
An Efficient Method for Scheduling Massive
Vulnerability Scanning Plug-ins

Yulong Wang, Nan Li
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, Beijing, China
Email: {wyl, linanster}@bupt.edu.cn

Abstract—More and more security vulnerabilities were
found in network softwares nowadays, making network
security assessment one of the most important tasks for IT
administrators. Vulnerability scanner is the key application
for fulfilling such tasks. However, large numbers of vulnera-
bilities result in even larger number of vulnerability plug-ins
including common plug-ins and specific plug-ins, which may
involve complex dependencies. Therefore, how to schedule
such large number of plug-ins in an efficient manner is a
key problem for improving the performance of vulnerability
scanners. We analyze the current algorithms and find that
they doesn’t take the dependencies into consideration or
doesn’t handle it properly, which would waste a considerable
CPU time for scanning. This paper proposes an efficient
plug-in scheduling algorithm based on DAG graph. We
formalize plug-in scheduling as a tree-like topological sorting
problem using DAG theory, in which multi-thread is treated
as task lines and all plug-ins are deployed on the task lines.
Each task line is occupied by the plug-ins for a period
of executing time and waiting time. By constructing the
DAG graph of all plug-ins and computing their “height”
value, sorting the plug-ins and aligning them to a linked list
for scheduling, we solve the plug-in dependency problem
properly, therefore eliminate the possibilities that non-
ready plug-ins being scheduled to execute. We carry out
experiments to validate the effectiveness of our algorithm.

Index Terms—security vulnerability, plug-in scheduling,
plug-in dependency, topological sorting

I. INTRODUCTION

A. Security Issue

INTERNET changes information usage mode and
brings up communication revolution era. No doubt that

it is opening up unlimited prospects for communication
applications [1]–[3]. However at the same time, due to the
openness of Internet, it is facing more and more internal
and external security threats. As a result, network attacks,
information theft and other security issues have become
increasingly prominent.

Manuscript received March 19, 2013; revised April 27, 2013; accepted
May 13, 2013. c© 2005 IEEE.

This work was supported in part by Youth Scientific Research and
Innovation Plan of Beijing University of Posts and Telecommunication-
s(GrantNo. 2013RC1101), the Disciplinary Joint Construction Project
of the Beijing Municipal Commission of Education, the Innovative
Research Groups of the National Natural Science Foundation of China
(GrantNo. 61121061), the Independent Research Project for the Base
(GrantNo. N2012002) and the Important National Science & Technology
Specific Projects:Next-Generation Broadband Wireless Mobile Commu-
nications Network (GrantNo. 2010ZX03004-001-01).

According to 2012 Global Security Report [4] released
by Trustwave, a leading provider of on-demand data secu-
rity and payment card industry compliance management
solutions for businesses and organizations throughout the
world, network security situation is quite not optimistic
and Internet is facing a wide variety of network security
issues compared with past years, ranging from the theft
of personally identifiable information to sensitive govern-
ment documents or credit card data,etc. Cyber criminals
target many diverse organizations.

Except for Trustwave, many other security organiza-
tions and institutions have issued safety warnings on
Internet. For example, CWE/SANS [5] tops the web ap-
plication security on the 20 Global Security Risk Ranking
List. The report of Network Monitoring for Web-Based
Threats [6] release by Computer Emergency Response
Team (CERT) also points out that web-based vulnerabil-
ities have made the web into a wonderfully powerful yet
very dangerous place. Thus, security issues have become
increasingly important.

B. Vulnerability Scanning Plug-in Scheduling Issue

Vulnerability scanning is a technology for identifying
the possible vulnerabilities in the target network using
remote detection. As new vulnerabilities are found from
time to time, a vulnerability scanner needs to frequently
update their vulnerability knowledge base to improve
their scanning capability. In order to update on the fly,
most vulnerability scanners adopt plug-in mechanism [7].
Network security vulnerabilities have increased to a large
number and continued to grow rapidly. Take Nessus [8]
and OpenVAS [9] for example, up to April of 2013 the
numbers of plug-in in their libraries have been updated
to more than 53000 and 3000 respectively. What’s more,
plug-ins may depend on other plug-ins. So, there may
exist complex relationships between the plug-ins. There-
fore, how to design a plug-in scheduling algorithm, which
make the scanner to schedule plug-ins just in time so as to
reduce the delay introduced by dependency restrictions,
is a very valuable problem to solve.

C. The Structure of the Paper

This paper firstly analyzes exiting scanning plug-in
algorithms, and find out that their poor performance is
caused by the plug-in dependency restrictions. Secondly,

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2761

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2761-2769



using DAG graph the paper convert the plug-in scheduling
problem to a task scheduling model which implicitly con-
tains the plug-in dependency restrictions. Afterwards, the
paper proposes an efficient plug-in scheduling algorithm
based on the model. In the end, through experiments the
algorithm is verified to be able to solve the plug-in de-
pendency problem properly and improve the performance
of vulnerability scanning.

The main contributions of the paper are summarized as
follows:

1) Proposes an efficient plug-in scheduling algorith-
m. Compared with existing vulnerability scanning
plug-in scheduling algorithms, the proposed al-
gorithm solves the plug-in dependency problem,
which is the key point for improving vulnerability
scanning performance.

2) Construct the dependent task scheduling model, and
successfully convert the plug-in schedule problem
to the model, which greatly simplifies the analysis
of plug-in scheduling problem.

3) Make a profound comparative research of exiting
plug-in scheduling algorithms and summarizes their
advantages and disadvantages, which is helpful for
designing a better plug-in scheduling algorithm.

II. PREPARATORY WORK

A. Plug-in Scheduling Requirement

In order to avoid unnecessary scanning operation, some
plug-in may reuse the scanning result of other plug-ins.
We call these plug-ins dependent plug-ins. Some plug-ins
never need to reuse the scanning result of other plug-ins.
We call these plug-ins independent plug-ins.

The executing sequences of plug-ins can be classified
into two types: sequential and concurrent. Sequential
execution means there is a strict order to execute since
dependent plug-ins are involved. For example, plug-in
pa depends on plug-in pb, then the two plug-ins should
execute in a fixed order. In other words, pa’s executing
prerequisite is the present of the scanning result from pb.
If pb is not completely over, pa should not be sched-
uled since it cannot execute. The plug-in dependencies
requires that corresponding plug-ins must be executed in
a particular order. Concurrent execution means there is
no such dependency restriction on plug-ins, so no need
to determine the proper order to schedule each plug-in.
For example, plug-in pa and pb doesn’t depend on each
other, so they can be scheduled in any order without
affecting the scanning performance. In other words, pa
has no executing prerequisite of the scanning result of pb,
if pb is not completely over while pa is scheduled, pa can
execute, and vice versa. In the later case, scanners can use
multi-thread to realize concurrent executing of plug-ins
for improving the throughput of vulnerability scanning.

Vulnerability scanning plug-ins may have complex de-
pendent relationships. As Fig.1 shows, plug-in p4 depends
on p7 and p8, p5 depends on p7, p6 depends on p8. With
regard to running sequence, p4 and p5 is able to execute
only after the execution of p7, p6 is able to execute only

P0 P1 P2 P3

P4 P5 P6

P7 P8

P9

Fig. 1. The dependent relationships among vulnerability scanning plug-
ins

when the execution of p8 is over. On the contrast, p4, p5
and p6 have no dependent relationships with one another,
so these three plug-ins are able to execute simultaneously
once p7 and p8 complete their scanning.

B. Problem Description

Based on the above analysis on the requirement, we for-
malize the plug-in scheduling problem as follows: Given
a set of plug-ins P = {p1, p2, . . . , pn}. The maximum
number of concurrent threads is denoted as m (m� n).
Let ci(k) represent the ith plug-in’s pure executing time1

on the kth task line. Since packet latency doesn’t affect
scheduling decision and packet delay variation is hard
to predict, we ignore the time spent on packet latency,
thus ci(k) could be regard as unchanged for each plug-in.
Let wi(k) represent the ith plug-in’s waiting time on the
kth task line, which starts just after the (i − 1)th plug-
in’s execution is over and ends before the ith plug-in’s
beginning of execution. Then, wi(k) must be one of the
three values. If wi(k) is equal to zero, then the ith plug-
in doesn’t need to wait. If wi(k) is equal to the timeout
of the thread, it means the ith plug-in should wait for its
dependent plug-ins to complete scanning till the timeout
of the thread, which would certainly lead to the failure of
the (i−1)th plug-in’s execution since there is no time for
it to execute. If wi(k) is greater than zero but less than
the timeout of the thread, the (i−1)th plug-in would wait
for a while before getting executed in the end.

The relationship between different times is shown in

1Not include the waiting time for the completion of plug-ins it
depends on.

2762 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER



the Eq. 1.

T1 = c1(1) + w2(1) + c2(1) + · · ·+
wk1(1) + ck1(1)

T2 = c1(2) + w2(2) + c2(2) + · · ·+
wk2(2) + ck2(2) (1)
· · ·

Tm = c1(m) + w2(m) + c2(m) + · · ·+
wkm(m) + ckm(m)

in which, Tm represents the total time consumed on the
mth thread (i.e. the mth task line). wkm(m) represents
the waiting time of (km)th plug-in on the mth task line.
ckm(m) represents the (km)th plug-in execution time on
the mth task line. What an efficient plug-in scheduling
algorithm needs to do is assigning all of the plug-ins to
the m task lines so that the maximum of Tm is as small
as possible.

The main goal of the paper is designing such an
algorithm based on the above abstract model.

III. RELATED WORK

Some plug-in scheduling algorithms had been studied
in recent years, among them Obtain-Wait algorithm and
Greed algorithm are two representative ones [10].

The plug-in scheduling mechanism in Nessus and
OpenVAS are based on the Obtain-Wait algorithm.
Obtain-Wait algorithm’s main idea is that plug-ins are
randomly scheduled at the very beginning. If the current
plug-in’s prerequisite is met, it is executed instantly;
otherwise it will wait until it obtains the scanning result
returned from its dependent plug-ins or fails due to thread
timeout. Whenever there is a free thread, the scanner
will randomly select a waiting plug-in and put it on the
task line. Though it is easy to implement, Obtain-Wait
algorithm is not efficient since in its eyes all of the plug-
ins are of the same kind and should be treated equally.
But they are not, some plug-ins should be scheduled
before others. An improved algorithm called “Obtain-Wait
algorithm based on risk level” introduces risk level of
plug-ins for deciding the scheduling order of plug-ins,
which may improve the scanning result if the scanning
process is interrupted since more severe plug-ins have a
higher possible to execute. However, the performance of
the scanning remains the same because of the dependent
relations between plug-ins. If a plug-in is assigned to a
thread but the plug-in’s precedent plug-in hasn’t finished
its scanning, then the thread has to sleep and cannot serve
for other plug-ins even when the plug-ins’ execution pre-
requisites are met. In the worst case, all of the threads are
assigned such plug-ins waiting for their precedent plug-
ins to complete but those precedent plug-ins are waiting
to be assigned to idle threads, the vulnerability scanner
would enter into a deadlock state. Even with a deadlock
resolving mechanism(e.g. deprive some scheduled plug-
ins’ threads and assign them to other plug-ins), the total
throughput of the scanner is still low.

The Greed algorithm uses dependent degree to further
improve the performance of vulnerability scanning. The
dependent degree includes:

1) un-executed dependent degree (num deps): the
number of un-executed plug-ins on which the cur-
rent plug-in depends.

2) un-executed depended degree (num deps B): the
number of un-executed plug-ins that the current
plug-in being depended on.

The algorithm’s basic idea is: select plug-ins whose
num deps is zero, and from them pick the plug-ins with
larger num deps B to run. That is, the larger the plug-in’s
num deps B is, the higher priority it should be scheduled
when the plug-in’s num deps is zero. In this way, Greed
algorithm partially solved the plug-in dependent prob-
lem and improved the scanning performance. However,
the values of num deps and num deps B need to be
updated once a dependent plug-in finishes its execution.
Note that the plug-in library contains a huge number of
plug-ins, so the update itself is quite a heavy resource
consumption task that would easily become the bottleneck
of the performance of a vulnerability scanner.

Therefore, we need a pre-scanning mechanism to im-
prove the scheduling efficiency of vulnerability plug-ins
which is the major work of this paper.

IV. DAG-BASED SCHEDULING MODEL

A. DAG Graph

In the theory of parallel computing, the task
scheduling problem is usually modeled using a DAG
graph [11] [12] [13], where nodes represent tasks, direct-
ed lines represent the dependency relationship between
the nodes they connected, nodes’ weight represent time
consumption of the nodes, the weight of directed lines
represents the communication time consumption. Take the
diagram in Fig. 2 for example, c0 represents a task, the
directed line from c0 to c1 means that c1 is followed by
c0 (i.e. c1 depends on c0), t0 represents task c0’s time
consumption and e01 refers to the time consumption of the
communication between c0 and c1. From the perspective
of plug-in scheduling, the goal of scheduling is to reduce
the total task time to as short as possible. In other words,
under the premise of plug-ins’ dependency restriction,
the designed algorithm should make use of overlapping
communication and computing to shorten the machine’s
free time.

C0
t0

C1
t1

C2
t2

C3
t3

C4
t4

e01 e12

e30 e42

e34

Fig. 2. Directed Acyclic Graph Diagram

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2763

© 2013 ACADEMY PUBLISHER



On account of DAG’s applicability and convenience,
there are many studies applying it to solve the problem of
network security [14]. In the field of network security, it is
usually called attack graph [15]. However, we use DAG in
another way in that we focus on the plug-ins’ dependency
relationship and the concurrent mechanism, and use DAG
to abstract the plug-in scheduling problem as a model
called Dependent Plug-ins Scheduling Model, from which
we build our efficient plug-ins scheduling algorithm.

B. Dependent Plug-ins Scheduling Model

P0
T0

P1
T1

P2
T2

P3
T3

P4
T4

P5
T5

P6
T6

P7
T7

P8
T8

P9
T9

0 0 0 0 0 0

0 0 0 0

0

Fig. 3. The Dependent Plug-ins Scheduling Model

As shown on Fig. 3, the dependent plug-ins scheduling
model depicts a set of vulnerability scanning plug-ins
and the dependent relationships among them. Compared
with DAG graph in the parallel computing theory, the
task nodes are replaced by plug-ins, the task dependent
relationships are interpreted as plug-in dependent relation-
ships, the task time consumption is replaced by the plug-in
execution time ,and the communication time consumption
is ignored2. In this way, we abstract the plug-in scheduling
problem as dependent task schedule model by means of
DAG graph.

The restriction of dependent plug-ins in the dependent
plug-ins scheduling model is very similar to the restriction
of dependent tasks in DAG graph. If and only if all of its
dependent plug-ins are executed, can a plug-in be execut-
ed. Otherwise, the thread running the plug-in could not
progress and will hang up waiting for the completion of
the dependent plug-ins’ execution till the thread times out.
What should be pointed out here is that the dependency
relationships between all the plug-ins are directed and it’s
impossible to produce a circle. Therefore, applying the
dependent plug-ins scheduling model to solving the plug-
in scheduling problem is feasible. Two typical methods
are usually used in DAG graph: Topological Sort and
Critical Path. In order to utilize the topological sort
method in DAG graph, we convert the plug-in scheduling

2Communication time consumption between different threads is so
small compared with plug-in execution time that it can be ignored safely
without affecting the plug-in scheduling result.

problem to a plug-in sort problem based on the dependent
plug-ins scheduling model.

V. PLUG-IN SCHEDULING ALGORITHM

A. The Height in DAG

In order to determine the scheduling order under the de-
pendency relationships, we introduce the concept Height
to indicate the position of each plug-in in the dependent
plug-ins scheduling model. The calculation of Height
(denoted as H) is shown in Eq. 2 .

Hi =

 1 Prev(pi) = �

1 +max(H(pj)) pj ∈ Prev(pi)
(2)

Applying Eq. 2 to Fig. 3, we obtain Fig. 4.

P0 P1 P2 P3

P4 P5 P6

P7 P8

P9
P

(height)
(1)

(2)(1)

(3) (2) (3)

(4)(3)(4)(4)

Legend

Fig. 4. Example indicating Height

Take p9 for example. The precedent node of p9 is null,
so H9 is equal to 1. Take p4 for another example. Because
p4 has two direct precedent nodes p7 and p8 whose Height
is equal to 1 and 2 respectively, H4 is equal to 1 plus
Max{H7, H8} that is 3. The rest can be calculated in the
same manner, finally we can obtain all the Height values
in the dependent plug-ins scheduling model.

From the definition of Height, it is clear that the plug-
ins whose Height are equal to 1, such as p7 and p9 in
Fig. 4, have no dependent plug-ins so they can be executed
directly at the very beginning. More common situation
is that there are two plug-ins px and py , whose Height
conform to Hx > Hy and Hx 6= 1, Hy 6= 1. Hx > Hy

means the Height of px is larger than that of py . On the
condition of Hx > Hy , we set the rule that Py should
have a higher priority to be scheduled than Px. We can
prove that all of a plug-in’s dependent ones would have
been scheduled before the moment when the plug-in itself
is to be executed.

Theorem 1: Suppose that there is a plug-in p̂ whose
Height is ĥ, and its direct dependent plug-ins are

2764 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER



p1, p2, · · · , pn whose Height are H1, H2, · · · , Hn respec-
tively. Set the rule that if Hx > Hy , py must be scheduled
before px. If followed by the rule above, when the plug-in
p̂ is to be executed, all of its dependent plug-ins would
have been done.

Proof: According to Eq. 2, Hi = 1 +
max(H(pj)) when pj ∈ Prev(pi). Thus, ĥ >
Hi, Hi∈{H1,H2,· · · ,Hn}. Therefore, ĥ is always larger
than any Height of its dependent plug-ins. According to
the rule “if Hx > Hy , py must be scheduled before px”,
p1, p2, · · · , pn would be scheduled earlier than the plug-in
p̂.

The concept Height is helpful for handling the plug-
ins’ dependency problem, and its calculation is straight-
forward. However, when dealing with some peculiar plug-
in dependencies, it doesn’t work well. Fig.5 is such an
example.

