34 49.7 13.4 3.7 

count 35/16 169 64 62 56.8 14.6 3.9 

unreg 36/16 48 48 0 55.4 14.2 3.9 

b9 41/21 106 119 -12 65.6 17.3 3.8 

cht 47/36 81 81 0 66.8 19.6 3.4 

example2 85/66 329 234 29 69.5 18.8 3.7 

apex6 135/99 656 491 25 83.4 23.2 3.6 

x3 135/99 656 536 18 81.9 23.4 3.5 

i6 138/67 202 239 -18 82.5 22.3 3.7 

j7 199/67 264 268 -2 85.2 22.4 3.8 

total - 3163 2546 356 729 215 44 

average - 264 212 29 66 18 3.68 

 

VI.  CONCULSIONS 

In this paper, new algorithm with cooperation of 
parallel tabular technique is proposed to optimise MPRM 
expansions. The proposed parallel tabular technique 
overcomes the disadvantage of traditional tabular 
technique, resulting all the new terms are generated at 
one time instead of generating in sequence. The 
experimental results show that the proposed GA can find 
the optimum solution in a reasonable time in all the 
examples attempted, achieving efficiency in terms of 
CPU time without quality of solution loss. The proposed 
GA outperforms other GA methods and achieves 29% 

improvement on average. The CPU time is speedup on 
average 3.68 times after parallelisation. 

ACKNOWLEDGMENT 

This work was supported by a grant (No. 11MS011) 
from State Key Lab of ASIC and System, China and the 
National High Technology Research and Development 
(863) Thematic Program of China (2012AA012001). 

REFERENCES 
[1] D.H. Green, “Dual forms of Reed Muller expansions,” IEE 

Proc. Comput. Digit. Tech., vol. 141, no. 3, 1994, pp. 184-
192. 

[2] M.K. Habib, “A new approach to generate fixed polarity 
Reed Muller expansions for completely and incompletely 
specified functions,” Int. J. Electron., vol. 89, no. 11, pp. 
845–876, 2002. 

[3] M. Yang, H. Xu, L. Wang, J.R. Tong and A.E.A. Almaini, 
“Exact minimization of large fixed polarity dual form of 
Reed Muller functions,” Proc. of Eighth IEEE Int. Conf. on 
Solid-State and Integrated Circuit Technology, October 
2006, pp. 1931–1933. 

[4] S. Chaudhury and S. Chattopadhyay, “Fixed polarity Reed-
Muller network synthesis and its application in AND-
OR/XOR-based circuit realization with area-power trade-
off,” IETE Journal of Research, vol. 54, no. 5, pp. 353-363, 
2008. 

[5] P.J. Wang, H. Li, “Low power mapping for AND/XOR 
circuits and its application in searching the best mixed-
polarity,” Journal of Semiconductors, vol. 32, no. 2, pp. 
025007, 2011. 

[6] A.E.A Almaini and L. McKenzie, “Tabular techniques for 
generating Kronecker expansions”, IEE Proc. Comput. 
Digit. Tech., vol. 143, No. 4, pp. 205–212, 1996. 

[7] B. Becker and R. Drechsler, “Exact minimisation of 
Kronecker expressions for symmetric function,” IEE Proc. 
Comput. Digit. Tech., vol. 143, no. 6, pp. 349–354, 1996. 

[8] R. Drechsler, B. Becker and N. Gockel, “A genetic 
algorithm for RKRO minimisation”, Expert Syst. Appl., vol. 
12, no. 1, pp. 127–139, 1997. 

[9] M. Helliwell and M. Perkowski, “Fast algorithm to 
minimize multi output mixed-polarity generalized Reed–
Muller forms,” Proc 25th IEEE/ACM Conf. on Design 
Automation, pp. 427–432, 1988. 

[10] D. Debnath and T. Sasao, “GRMIN2 a heuristic 
simplification algorithm for generalised Reed Muller 
expressions,” IEE Proc. Part E, Comput. Digit. Tech., vol. 
143, no. 6, pp. 376–384, 1996. 

[11] L.Y. Wang, Y.S. Xia, X.X. Chen, “logic synthesis and 
optimization based on dual logic,” Journal of computer-
aided design and computer graphics, vol. 24, no. 7, pp. 961-
967, 2012. 

[12] J. Cheng, X. Chen, K.M. Faraj, and AEA Almaini, 
“Expansion of logical function in the OR-coincidence 
system and the transform between it and maxterm 
expansion,” Proc. IET Computers and Digital Techniques, 
vol. 150, no. 6, pp. 397-402, 2003. 

[13] M. Yang, J.R. Tong, J.M. Lai, “Optimisation of Fixed 
Polarity Canonical Or-Coincidence expansions”, Journal of 
Computers, vol. 8, no. 11, Nov. 2013. 

[14] B.A. Al Jassani, N. Urquhart and A.E.A. Almaini, 
“Manipulation and optimisation techniques for Boolean 
logic”, IEE Proc. Comput. Digit. Tech., vol. 4, no. 3, 2010, 
pp. 184–192.  

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2773

© 2013 ACADEMY PUBLISHER



[15] B.A. Al Jassani, N. Urquhart and A.E.A. Almaini, 
“Optimization of MPRM functions using tabular techniques 
and genetic algorithms,” The Mediterranean Journal of 
Electronics and Communications, vol. 4, no. 4, pp. 115-125, 
2008. 

 
Meng Yang received Bachelor of 
Engineering (Honor) degree in Electrical 
Engineering from Shanghai University, 
Shanghai, China, in 1999. He received 
Master of Science with distinction in 
Electronics and Communication 
Engineering and Ph.D. in Electronics 
from School of Engineering Edinburgh 
Napier University, Edinburgh, UK, in 
2002 and 2006, respectively. 

Currently he is a lecturer of Department of Microelectronics, 
School of Information Science and Technology, Fudan 
University, Shanghai, China. His research interests include 
algorithms in FPGA design automation, logic synthesis, and 
dynamic reconfigurable FPGA automation design. He has 
published more than 30 research papers. 

Dr. Yang is a member of IET and Chairman of Young 
Member Section of IET Shanghai Branch. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Jinmei Lai received PhD degree in 
Shanghai Jiaotong University, Shanghai, 
China, in 1998. She was a Post-Doctor 
in Zhejiang University and Fudan 
University. 

Currently she is a full professor of 
State Key Lab of ASIC and System, 
Fudan University, Shanghai, China. Her 
research interests include low power and 

reconfigurable architecture of FPGA and SOC, embedded IP 
core generation automation, logic synthesis and dynamic 
reconfigurable FPGA automation design, SOC testing 
automation. She has published more than 80 research papers 
and holds dozens of Chinese patents. 

 
 
 

 
 

2774 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER


