
Optimisation of Mixed Polarity Reed-Muller
Functions

Meng Yang

State Key Lab of ASIC and System, Fudan University, Shanghai, China
Email: mengyang@fudan.edu.cn

Jinmei Lai

State Key Lab of ASIC and System, Fudan University, Shanghai, China
Email: jmlai@fudan.edu.cn

Abstract—This paper presents a genetic algorithm (GA)
search method in order to obtain better circuit
implementation of the mixed polarity Reed-Muller functions.
By combining global searching ability of genetic algorithm
and local searching ability of simulated annealing, the
proposed GA method could achieve fast convergence. It
differs to traditional genetic algorithm, in which the
proposed GA forms an intermediate population by using 2/3
population from previous generation and 2/3 population
from current generation at the annealing stage. Annealing is
then applied to the intermediate population to generate a
new population. In the next generation selection, crossover
and mutation operations are used for the newly generated
population. The calculation of cost function of proposed
algorithm is based on parallel tabular technique to
overcome the disadvantage of the traditional tabular
technique. The results of the tested benchmark indicated
that this algorithm is highly effective for searching the best
polarity and it could achieve 29% area reduction and 3.68X
speedup.

Index Terms—logic synthesis, Reed-Muller, mixed polarity,
genetic algorithm, computer aided design

I. INTRODUCTION

Mixed polarity Reed Muller (MPRM) [1] is one of the
canonical AND/XOR forms, which have at least 3n
different numbers of expansions. XOR gates have large
area and low speed attributes compared to AND/OR gates.
It is widely known that FPGAs have made the delay and
area of all types of gates equal. For instance, in Xilinx
look-up table (LUT) type FPGA, the LUT can realise any
function of up to six variables with the same area and
delay. Hence, as field programmable gate arrays (FPGA)
becomes available; circuits implemented in MPRM form
can be more practical.

To widen the search space and achieve better synthesis
results, Reed Muller (RM) expansions and sum-of
product (SOP) expansions have been investigated. In
some cases, the circuit can be better simplified in RM
expansion using AND/XOR forms, whereas for some
other circuits using AND/OR form will be the case.
Extensive research has been carried out to find the
optimal representation solutions. Numerous methods

have been proposed for fixed polarity Reed Muller
(FPRM) [2-4] and MPRM [5-10] in terms of area
minimisation and/or power minimisation. In addition,
methods proposed for minimisation of Dual RM were
investigated [3, 11, 12, 13]. In [9] the authors presented a
class of two-level RM expressions called reduced
Kronecker expressions (RKROs) developed a method for
an exact minimisation and applied genetic algorithm (GA)
to minimise RKROs. Recently genetic algorithm methods
[14, 15] were presented to obtain the optimal MPRM
solution. Genetic algorithms have been found that they
could produce good results within acceptable
computation time. However, to find the optimal or even
the best solution among a large number of polarities in an
efficient way is challenging.

The main aim of the paper is to focus on the CPU time
reduction without degradation of quality of solution. A
GA method using parallel tabular technique in
cooperation with multi-thread technique is proposed to
finding efficient solutions among the large number of
polarities in MPRM domains in a parallel manner. The
remainder of the paper is organised as follows. Section II
gives some definitions. MPRM conversion using multi-
thread technique is given in Section III. The optimal
Polarity via GA using multi-thread technique is given in
Section IV. Section V discusses the comparison results in
details with respect to other approaches. Conclusions are
then given in Section VI.

II. PRELIMINARIES

A. Theory
Given a truth table for a Boolean function, standard

algebraic form of the function can be derived. The
canonical SOP expansions are based on AND/OR, where
mi are the minterms; ai = 0 or 1 and it indicates the
absence or presence of minterms, respectively.

 ∑=
−

=

12

0

n

i
iimaf (1)

If all the variables are present in every term of (1), then
the OR can be replaced by XOR giving XOR SOP, where
⊕ is the XOR operator.

2770 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2770-2774

 ∑⊕=
−

=

12

0

n

i
iimaf (2)

B. Definitions
In the RM representations of the Boolean functions,

each variable can be employed in one of three modes, as
either true, complement or mixed mode.

Definition 1: If each variable in (2) appears in its true
or complemented form but not both, the expressions are
known as fixed polarity RM (FPRM) expressions, which
have 2n different polarities or expansions.

Definition 2: If each variable in (2) appears as true or
complemented at the same time, the expressions are
known as MPRM expressions, which have 3n different
polarities.

Example 1: 32211321),,(xxxxxxxxf ⊕⊕= for fixed
polarity in which variable x1 and x3 in true forms and
variable x2 in complement form.

Example 2: 32311321),,(xxxxxxxxf ⊕⊕= for mixed
polarity in which variable x1 in true form, variable x2 in
complement form and variable x3 in mixed form.

Definition 3: The different MPRM expansions are
identified by a polarity number. To calculate the polarity
of any function, each variable is replaced by 0, 1 or 2
depending on whether the variable is used in true,
complemented or mixed form, respectively, as follows.

0 if appears in true form
1 if appears in complement form
2 if appears in mixed form

j

j j

j

x
p x

x

⎧
⎪= ⎨
⎪
⎩

 (3)

The polarity is the decimal equivalent of the resulting
ternary number.

Example 3: Given a three-variable function
=),,(321 xxxf 321213213232 xxxxxxxxxxxx ⊕⊕⊕⊕ , the

polarity is 7 since variable x1 appears in true form,
variable x2 appears in mixed form and variable x3 appears
in complement form.

III. POLARITY CONVERSION VIA PARALLEL TABULAR
TECHNIQUE

It is convenient to convert one of MPRM expansions to
another by using tabular technique [3, 6]. However, the
disadvantage of traditional tabular technique is that the
generation of the on-set terms is in sequence. To
overcome this problem, a new method is proposed to
generate all the new terms of according to a required
polarity. The generation of new terms can be
implemented to each term independently without result
conflict. The updating process is equivalent to the
sequentially canceling pairs in the traditional tabular
technique. The procedure is as follows:

Step 1: List all on-set terms in the index table and set
the number of counts to 1.

Step 2: Select one of on-set terms in the index table.
Step 3: Generate all possible 2j-1 new terms for the

selected on-set term listed in the index table, considering

1 as don’t care condition terms but leave the jth
unchanged when rj = 2 and mj = 2

Step 4: If the newly generated term is already in the
index table, increment the count by 1. Otherwise, add it to
the index table and set the number of counts to 1.

Step 5: Repeat Step 2 –4 for all on-set terms.
Step 6: Alter the column heading to indicate the

polarity of the variable and change the bias of the
variable.

a) If rj = 0 and mj = 1 or 2, alter column heading
according to the polarity of the variable xj. The bias of the
variable is unchanged.

b) If rj = 1 or 2, and mj = 0, alter column heading
according to the polarity of the variable xj. The bias of the
variable is unchanged.

c) If rj = 1(2) and mj = 2(1), alter column heading
according to the polarity of the variable xj. The bias of the
variable is reversed.

Step 7: Output the on-set terms of the required
expansion, in which the number of count in the index
table is odd number.

Since all the on-set terms are generated in parallel
manner, different thread of Multi-core CPU can be used
to each on-set term to enhance the speed without any
conflicts. The pseudo code is shown in Algorithm 1,
where THREADS is the number of threads of Multi-core
CPU and join_all() function is used to wait each threads
to complete its independent process.

IV. GENETIC ALGORITHM TO FIND THE OPTIMAL
POLARITY

Genetic algorithm encodes potential solutions to the
problem as chromosomes and applies recombination and
mutation operators to generate further solutions. After
evaluation, the best solutions are used to replace the
weaker ones. Each individual solution within the

Algorithm 1: MPRM conversion using multi-thread
technique
Inputs: a given MPRM expansion u
Output: another MPRM expansion v

Initialise the on-set table T according to expansion u
for all THREADS t do {

for all on-set coefficients/THREADS c in T do {
Generate on-set coefficients N
for all n in N do {

if (n NOT exists T) {
add n to the on-set table T
Initialise the number count to 1