P1 P2 P3

P0

P4 P5

P6

P7P
(height)

(1)

(2) (2) (2)

(3) (2)

(2)

(2)

P1 P2 P3

P0

P4 P5

P6

P7

(1)

(2) (2) (2)

(3) (3)

(4)

(5)

(b)(a)

Legend

Fig. 5. A remediation of Height calculation

According to Eq. 2, the Height values is calculated as
in Fig. 5 (a). Because p4’s Height value is smaller than
that of p6 and p7, p4 will be scheduled earlier them.
However, we notice that the dependency relationships
between p5, p6 and p7 is linear and the plug-ins can
run one after another, thus these three plug-ins can be
seen as one plug-ins logically. Therefore, in this situation,
p4 is not necessary to be scheduled earlier than p6 and
p7. Since p4 and p5 have the same Height value, the
scheduling sequence between them would be determined
by other factors (such as Time defined in section V-B).
But once p5 is selected to be scheduled, it’s better to
schedule p5, p6 and p7 as a whole(i.e. assigning to a
thread one by one) than let p4 compete with p6 and
p7 because the scheduling cost(e.g. searching for the
candidate plug-ins and comparing of height ) can be
saved. Note that scheduling in this way would not break
the plug-in dependency restrictions.

Therefore, we remedy the calculation method of Height
as follow: once the Height value of one plug-in is de-
termined, if its succeed node has only one dependent
plug-in (i.e. the plug-in itself), assign the succeed node
the same Height value as that of the plug-in. Using this

improved method of Height calculation, we obtain the
new Height values as shown in Fig.5 (b). It can be seen
that p5, p6 and p7 are set to the same Height value so the
vulnerability scanner would schedule them as a whole. In
the general situation, whenever there is an idle thread,
the vulnerability scanner would put a plug-in on that
thread. However, in order to use the improved Height in
Fig.5 (b), the vulnerability scanner should put the plug-ins
with linear dependencies(e.g. p5, p6 and p7) on the same
thread. For example, after p5 is scheduled to a thread
named threadA, p6 should wait for threadA although
p6 has the same Height value and there is an idle thread
threadB available. This is because p6 has to wait for
the completion of p5. Putting p5 on threadB would not
speed up the scanning process and may downgrade the
scanning performance since threadB could serve other
ready-to-run plug-ins with the same height with p6. P7

should be treated in the same way since it is also a part
of the logical one compound plug-in composed of p5, p6
and p7.

B. The Time in DAG

The Height value in DAG helps to solve the plug-ins
dependency relationship problem by ruling that the plug-
in must be scheduled after its dependent ones. However,
among the plug-ins with the same Height value, there
should be a more specific scheduling mechanism.

In order to determine the scheduling priority of the
plug-ins with same Height value, we introduce the con-
cept Time to indicate each plug-in’s time consumption
level in the dependent plug-ins scheduling model. S-
ince plug-ins would send different numbers of scanning
packets and perform different kinds of operations on the
received responses, their duration of execution would be
different. The time consumed by a plug-in is determined
largely by its complexity and the network situation. Since
all of the plug-ins in a scanning job would run under the
same network situation, we only consider the complexity
of plug-ins as the metric for measuring the plug-ins’
Time in DAG. Since vulnerability scanning is a batch job
from the perspective of plug-ins, the plug-ins with higher
time consumption level should be scheduled if the Height
values are the same so as to obtain a higher throughput
and shorter scanning time. In this way, the vulnerability
scanner could minimize Tmax = Max{T1, T2, · · · , Tm}.

As shown in Fig.6, when p0 finishes its scanning, the
vulnerability scanner needs to pick the next plug-in from
p1, p2 and p3 whose height are all equal to 2. It seems
rational to pick p1 since its Time value is the largest
of the three candidate plug-ins. However, for the same
consideration when introducing height, plug-ins p3, p5,
p6 and p7 should be seen as a compound plug-in p3,5,6,7
whose Time value is the sum of that of the four plug-
ins. Since the Time of p3,5,6,7 is larger than p1 and p2,
p3,5,6,7 should be scheduled. p3, as the leading plug-ins
of p3,5,6,7, should be put on the thread to run.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2765

© 2013 ACADEMY PUBLISHER



P1 P2 P3

P0

P4 P5

P6

P7
P

(height,time)

(1,2)

(2,3) (2,2) (2,1)

(3,2) (2,1)

(2,1)

(2,1)Legend

P3,5,6,7

(2,4)
Single 
Plug-in

P
(height,time)

Compound
 Plug-in

Fig. 6. The plug-in DAG with T ime and Height

C. The Group ID and Seq-in-Group in DAG

In order to guarantee that plug-ins composing com-
pound plug-ins are scheduled as a whole and their
scheduling conforms to the dependency relationships be-
tween them, we introduce the concept of GroupID and
Seq − in − Group. Each compound plug-in is assigned
a unique GroupID. Each plug-in composing the com-
pound plug-in is assigned a Seq− in−Group reflecting
its scheduling sequence within the group according its
dependency. Plug-ins that doesn’t belong to any com-
pound plug-ins is itself a group and is assigned a unique
GroupID and a zero Seq − in−Group. Once a group
of plug-ins finish their scanning, the vulnerability scanner
will first select a group according to the height and time
metric defined above, then pick the candidate plug-ins
with the smallest Seq−in−Group. If the finished plug-in
belongs to a group that doesn’t complete its scanning, the
the vulnerability scanner would just pick the next plug-in
in the group and put it on the same thread serving the
finished plug-in. Fig.7 shows an example.