}
else

Increment the number count
}

}
}
join_all(); //wait
for all on-set coefficients c in T do {

if (the number count of c is odd number)
c is the on-set coefficients of expansion v

}
Output result according to on-set coefficients of v

}

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2771

© 2013 ACADEMY PUBLISHER

population is randomly initialised and represented in
mixed polarity by a fixed number of bits equal to the
number of variables for the given function using ternary
code as given in definition 3. The GA uses a tournament
selection method where the main parameter of selection
is the tournament size which can be changed by the
operator. The single-point recombination operator is used.
Thus, recombination is an action of choosing randomly a
crossover point and combining two different parts from
the two parents to form a new offspring. The uniform
mutation alters a single gene of the individual randomly.
Using mutation can encourage diversity within the
population and minimise the chances of population
stagnating at any local optima.

The fitness function computes the quality of new
individuals. Initially, it computes the fitness of all the
chromosomes. Then it computes the fitness for the new
offspring of each evaluation. The fitness function is
implemented by using parallel tabular technique
explained in Section III to calculate the number of terms
for the polarity determined in the selected individual.
Tournament replacement controls the composition of the
new generation for each evolution loop. Replacement is
carried out if the new offsprings are not found in the
population. After replacement it forms an intermediate
population by selecting two thirds of previous population
and two thirds of current population. Simulated annealing
is applied to intermediate population according to P(wi).
P(wi) is probability of individual wi selection for
annealing process. T0 is initial temperature and set to 100,
j = 1,2,…,n and k = 1,2,…,n. n is intermediate population
size.

∑

=

j

Tjf

Tif

i
k

k

e
ewP /)(

/)(
)((4)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

1ln

1

0T
k

Tk
 (5)

A usual strategy is to stop evolution after a fixed
number of evaluations. Pseudo code of the proposed GA
is given in Algorithm 2, where THREADS is the number
of threads of Multi-core CPU. join_all() is used to wait
each threads to complete its independent process.
thread_adapter() creates thread groups for create_thread()
for parallelization. create_thread() creates different
threads of multi-core CPU. evpop and annealing are
evaluation for whole population and annealing processes.
popcurrent and popinter are current population and
intermediate population respectively.

V. RESULTS

The results are obtained on an Intel dual-core CPU of
2.4 GHz and 4 GB RAM under Windows 7. The
difference is that GA methods used in [14, 15] are based
on minterm conversion method and traditional tabular
technique respectively whereas the GA in this paper
utilises parallel tabular and multi-thread techniques. Each

result is taken after running the GA algorithm ten times in
order to reflect the quality of these results. The GA
parameters are population size, tournament size and
number of generations. From the test, it was found that a
good population size was between 20 and 30.
Tournament size parameter is used to control the
selection pressure. From the test, it was found that the
best result was produced when the tournament size was
between 3 and 6.

Therefore the tournament size was chosen in this range
for all benchmark examples. The number of generations
indicates how many times the evaluation loop of the GA
will be running. It is different for each example
depending on the size and complexity of the given
function.

The results are compared to methods proposed in [14]
and [15], which are shown in Table 1. It can be seen from
the Table I that the other GA methods and the proposed
GA actually found the optimum solutions for all the
benchmarks attempted. Our method achieves the same
performance in terms of on-set number but outperforms
methods proposed in [14] and [15] on average with
improvement of 16.14% and 23.41% respectively in
terms of CPU time in microseconds.

Table II shows the improvement of on-set numbers of
each benchmark in SOP and MPRM expansions.
Averagely the on-set number is reduced by 29%. Table II
also shows the improvement of CPU time before and
after parallelisation. The CPU time is speedup on average
3.68 times.

Algorithm 2: Find optimal Polarity via GA using multi-
thread technique
Inputs: Various parameters setting
Output: The best polarity expansion

Read benchmark
Initialise population
for (int i = 0; i < THREADS; ++i) {

ta = thread_adapter (evpop, popcurrent, i)
create_thread(ta)

}
join_all() //wait
while (number of generation--)
{

Select two parents randomly
Single point crossover
Mutation
for (int i = 0; i < THREADS; ++i) {

ta = thread_adapter (evpop, popcurrent, i)
create_thread(ta)

}
join_all() //wait
if (new offspring not exist)

Replacement
Form a new intermediate population with 4N/3 by
selecting 2/3 from parents and 2/3 from offsprings
for (int i = 0; i < THREADS; ++i) {

ta = thread_adapter(annealing, popinter, i)
create_thread(ta)

}
join_all() //wait
Select N individuals to form a new generation

}
Output the best result

2772 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE I.

COMPARISON RESULTS IN TERMS OF ON-SET NUMBER AND CPU TIME.

Name I/O
On-set number CPU (ms)

[15] [14] Ours [15] [14] ours

rd53 5/3 20 20 20 7.9 7.5 4.8

con1 7/2 14 14 14 9.4 8.5 7.5

rd73 7/3 63 63 63 9.9 9.0 8.1

rd84 8/4 107 107 107 9.4 8.8 7.6

clip 9/5 182 182 182 9.7 9.2 8.3

misex1 8/7 13 13 13 8.7 8.2 7.2

sao2 10/4 76 76 76 10.1 9.6 8.3

ex1010 10/10 810 810 810 9.8 9.8 8.5

inc 7/9 34 34 34 9.4 8.5 7.5

5xp1 7/10 61 61 61 9.0 8.7 7.8

total - 1380 1380 1380 93.3 87.7 75.6

average - 138 138 138 9.33 8.78 7.56

Imp % 0 0 0 23.41 16.14 0

TABLE II.

IMPROVEMENTS OF ON-SET NUMBER AND CPU TIME.

Name I/O
On-set number CPU (s)

SOP MPRM Imp
(%)

Before
parallel

After
parallel

Speedup
(times)

x4 17/15 520 374 28 43.3 12.7 3.4

pcler8 27/17 53 40 25 52.2 13.7 3.8

c8 28/18 79 52 34 49.7 13.4 3.7

count 35/16 169 64 62 56.8 14.6 3.9

unreg 36/16 48 48 0 55.4 14.2 3.9

b9 41/21 106 119 -12 65.6 17.3 3.8

cht 47/36 81 81 0 66.8 19.6 3.4

example2 85/66 329 234 29 69.5 18.8 3.7

apex6 135/99 656 491 25 83.4 23.2 3.6

x3 135/99 656 536 18 81.9 23.4 3.5

i6 138/67 202 239 -18 82.5 22.3 3.7

j7 199/67 264 268 -2 85.2 22.4 3.8

total - 3163 2546 356 729 215 44

average - 264 212 29 66 18 3.68

VI. CONCULSIONS

In this paper, new algorithm with cooperation of
parallel tabular technique is proposed to optimise MPRM
expansions. The proposed parallel tabular technique
overcomes the disadvantage of traditional tabular
technique, resulting all the new terms are generated at
one time instead of generating in sequence. The
experimental results show that the proposed GA can find
the optimum solution in a reasonable time in all the
examples attempted, achieving efficiency in terms of
CPU time without quality of solution loss. The proposed
GA outperforms other GA methods and achieves 29%

improvement on average. The CPU time is speedup on
average 3.68 times after parallelisation.

ACKNOWLEDGMENT

This work was supported by a grant (No. 11MS011)
from State Key Lab of ASIC and System, China and the
National High Technology Research and Development
(863) Thematic Program of China (2012AA012001).

REFERENCES
[1] D.H. Green, “Dual forms of Reed Muller expansions,” IEE

Proc. Comput. Digit. Tech., vol. 141, no. 3, 1994, pp. 184-
192.

[2] M.K. Habib, “A new approach to generate fixed polarity
Reed Muller expansions for completely and incompletely
specified functions,” Int. J. Electron., vol. 89, no. 11, pp.
845–876, 2002.

[3] M. Yang, H. Xu, L. Wang, J.R. Tong and A.E.A. Almaini,
“Exact minimization of large fixed polarity dual form of
Reed Muller functions,” Proc. of Eighth IEEE Int. Conf. on
Solid-State and Integrated Circuit Technology, October
2006, pp. 1931–1933.