D. Algorithm Description

Based on the above concepts, the paper proposes an
improved and efficient plug-in scheduling algorithm using
topological sorting of DAG graph, which is described in
Algorithm 1.

In order to speed up the sorting of plug-ins, we design
some auxiliary data structures include plug-in hash table,
plug-in metadata table and plug-in scheduling list, as
shown in Fig.8.

With plug-in hash table, the scanner can pin-point plug-
ins by their name in constant time. The plug-in metadata
table stores information for scheduling plug-ins, among
them plug−invname, category and dependency can be
obtained from plug-ins’ definition file(e.g. nvt in Nessus
and OpenVAS). The Time value can be set using the
time out value of the plug-in or user-defined value. The
rest three variables (Height, GroupID and Seq − in−
Group) are set by Algorithm 1. In this way, the scanner

P1 P2 P3

P0

P4 P5

P6

P7
P

(Height,Time,GroupID,Seq-in-Group)

(1,2,1,0)

(2,3,2,0) (2,2,3,0) (2,1,5,1)

(3,2,4,0) (2,1,5,2)

(2,1,5,3)

(2,1,5,4)Legend

Fig. 7. The plug-in DAG with GroupID and Seq − in−Group

Plug-in Hash Table

Hash index for Plug-in 1

Hash index for Plug-in 2

Hash index for Plug-in 3

…

Hash index for Plug-in n

...

Plug-in Metadata Table

Plug-in name

Running State

Category

Time

Seq-in-Group

Dependency

Height

Plug-in Scheduling List

Plug-in 1

Plug-in 2

Plug-in 3

…

Plug-in n

...

Group ID

Fig. 8. Auxiliary Structures for Sorting Plug-ins

only needs to construct a proper plug-in scheduling list
so as to determine the plug-in running sequence.

TABLE I
SORTING PRINCIPLE

1) The plug-in with smaller Height value wins out.
2) If the Height values are the same, the plug-in with

larger Time value wins out.
3) If the Time values are the same, randomly select a set

of plug-ins with the same GroupID value.
4) If the GroupID values are the same, the plug-in with

smaller Seg-in-Group wins out.

E. Algorithm Analysis

The scheduling sequence of plug-ins is determined by
four factors including Height, Time, GroupID and Seq-in-
Group. The Height values reflect the plug-in dependency
relationships. Because the time wasted for waiting un-
executed dependent plug-ins is the major factor affecting
the scanner’s plug-in scheduling efficiency, Height is the
primary scheduling decision factor. The remaining three
factors are used to improve the throughput of plug-in
execution.

Therefore, for each plug-in in the set P =
{p1, p2, . . . , pn}, the proposed algorithm generates a 4-

2766 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER



Algorithm 1 Plug-in Scheduling Algorithm
Input:

An unsorted plug-in set P = {p1, p2, . . . , pn}.
Output:

Scheduled plug-ins
1: Traverse the plug-in set P, fill the plug-ins’ infor-

mation in plug-in hash table and initialize plug-in
scheduling list to a null list.

2: Traverse the plug-in hash table and construct a cor-
responding DAG graph G according to the dependen-
cies in plug-in metadata table.

3: Initialize four variables H̃, T̃ , G̃ and S̃ by setting their
value to 0.

4: while G 6= � do
5: H̃++, set G̃ = 0.
6: Let V denotes the set of vertexes in G.
7: for all v ∈ V do
8: Create a node in plug-in scheduling list for v.
9: Set Time of v to T̃ .

10: Set Height of v to H̃ .
11: Set GroupID of v to G̃.
12: if in-degree of next(v) is not equal to 1 then
13: Set Seg-in-Group of v to 0.
14: else
15: Set S̃ to 1.
16: Set Seg-in-Group of v to S̃, w = next(v) and

create a new variable t̂.
17: while in-degree of next(w) is equal to 1 do
18: Read w’s Time value from plug-in meta

table to t̂.
19: S̃ ++; T̃ = T̃ + t̂.
20: Set Height of w to H̃ .
21: Set GroupID of w to G̃.
22: Set Seg-in-Group of w to S̃.
23: w = next(w); delete prev(w) and w’s out-

edge in G.
24: end while
25: Reset all the Time value of plug-ins whose

GroupID is G̃ to T̃ .
26: end if
27: Delete v from G.
28: G̃++.
29: end for
30: end while
31: Quick sort plug-in scheduling list using the four-

tuple (Height,Time,GroupID,Seq-in-Group) followed
according to the principle defined in Table I.