[4] S. Chaudhury and S. Chattopadhyay, “Fixed polarity Reed-
Muller network synthesis and its application in AND-
OR/XOR-based circuit realization with area-power trade-
off,” IETE Journal of Research, vol. 54, no. 5, pp. 353-363,
2008.

[5] P.J. Wang, H. Li, “Low power mapping for AND/XOR
circuits and its application in searching the best mixed-
polarity,” Journal of Semiconductors, vol. 32, no. 2, pp.
025007, 2011.

[6] A.E.A Almaini and L. McKenzie, “Tabular techniques for
generating Kronecker expansions”, IEE Proc. Comput.
Digit. Tech., vol. 143, No. 4, pp. 205–212, 1996.

[7] B. Becker and R. Drechsler, “Exact minimisation of
Kronecker expressions for symmetric function,” IEE Proc.
Comput. Digit. Tech., vol. 143, no. 6, pp. 349–354, 1996.

[8] R. Drechsler, B. Becker and N. Gockel, “A genetic
algorithm for RKRO minimisation”, Expert Syst. Appl., vol.
12, no. 1, pp. 127–139, 1997.

[9] M. Helliwell and M. Perkowski, “Fast algorithm to
minimize multi output mixed-polarity generalized Reed–
Muller forms,” Proc 25th IEEE/ACM Conf. on Design
Automation, pp. 427–432, 1988.

[10] D. Debnath and T. Sasao, “GRMIN2 a heuristic
simplification algorithm for generalised Reed Muller
expressions,” IEE Proc. Part E, Comput. Digit. Tech., vol.
143, no. 6, pp. 376–384, 1996.

[11] L.Y. Wang, Y.S. Xia, X.X. Chen, “logic synthesis and
optimization based on dual logic,” Journal of computer-
aided design and computer graphics, vol. 24, no. 7, pp. 961-
967, 2012.

[12] J. Cheng, X. Chen, K.M. Faraj, and AEA Almaini,
“Expansion of logical function in the OR-coincidence
system and the transform between it and maxterm
expansion,” Proc. IET Computers and Digital Techniques,
vol. 150, no. 6, pp. 397-402, 2003.

[13] M. Yang, J.R. Tong, J.M. Lai, “Optimisation of Fixed
Polarity Canonical Or-Coincidence expansions”, Journal of
Computers, vol. 8, no. 11, Nov. 2013.

[14] B.A. Al Jassani, N. Urquhart and A.E.A. Almaini,
“Manipulation and optimisation techniques for Boolean
logic”, IEE Proc. Comput. Digit. Tech., vol. 4, no. 3, 2010,
pp. 184–192.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2773

© 2013 ACADEMY PUBLISHER

[15] B.A. Al Jassani, N. Urquhart and A.E.A. Almaini,
“Optimization of MPRM functions using tabular techniques
and genetic algorithms,” The Mediterranean Journal of
Electronics and Communications, vol. 4, no. 4, pp. 115-125,
2008.

Meng Yang received Bachelor of
Engineering (Honor) degree in Electrical
Engineering from Shanghai University,
Shanghai, China, in 1999. He received
Master of Science with distinction in
Electronics and Communication
Engineering and Ph.D. in Electronics
from School of Engineering Edinburgh
Napier University, Edinburgh, UK, in
2002 and 2006, respectively.

Currently he is a lecturer of Department of Microelectronics,
School of Information Science and Technology, Fudan
University, Shanghai, China. His research interests include
algorithms in FPGA design automation, logic synthesis, and
dynamic reconfigurable FPGA automation design. He has
published more than 30 research papers.

Dr. Yang is a member of IET and Chairman of Young
Member Section of IET Shanghai Branch.

Jinmei Lai received PhD degree in
Shanghai Jiaotong University, Shanghai,
China, in 1998. She was a Post-Doctor
in Zhejiang University and Fudan
University.

Currently she is a full professor of
State Key Lab of ASIC and System,
Fudan University, Shanghai, China. Her
research interests include low power and

reconfigurable architecture of FPGA and SOC, embedded IP
core generation automation, logic synthesis and dynamic
reconfigurable FPGA automation design, SOC testing
automation. She has published more than 80 research papers
and holds dozens of Chinese patents.

2774 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