32: Schedule the plug-ins using the sorted plug-in
scheduling list according to the principle defined in
TableII.

33: return Scheduled plug-ins.

TABLE II
SCHEDULING PRINCIPLE

1) Schedule the plug-ins according to the sorted plug-in
scheduling list one by one.

2) Check the current plug-in’s Seg-in-Group value
• if its Seg-in-Group value is equal to zero, fetch

it and execute it.
• if its Seg-in-Group value is equal to nonzero,

fetch it and all of its following plug-ins with
the same GroupID, and put them on a selected
thread’s buffer.

3) Whenever there comes up an idle thread, check the
thread’s buffer

• if it is non-empty, take the first plug-in in the
buffer and execute it.

• if it is empty, schedule the next plug-in in the
plug-in scheduling list.

tuple <Height,Time,GroupID,Seq-in-Group>. Then, the
algorithm sorts the plug-ins according to the above rules
and put the sorted plug-ins in a scheduling list. All that
remains to do is fetching the plug-ins one after another
from the scheduling list and put them on idle threads to
run. Note that plug-ins belong to the same group should
be put on the same thread to avoid unnecessary waiting.

Back to Eq.1, the maximum of Tm would be smallest
if the plug-ins are scheduled by our algorithm because
the algorithm can ensure that when a plug-in is to be
scheduled all of its dependent plug-ins have already been
scheduled3. wkm(m) is zero when the (km)th plug-in is a
single plug-in or is the first plug-in of a compound plug-
in. The waiting time for dependent plug-ins that are not
belonging to the same group is saved. Furthermore, by
utilizing the Time, GroupID and Seq-in-Group in the 4-
tuple, the plug-in scheduling process works in a batch job
way. Therefore, the time of each task line time tends to
be average and Ttotal = Max{T1, T2, · · · , Tm} would be
minimized.

In summary, the proposed algorithm converts the plug-
in scheduling problem into topological sorting problem
based on DAG theory. Thus, the algorithm can achieve
the effect of topological sorting by putting the plug-
in’s dependent plug-ins in front of itself, then schedule
the sorted plug-ins one after another. In this way, the
algorithm reduces the situation that some running plug-ins
have to stop and wait for their dependent ones, which is
the main reason restricting plug-in scheduling efficiency
and the performance of a vulnerability scanner.

VI. EVALUATION

We carry out experiments for evaluating the perfor-
mance and scalability of the proposed algorithm and
compare it with that of Obtain-Wait algorithm and Greedy
algorithm. The experiment environment is: the vulnerabil-
ity scanner implementing the scheduling algorithms runs
on Fedora14 with 1G memory in VMWare player, whose

3Note that this does not mean all of its dependent plug-in have finished
executing, so the waiting time may not be zero.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2767

© 2013 ACADEMY PUBLISHER



host operating system is Windows XP on a 4G memory,
Intel Core i3 Dual CPU 2.4G frequency box.

We measure the time consumed for running the same
set of plug-ins using the three algorithm to compare their
performance for scheduling. The result is shown in Table
III. It can be seen that when the number of plug-ins is
small the performances of the three algorithm are roughly
the same. This is because the dependencies between
plug-ins are less if not none. Nearly no unnecessary
waiting time is wasted in such situations. When the
number of plug-ins increases, the difference between the
performance of these three algorithm becomes apparent.
Our algorithm saved more than half of the scanning time
compared to the other two algorithms.

We also conduct the experiment by increasing the
number of the plug-ins in the set from 10 to 1000 in
order to observe the trend of the vulnerability scanning
time under different scheduling algorithms. The result is
shown in Fig.9. It can be seen that the increasing speed
of the scanning time of our algorithm is much lower than
that of the other two algorithms. Thus our algorithm is
more scalable than the existing one.

The experiments on performance and scalability of the
algorithms verifies the efficiency of the proposed vulner-
ability scanning plug-in scheduling algorithm. Therefore,
our algorithm is more suitable for large-scale vulnerability
scanners such as those that will be deployed in public
cloud and serves large numbers of customers.

TABLE III
SCANNING TIME UNDER DIFFERENT SCHEDULING ALGORITHMS

Algorithm
Time(s) 10 50 100 500 1000

Obtain-Wait Algorithm 3 6 37 408 1010
Greed Algorithm 3 6 28 310 703
Algorithm based on DAG 3 5 11 100 251

0

200

400

600

800

1000

1200

10 50 100 500 1000

Ti
m

e
(s

)

Plugin Quantity

Algorithm based on DAG Greed Algorithm Obtain-Wait Algorithm

Fig. 9. The Trend of Scanning Time Under Different Scheduling
Algorithms

VII. CONCLUSION

Existing vulnerability scanning plug-in algorithms have
a low performance. Obtain-Wait algorithm doesn’t carry
out pre-treatment and schedules plug-ins randomly. Thus

it wastes much time on waiting for plug-ins being de-
pended on. Although Greed algorithm carries out pre-
treatment and the dependency relationship problem is
solved to some extent, it still wastes some unnecessary
waiting time. The scheduling algorithm based on DAG
graph proposed by the paper solves the dependency
relationship problem by guaranteeing that any plug-in
will be scheduled before all of its dependent plug-ins
have been scheduled. Thus it avoids unnecessary waiting
situations. The experiments show that out algorithm is the
most efficient one among the existing algorithms.

Our next step work would focus on vulnerability scan-
ning as a service in public cloud. We would design the
methods for properly splitting a vulnerability scanning
task and integrating the scanning results so that the scan-
ning task can be carried out using map/reduce computing
model so as to enjoy various benefits provided by cloud
computing.

ACKNOWLEDGMENT

We thank professors and colleagues for numerous
discussions concerning this work, State Key Laboratory
of Networking and Switching Technology for assistance,
and the reviewers for their detailed comments.

REFERENCES

[1] M. Song, T. Yang, and Y. qing Song, “A web survey program based
on computer technology and its application to evaluation model
about youth self-organizations in china,” Journal of Computers,
vol. 6, pp. 1812–1818, 2011.

[2] J. Tan, X. Chen, and M. Du, “An internet traffic identification
approach based on ga and pso-svm,” Journal of Computers, vol. 7,
pp. 19–29, 2012.

[3] Z. Chen, H. Wang, Y. Liu, F. Bu, and Z. Wei, “A context-aware
routing protocol on internet of things based on sea computing
model,” Journal of Computers, vol. 7, pp. 96–105, 2012.

[4] S. B. Brown, “2012 Global Security Report,” Trustwave’s Spider
Labs,” Technical Report, 2011.

[5] MITRE. (2013, April) Common vulnerabilities and exposures.
[Online]. Available: http://cve.mitre.org/

[6] M. Heckathorn, “Network Monitoring for Web-Based Threats,”
Carnegie Mellon University, SEI Administrative Agent,” Technical
Report, Feb. 2011.

[7] C. Yuanda, L. Xianfeng, and X. Jingfeng, “Research of Plug in
Technology on Vulnerability Scanner,” Microcomputer Develop-
ment, vol. 15, no. 9, pp. 72–74, 2005.

[8] Tenable. (2013, April) Nessus vulnerability scanner. [Online].
Available: http://www.tenable.com/products/nessus

[9] OpenVAS. (2013, April) About openvas nvt feed. [Online].
Available: http://www.openvas.org/openvas-nvt-feed.html

[10] L. Junjie, Z. Bing, and Z. Peng, “Nessus Plugin Scheduling Al-
gorithm Research,” Network Security Technology and Application,
vol. 3, no. 4, pp. 80–82, 2009.

[11] Z. Zhongping and L. Xinyuan, “Static Heuristic Task Scheduling
Algorithm in the Grid,” Journal of Computer Research and De-
velopment, vol. 45, no. 21-25, pp. 21–25, 2008.

[12] H. Shuixia, Z. Guosun, and T. Yiming, “A Method of Hetero-
geneous and Reconfigurable Task Partitioning Based on DAG,”
Journal of Tongji University (Natural Science), vol. 39, pp. 1693–
1698, 2011.

[13] Z. Qian, N. Wei-wei, X. Chang-zhen, and L. Hong, “A Scheduling
Algorithm of Related Tasks Based on DAG Graph in Grid,”
Journal of Chinese Computer Systems, vol. 33, no. 5, pp. 971–
975, 2012.

2768 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER



[14] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-
based network vulnerability analysis,” in Proceedings of the 9th
ACM conference on Computer and communications security, ser.
CCS ’02. New York, NY, USA: ACM, 2002, pp. 217–224.
[Online]. Available: http://doi.acm.org/10.1145/586110.586140

[15] C. Feng, Z. Yi, S. JinShu, and H. WenBao, “Two Formal Analyses
of Attack Graphs,” vol. 21, pp. 838–848, 2010.

Yulong Wang received his Ph.D. degree in computer science
from the Beijing University of Posts and Telecommunications,
China, in 2010. He is currently a lecturer at the Beijing Uni-
versity of Posts and Telecommunications. His research interests
include network security and cloud computing.

Nan Li is currently a MS candidate at the Beijing University
of Posts and Telecommunications, China. His research interests
include network security and next generation network.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2769

© 2013 ACADEMY PUBLISHER


